
WEBQUESTIONSSP v1.0

Contact Persons: Matt Richardson (mattri@microsoft.com), Scott Wen-tau Yih (scottyih@microsoft.com)

1 Overview

This document includes the usage, format, and other specifics about the WEBQUESTIONSSP dataset. The

dataset is being released as part of the paper “The Value of Semantic Parse Labeling for Knowledge Base

Question Answering” [1], in which we evaluated the value of gathering semantic parses, vs. answers, for a

set of questions that originally comes from WEBQUESTIONS [2]. If you use this dataset, please cite our

paper:

@InProceedings{YihRichardsonMeekChangSuh:ACL2016:WebQSP,

 author = {Yih, Wen-tau and Richardson, Matthew and Meek, Christopher and Chang, Ming-Wei and

Suh, Jina},

 title = {The Value of Semantic Parse Labeling for Knowledge Base Question Answering},

 booktitle = {Proceedings of the 54th Annual Meeting of the Association for Computational Lin-

guistics},

 month = {August},

 year = {2016},

 address = {Berlin, Germany},

 publisher = {Association for Computational Linguistics}

}

We believe the data is useful not only for research on question answering and semantic parsing, but also

for other tasks such as entity linking (we have, for most questions, an entity link between an entity in the

question and an entity in Freebase).

2 Usage

The dataset consists of four files: WebQSP.[test|train].[partial|_].json. The train/test split is the same as

WEBQUESTIONS, and every question in WEBQUESTIONS is in WEBQUESTIONSSP (and vice-versa). The

train and test sets are additionally split into the primary dataset (WebQSP.train.json, WebQSP.test.json)

and additional “partial” questions for which a valid parse could not be formulated or where the question

itself is bad or needs a descriptive answer. See the labeling instructions for details on what is considered a

bad or descriptive question. The split criteria is: the question is included in the primary dataset if the ques-

tion itself is labeled as “good”, and the parse is labeled as “complete”. We are including the partial questions

because they still contain potentially useful information. For example, many are still labeled with the pri-

mary entity and relation chain, but are incomplete due to being unable to add a necessary constraint. Thus,

the partial questions could still be useful when, for example, learning to map a question to the relevant core

inferential (relation) chain.

Evaluation on the test set should be reserved for computing final published numbers. We encourage splitting

the training set into train and development sets, or using cross-validation, when running experiments. For

final numbers, please use the included “eval.py” script, which computes the average precision, average

recall, average of per-question-F1.

mailto:mattri@microsoft.com
mailto:scottyih@microsoft.com

2.1 Generating your answers for evaluation

The evaluation script compares your answer set with the answer set contained in the data. We generated the

answer sets for each question by executing the SPARQL query (included in the data) using OpenLink Vir-

tuoso Open-Source Edition 7.1.0. To ensure the answer sets match, use the following formatting guidelines:

 The SPARQL query should be authored so that when it returns literals, it only returns those with no

language tag, or the “en” language tag.

 If the answer is a URI, remove the http://rdf.freebase.com/ns/ prefix. The result should start with “m.”

or “g.”.

 For literals, the answer is just the literal value (e.g., 22), as opposed to the NTriple-formatted string

found in the Freebase dump (e.g., “22”@en)

 If the answer is a literal, and the datatype is http://www.w3.org/2001/XMLSchema#fragment (for

some fragment), then convert the value into our standardized datetime strings as follows:

Fragment Format Example (for April 10, 1923)

date YYYY-MM-DD 1923-04-10

dateTime YYYY-MM-DD 1923-04-10

gYearMonth YYYY-MM 1923-04

gYear YYYY 1923

2.2 Questions with relative time

Many questions ask about a fact relative to the time the question is asked, typically with regard to “now”.

This can be done implicitly (“who does Michael Vick play for?”) or explicitly (“who are the two current

senators of Illinois?”). For such purposes, we take “now” to be one day after the date of the Freebase dump

(which is indicated in the JSON file). Specifically, we are using the dump from 2015-08-09, so “now” is

2015-08-10. Note that this date is spread throughout the file, so if you change the date of the KB, you should

be sure and change this date throughout the dataset as well.

3 STAGED QUERY GRAPH

Every complete parse contains a SPARQL query that was used to generate the answer set that answers the

question. But about 97% of the questions are answerable using a restricted language, introduced in [3],

called a staged query graph. For these, the answer can be found by starting from a “topic entity” in the

question, following one or more relation links, and constraining the answer set with constraints. For exam-

ple, for the question what is the name of justin bieber brother, we can start at the topic entity Justin Beiber

(m.06w2sn5), follow the sibling relation chain (people.person.sibling_s, people.sibling_relationship.sib-

ling) to get all of his siblings, and then add the constraint that any answers must additionally have the

relation people.person.gender with value “Male”.

The staged query graph is provided for all questions that can be answered in the following subset of the

language: the inferential chain is either length 1 or 2, and if the length is 2 then the path goes through a

CVT node in the first step. The staged query graph is automatically converted into a SPARQL query. For

the remaining 3% of the questions which do not satisfy this restriction, the SPARQL is manually authored

(indicated by a “#MANUAL” prefix).

http://rdf.freebase.com/ns/

4 DATA FORMAT

WebQuestionsSP is formatted in JSON format, with the following schema. See the next section for specifics

about the data.

Dataset Contains the entire WEBQUESTIONSSP dataset

 string Version Version of the WEBQUESTIONSSP dataset

 string FreebaseVersion Version of Freebase used to compute answer sets (the date of the

Freebase dump)

 Question[] Questions The entire set of questions in the dataset

Question A question along with all of its parses

 string QuestionId Question Id

 string RawQuestion Original question from WEBQUESTIONS

 string ProcessedQuestion Question with some basic processing (remove trailing question

mark, tokenization of ‘s)

 Parse[] Parses One or more semantic parse annotations for the question

Parse One semantic parse annotation

 string ParseId Parse Id

 int AnnotatorId Id of the annotator who generated this parse

 ParseComment AnnotatorComment Comment fields from the annotator

 string Sparql Sparql-formatted query to answer the question. Typically, this is

automatically generated from the rest of the fields of this Parse

(TopicEntityMid, InferentialChain, Constraints, and Order). For

those that didn’t fit into this scheme, they were authored by hand,

indicated by the prefix “#MANUAL”. Null if there is no parse.

 string TopicEntityMid The MID of the primary topic entity of the question. Null if there

is no primary entity or it does not exist in Freebase.

 string TopicEntityName Name (type.object.name) of the TopicEntityMid (just for conven-

ience). Null if TopicEntityMid is null.

 string PotentialTopicEntityMention The mention (substring of the question) that corresponds to the

topic entity. Null if no entity or none suggested when annotating.

 string[] InferentialChain The chain of Freebase relations leading from the topic entity to the

answers. Null if there was no chain (e.g., annotator couldn’t find a

relation for this question).

 Constraint[] Constraints Set of constraints applied to the query. Empty array if there are no

constraints

 OrderConstraint Order Specifies an ordering and selection of the answer set (e.g., for

questions like “what are the top 5…” or “which state has the larg-

est…”. Null if there is no order constraint needed.

 TemporalSemantics Time Additional information if there are time-oriented constraints in the

parse. Null if there are no time constraints

 Answer[] Answers null if the query was not executed. Empty array if the query returns

the empty set.

Constraint Constraints to restrict the answer set as needed to exactly an-

swer the question

 int SourceNodeIndex Index of the point along the inferential chain to consider the set of

source nodes for the constraint. For example, “0” means the source

nodes are anything found by following InferentialChain[0] from

the TopicEntityMid.

 string NodePredicate Relation to follow from the source nodes. Null means use the

source node itself.

 OperatorType Operator {Equal, NotEqual, LessThan, GreaterThan, LessOrEqual, Great-

erOrEqual, Exist, NotExist}.

Operator to compare the result of SourceNode->NodePredicate to

the Argument

 ArgumentDataType ArgumentType

{Value, Entity}.

The type of the argument

 ValueDataType ValueType {String, Number, DateTime}.

The type of the value, if ArgumentType is Value.

 string Argument The argument: either a MID if the ArgumentType is Entity, or an

appropriately-formatted value if ArgumentType is Value

 string EntityName The entity name if the argument is an entity. Just for convenience.

TemporalSemantics Extra information about the temporal semantics of the ques-

tion.

 bool IsRelativeToNow Is the time relative to “now” (vs. absolute)

 string Start Start of the time period. If absolute, then a date string formatted as

YYYY-MM-DD. If relative, then same format but with each field

optionally prefixed by a “-“ to indicate years, months, or days be-

fore (vs. after) “now”. For example, 0000-00-00 means “now”, and

-0001-00-00 means one year ago.

 string End End of the time period, formatted like “Start”.

 int[] AssociatedConstraints If we were able to implement the temporal semantics in actual con-

straints on Freebase, these are the indices of the constraints in the

Constraints array that correspond to the temporal constraints de-

scribed by this TemporalSemantics.

 string PotentialTimeMention The mention (substring) in the question that caused the temporal

semantics. Empty if it has an implicit “now” like “who is the pres-

ident of the United States”.

ParseComment Comments about the question and parse from this annotator

 ParseQuality ParseQuality {Complete, Partial}

Is the parse complete, meaning the SPARQL is valid and repre-

sents the question being asked. If the SPARQL is not manually

authored, this also implies all of the other fields of Parse are valid

and filled in.

 QuestionQuality QuestionQuality {Good, Bad, BetterAnsweredByDescription}

Is this question good (“what country is Orlando in”), bad (“ho last

won the Superbowl”), bad (“which kardashians are having ba-

bies?), or better answered with a full description (“what is new

york giants”). See the annotation guidelines for more explanation

of what is considered “bad” or needing a description.

 ParseConfidence Confidence How well the parse matches the question. See annotation guide-

lines for more details.

 string FreeFormComment A freeform text comment left by the annotator when annotating

this question. Sometimes the first character indicates a special sta-

tus (marked by the annotator) as described in the labeling instruc-

tions. There is also sometimes structure in the comment due to

concatenating multiple comment fields, post-processing, and also

when the Sparql had to be manually entered, it is indicated with a

“!Manual” prefix.

OrderConstraint Specifies a subset of the answer set according to sorting (e.g.,

min, max, top-k, …)

 int SourceNodeIndex Same as Constraint.SourceNodeIndex

 string NodePredicate Same as Constraint.NodePredicate

 ValueDataType ValueType Same as Constraint.ValueType

 SortOrder SortOrder {Ascending, Descending}

The direction in which the items should be sorted

 int Start The position of the first item to output. 0-based

 int Count Number of items to return (>0)

Answer One of the answers returned by the SPARQL query

 ArgumentDataType AnswerType {Value, Entity}. The type of the argument

 string AnswerArgument The answer. A MID if AnswerType is Entity, and a formatted

value string if AnswerType is Value.

 string EntityName The name of the entity if the answer is a MID.

5 Additional Data Specifics

5.1 Partially-annotated parses

Some of the questions are unanswerable using Freebase. For these, we still provide partially-annotated

parses for the question, as some of the fields could still be useful for training. The annotator progressed

through annotating first a primary topic entity, then a relation or sequence of relations from that entity, and

finally constraints and order (labeled at the same time). If the parse is partial due to an inability to select

an appropriate entity, relation, constraint, or order, then the entries up to that point in the annotation process

are valid, and those after will be empty. For example, if the annotator could not find a relation to answer

the question, the TopicEntity will still be filled in, but the constraints and order will be empty.

5.2 Entity names

When entity names are provided (Parse.TopicEntityName, Constraint.EntityName, Answer.EntityName),

the names come from following the type.object.name relation from the entity. We provide only the @en

(English) literal, if it exists. If the @en literal does not exist, then we provide all literals. The names are

simply for convenience; they are not used in the SPARQL query or for evaluation.

5.3 SPARQL generation

When the SPARQL is automatically generated from the staged query graph, we found that comparing two

dates needed to be done by subtracting the two and comparing to 0 (e.g., time1 - time2 < 0). Comparing the

dates directly (e.g., time1 < time2) resulted in inconsistent results.

The Constraints and OrderConstraints specify the data type when it’s a value type so that the SPARQL

query can correctly specify the datatype. For example, it’s important to specify that two fields are being

compared as numbers rather than strings when doing an orderby.

5.4 TemporalSemantics field

The TemporalSemantics (TS) annotation was added later as an augmentation to the dataset. Time con-

straints are so common in the questions that we felt it was worth calling them out specifically and describing

the time period they describe. The SPARQL generation does not use the TS field. Rather, SPARQL gener-

ation uses the constraints field, and the TS was added later and points to the constraints that it describes.

Many questions cannot be answered because of time constraints. For example, “what was the currency in

Russia ten years ago” cannot be answered using Freebase because Freebase records only the current cur-

rency for any given country.

To the best of our ability, every parse that is incomplete because of needing time annotation was given a

TS, except:

 WebQTest-486, which would need TS, but TS would need to encode the date of the revolution,

which would require another query, and the relation in question (form of government) doesn’t have

dates anyway.

 WebQTrn-170, where it is unclear what time period they mean.

 Questions which have a missing entity or relation.

If the parse is “partial” and it has a TS with empty “AssociatedConstraints”, then the inability to constrain

on time is the only issue that makes the parse partial instead of complete. For example, a question about

when something because a country’s currency cannot be answered, so we add a TS but leave the Associat-

edConstraints empty because the TS cannot be grounded into real constraints.

 Except WebQTrn-2404 which has an empty AssociatedConstraints but is marked complete because

of having a manually-authored SPARQL.

6 References

[1] W. Yih, M. Richardson, C. Meek, M. Chang & J. Suh. The Value of Semantic Parse Labeling for

Knowledge Base Question Answering. In ACL-2016.

[2] J. Berant, A. Chou, R. Frostig & P. Liang. Semantic parsing on Freebase from question-answer pairs.

In EMNLP-2013.

[3] W. Yih, M. Chang, X. He & J. Gao. Semantic Parsing via Staged Query Graph Generation: Question

Answering with Knowledge Base. In ACL-IJCNLP-2015.

