
Automated Tabular Itinerary Visualization∗

Marco D. Adelfio Hanan Samet
Center for Automation Research, Institute for Advanced Computer Studies

Department of Computer Science, University of Maryland
College Park, MD 20742 USA
{marco, hjs}@cs.umd.edu

ABSTRACT
Advances in geographic information extraction have exposed
previously untapped resources, such as many travel itineraries
found in HTML tables and spreadsheets on the Web. In the
general sense, itineraries differ from the related concepts of
routes and trajectories in that the precise paths between stop-
ping points are of far less importance than the locations of the
stopping points and their order. This characteristic allows
for some flexibility when visualizing itineraries. A method
for automatically generating itinerary visualizations is pre-
sented, which utilizes principles from graph-drawing and map
labeling, along with additional criteria designed specifically
for the itinerary visualization task. We describe a system
based on this method that can perform automated layout for
arbitrary itineraries at varying scales.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms, Design

Keywords
Itinerary layout, map labeling, geographic visualization

1. INTRODUCTION
We define an itinerary as an ordered set of waypoints (also

known as stops). Waypoint locations are commonly specified
using latitude/longitude pairs or Cartesian coordinates. Each
point may have additional information associated with it,
such as a place name or a date and time of visit.
Itineraries are similar in some ways to both routes and

trajectories, which are abstractions that are also used to rep-
resent movement of an object or person over time. However,
the three terms can be used to describe three different em-
phases when dealing with paths, which in turn suggest that
distinct attributes should be emphasized in their visualiza-
tions. In particular, when a path is mostly concerned with
laying out a particular sequence of steps or segments between

∗This work was supported in part by the NSF under Grants
IIS-10-18475, IIS-12-19023, and IIS-13-20791 and by Google
Research and NVIDIA.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
SIGSPATIAL’13 Nov 05–08, Orlando, FL, USA
Copyright 2014 ACM 978-1-4503-3131-9/14/11 ...$15.00
http://dx.doi.org/10.1145/2666310.2666377.

consecutive pairs of waypoints, we call it a route. A trajec-
tory, on the other hand, aims to represent a recorded or es-
timated path and edges should aim to accurately represent
an interpolated path between waypoints. In contrast to both
of these, an itinerary’s aim is to communicate the location
and order of the waypoints, with a minimal expectation of
precision communicated via the edge paths. In other words,
under these definitions, a route emphasizes decision points
and the paths connecting them, a trajectory emphasizes ge-
ographical or spatial precision, and an itinerary emphasizes
the topology connecting a series of waypoints.

Our goal is to overlay an itinerary visualization over a map
in a way that allows viewers to easily discern the ordering and
location of points on the itinerary. The process of creating an
itinerary visualization is equal parts graph drawing and map
labeling, with additional constraints and optimization crite-
ria that differentiate it from both. A fundamental difference
from many graph-drawing scenarios is that the locations of
the waypoints are fixed to correspond to their locations on
a map, whereas graph-drawing techniques typically allow for
moving nodes to optimize the layout. Another difference is
that we allow for the usage of curved edges for itineraries,
which is uncommon in graph-drawing contexts.

The automated itinerary visualization problem is moti-
vated by our work in browsing spatial data [6, 17, 18]) and
performing geographic information extraction on HTML ta-
bles and spreadsheets [2, 3, 14], which has exposed many ge-
ographic datasets, including itineraries. However, presenting
itineraries from these datasets requires a more useful visual-
ization than a simple map mash-up, which does not commu-
nicate the connectivity or the sequence of visited locations.

2. RELATED WORK
Automated itinerary layout bears a resemblance to several

existing problem domains in computer science, including the
well-studied areas of graph drawing and map labeling and
the more specific sub-area of route rendering.

The canonical graph drawing problem [5, 7] takes as input
a graph G = (V,E) (with vertices V and edges E) and seeks
to find an appropriate visual representation of the graph,
usually by assigning each vertex v ∈ V coordinates in the
2D plane. While finding an optimal visual representation
of a graph is a somewhat subjective task, there are common
criteria that are used to approximate visual and aesthetic pri-
orities that are emphasized in manual graph drawing. Some
of the primary considerations are to have an even distribu-
tion of nodes and edges, to use uniform or near-uniform edge
lengths, to display isomorphic substructures uniformly, and
to minimize the number of edge crossings [8].

A visualization’s utility depends on the amount of infor-
mation it communicates to viewers. Usability studies have
evaluated user preferences for graph layouts that emphasize

specific priorities. Purchase [15] concluded that“reducing the
crossings is by far the most important aesthetic, while mini-
mizing the number of bends and maximizing symmetry have
a lesser effect.” This is especially relevant in the context
of the itinerary layout problem since translating waypoints
is not possible, meaning the only avenue for reducing edge
crossings is by adding bends (i.e., curvature) to the edges.
We take this approach, as described in Sections 3 and 4.
One approach to drawing general graphs is to use a force-

directed layout in which node and edge pairs are assigned
attractive and repulsive forces and a physical simulation is
performed to obtain an appropriate layout [7]. Another uses
simulated annealing, whereby layouts are iteratively chosen
to either improve upon a previous layout or with some proba-
bility that approaches zero as the process continues [9]. Sim-
ulated annealing is designed to model the physical process of
heating a material, then cooling it until it reaches a stable
equilibrium state.
Several efforts have looked at automated map layouts for

specialized purposes. Route map generalization [4] combines
aspects of both graph drawing and map labeling and aims to
improve the usability of computer-generated route maps by
applying cartographic principles to their design. The focus
of these maps is to communicate information that is helpful
for navigating between places. LineDrive [4] uses simulated
annealing to optimize the route representation, based on a
variety of cartographic criteria. Similar efforts have been
made with bike maps [16]. More general “origin-destination”
maps, including the bicycle flow maps [20] strive to show
dense connectivity between nodes overlaid on a map, using
asymmetric Bézier curves to emphasize imbalances in bike
traffic between two stations. Unlike in itinerary visualization,
these maps do not attempt to avoid overlaps between edges
or to provide labels for important locations.

3. BACKGROUND
In its basic form, the itinerary visualization problem is to

produce a visual encoding of a graphG = (V,E) where V rep-
resents the waypoints and E represents edges between con-
secutive waypoints. Each waypoint w ∈ V is represented as
a tuple (x, y, i, name) where x and y are the Cartesian co-
ordinates describing the location of the waypoint (usually in
projected or screen coordinates), i is the index of the way-
point in the current itinerary, and name is a string value
containing the place name (or other description) for the way-
point that should be included in the visualization. Note that
we can treat all point locations as Cartesian coordinates. In
case of coordinates encoded as latitude/longitude pairs, we
convert to Cartesian coordinates using a suitable geographic
projection (e.g., the Mercator).
An interesting aspect of itinerary visualization is that, since

edges connecting consecutive waypoints are not meant to
track a precise route, the intentional imprecision can be made
clear to viewers. One way to achieve this is with simple curves
that mimic artistic renderings of itineraries. So, rather than
straight edges used in many types of graph visualization, we
allow curved edges, where the curvature of the edges is de-
termined by layout parameters.
As shown in Figure 1, the degrees of freedom in our itinerary

layout algorithm involve the positioning of the text label as-
sociated with each waypoint and the curvature of paths rep-
resenting journeys between consecutive pairs of waypoints.
Thus, we have two parameters (θ and d) for each label and
one parameter (r) for each edge, resulting in a total of 3n−1
parameters for an itinerary consisting of n waypoints.

1. Label position. The positions of text labels are deter-
mined based on a direction (θ) and distance (d) from

w

d

θ

(a)

w1

w2

c
r∥−−−→w1w2∥

(b)

Figure 1: Geometric effects of layout parameters (a) d, θ, and
(b) r. Label placement is determined by parameters d and θ,
while link curvature is determined by parameter r.

the waypoint location. The label is positioned such that
the centroid of the label is along the line extending in
direction θ from the waypoint, but so that the nearest
point on the label’s bounding box is at distance d from
the waypoint.

2. Curvature. Each segment between consecutive way-
points is drawn as a quadratic Bézier curve. The con-
trol point of the curve is placed along the perpendic-
ular bisector of the straight line segment connecting
the waypoints. For consecutive waypoints w1 and w2

and curvature parameter r, control point c is positioned
on the perpendicular bisector of −−−→w1w2 at a distance of
r∥−−−→w1w2∥ from the segment’s midpoint. For positive
(negative) values of r, the control point is positioned to
the left (right) while traveling from w1 to w2.

Other potentially usable parameters are discussed in Sec-
tion 6. However, segment curvature and label position ad-
dress the most common adjustments that we noticed in a
collection of itineraries found on the web that were created
by human cartographers. Additionally, the size of the layout
search space is exponentially related to the number of avail-
able parameters, so we prefer to keep that number small.

The quality of a layout is measured based on the presence
or absence of several factors. We observe that the following
factors detract from the suitability of an itinerary layout.

1. Labels outside the visible map area
2. Edges overlapping non-incident waypoints
3. Labels overlapping other labels
4. Edges overlapping other edges
5. Labels overlapping edges
6. Labels overlapping waypoints
7. Small angles between incident edges
8. Deviation of segment curvature ratios from target
9. Distance of labels from corresponding waypoints

Our goal is to identify a layout that minimizes the presence
of these factors by varying the available parameters, so it
can be treated as an optimization problem. As discussed in
Section 2, simulated annealing is an option in many layout
contexts, including ours, where numerous local minima may
act as attractors for a greedy approach. So, we developed a
method based on simulated annealing.

4. METHOD
In the simulated annealing context, the value of the ob-

jective function for a specific candidate is called its energy.
We compute the energy of a candidate layout as a weighted
sum of negative factors. Formally, we measure energy e =∑9

i=1 αifi, where each fi corresponds to one of the undesir-
able factors from Section 3 (e.g., the number of edge-edge
intersections) and αi represents the corresponding weight.
Weights were chosen by evaluating user preferences on a small
set of sample itineraries and recording an order of weights
assigning the highest penalty to the least desirable layouts

Figure 2: Six sample itinerary layouts. Each itinerary vis-
its a collection of between 5 and 10 randomly-located way-
points. Each itinerary’s parameter values are computed in-
dependently using our algorithm.

(factors are listed in order, starting with most undesirable).
Lower energy values indicate more desirable layouts.
The most computationally expensive components of the

energy computation procedure involve detecting intersections
between Bézier curves that represent edges and other edges,
as well as the intersection of these curves with waypoint nodes
and text labels. One method is interval subdivision, which
evaluates the curve equation at several points and uses the
convex hull properties of Bézier curves to test the bounding
box for intersections. Other methods for detecting intersec-
tions between Bézier curves include curve implicitization and
clipping [19]. However, these methods introduce complexity
into the layout algorithm for only modest speed improve-
ments over interval subdivision when the Bézier curves are of
low degree (such as the quadratic curves used in our method).
We use the standard simulated annealing formulation, whereby

the progression of the algorithm is controlled by a temperature
variable. A high initial temperature is iteratively reduced,
simulating the cooling process that takes place in physical
annealing scenarios. As the temperature decreases, parame-
ter changes that result in higher energy layouts are less likely
to be chosen as the next state of the system. The acceptance
probability for a particular parameter change is based on the
Metropolis criterion, a standard simulated annealing accep-
tance test [9]. The process terminates when the temperature
falls below a specified threshold.
The simulated annealing algorithm is shown in Algorithm 1.

It takes the input graph, represented as a set of waypoints
P and a set of edges E, and augments the input graph with
the layout parameters (for curvature and label position) out-
lined in Section 3. The algorithm begins by initializing the
temperature variable t and energy variable e (line 2). For
several iterations, the temperature decreases by ratio tdecay
(line 10) until the temperature falls below the taccept thresh-
old (line 3). In each iteration, a candidate state is chosen
(line 4) by picking parameter values for the layout using the
candidate function, which applies a stochastic update to
a single layout parameter. The candidate state’s energy is
computed by computeLayoutEnergy (line 5). Candidate
layouts that reduce the energy are always accepted, while
those that increase the energy are accepted according to the
Metropolis criterion (line 6). When a candidate layout is ac-
cepted, its parameters and energy are copied to be used for
subsequent comparisons (lines 7 and 8). Finally, the resulting
layout is returned (lines 12).
The number of iterations taken by simulated annealing here

is logtdecay (taccept/t0). Since we expect that each layout pa-
rameter requires a consistent number of stochastic updates

Algorithm 1 Augment a collection of waypoints and edges
with layout parameter values.

1: procedure FindLayout(P , E)
input: List of waypoints P , list of edges E
output: Lists P,E, augmented with layout parameters

2: t← t0; e←∞
3: while t > taccept do
4: PC , EC ← candidate(P,E)
5: e′ ← computeLayoutEnergy(PC , EC)
6: if e′ < e OR exp((e− e′)/t) < random() then
7: P,E ← PC , EC

8: e← e′

9: end if
10: t← t× tdecay
11: end while
12: return (P,E)
13: end procedure

to arrive at an acceptable value, we update the tdecay value
in order to maintain a consistent ratio of iterations to lay-
out parameters. In particular, we set taccept = ϕ1/n, where
ϕ is the desired tdecay value for an itinerary with a single
waypoint and n is the number of waypoints.

Figure 2 shows the results of our algorithm on six randomly-
generated itineraries. The visualizations minimize the least
desirable layout factors, with no occluded labels and minimal
overlap of labels, edges, and waypoints. Minor layout issues
are visible, such as the placement of labels for Stop B and
Stop D in the bottom right diagram. Here, a better layout
would involve switching the positions of the two labels. How-
ever, swapping them would have required several fortuitous
parameter changes by the candidate function in order to
climb out of a local minimum in the energy function, which
did not occur.

5. DEMONSTRATION SYSTEM
A demonstration system illustrates the effectiveness of our

itinerary layout algorithm. It consists of three primary com-
ponents: (1) a geotagging module, (2) a mapping module,
and (3) an itinerary visualization module.

The geotagging module takes an input itinerary, i.e., a set
of place names (or toponyms) that refer to waypoint loca-
tions. It returns geographic interpretations of those place
names that have geographic coordinates (i.e., latitude and
longitude values). A geotagging [10, 11, 12, 13] step is needed
for any textually-specified itinerary to convert the human-
readable specification into machine-readable form. Our sys-
tem has two geotagging modes. The first uses a geotagger
service (Google’s Geocoder API) to geotag each place name
individually. The second uses GeoWhiz, a system based on
the structured toponym resolution technique that we have de-
veloped for geotagging coherent lists of places [1, 3]. Neither
was specifically designed for itinerary geotagging, but both
perform well on sample itineraries. However, in some cases,
both modes generate results that are unexpected given our
knowledge that inputs are itineraries. In the case of Google’s
Geocoder API, the places lack the general geographic con-
sistency that we expect from itineraries, while for GeoWhiz,
the emphasis on consistency can result in incorrect interpre-
tations when the itinerary spans a large geographical area.

The mapping module renders the map base layer, upon
which the itinerary visualization is displayed. The system
currently allows for Google Maps (with the standard Merca-
tor projection) or one of several static map projections. A
challenge for this module is picking appropriate bounds for
the geographic window. To avoid a specialized solution for

(a) (b)

Figure 3: Two itineraries taken from image search results and their reproductions using our itinerary layout method. The
reproductions are shown to the right of the originals. The map in (a) was created by a blogger to display her European
itinerary. The order of stops and precise stop locations are difficult to discern in the original, but our automatically generated
version addresses both of these issues by adding labels and using curves for edges. The map in (b) shows three suggested
itineraries in northern Italy. Our method supports laying out multiple disconnected itineraries, and the simulated annealing
algorithm settles on a layout that avoids label overlap even in a somewhat dense itinerary diagram such as this.

each projection, we use a generic algorithm that projects each
waypoint into screen coordinates, computes a bounding box
in projected coordinates, then scales and transforms the ac-
tive region in the projection to fill the available space for the
map. The resultant screen locations are used as inputs to the
next module, which generates the itinerary layout.
The visualization module takes the projection waypoint co-

ordinates, along with the waypoint names and edge topology,
and generates layout parameters d, θ, and r for the corre-
sponding waypoints and edges using the algorithm in Sec-
tion 4. The system uses the actual screen sizes of waypoint
label text to do accurate overlap tests. Once the simulated
annealing algorithm’s iterations are done, the resultant lay-
out parameters are used to render the itinerary on the map.
The system accepts direct input of itineraries, by allow-

ing users to enter names of waypoints, but any itinerary
gathering technique could be substituted, such as extract-
ing itineraries from a Web crawl or supplying structured
itineraries based on travel site content. Figure 3 shows two
itineraries taken from the internet along with reproduced vi-
sualizations generated by our system.

6. CONCLUSIONS AND FUTURE WORK
We presented an algorithm and system for generating auto-

mated itinerary visualizations. In the future, itinerary layout
could be adapted to allow increased realism through options
for paths along great circles (approximating flight paths) or
along various land or sea transportation routes. The high-
level framework that we introduced allows for the addition
of such constraints. Additionally, the layout procedure it-
self could be adapted to include a force-directed component
that performs with lower latency (although force-directed ap-
proaches are prone to settling at local minima). Further
changes involving spatial distortion around waypoint loca-
tions, as in LineDrive [4], could also be used.

7. REFERENCES
[1] M. D. Adelfio and H. Samet. GeoWhiz: Toponym resolution

using common categories. In SIGSPATIAL’13, pages 542–545,
Orlando, FL, Nov. 2013.

[2] M. D. Adelfio and H. Samet. Schema extraction for tabular data
on the web. PVLDB, 6(6):421–432, 2013.

[3] M. D. Adelfio and H. Samet. Structured toponym resolution
using combined hierarchical place categories. In GIR, Orlando,
FL, Nov. 2013.

[4] M. Agrawala and C. Stolte. Rendering effective route maps:
Improving usability through generalization. In SIGGRAPH’01,
pages 241–249, 2001.

[5] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
drawing: Algorithms for the visualization of graphs. Prentice
Hall PTR, 1998.

[6] C. Esperança and H. Samet. Experience with SAND/Tcl: A
scripting tool for spatial databases. JVLC, 13(2):229–255, Apr.
2002.

[7] T. M. Fruchterman and E. M. Reingold. Graph drawing by
force-directed placement. Software: Practice and experience,
21(11):1129–1164, 1991.

[8] I. Herman, G. Melancon, and M. Marshall. Graph visualization
and navigation in information visualization: A survey. TVCG,
6(1):24–43, Jan 2000.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[10] M. D. Lieberman and H. Samet. Multifaceted toponym
recognition for streaming news. In SIGIR, pages 843–852,
Beijing, China, July 2011.

[11] M. D. Lieberman and H. Samet. Adaptive context features for
toponym resolution in streaming news. In SIGIR, pages
731–740, Portland, OR, Aug. 2012.

[12] M. D. Lieberman, H. Samet, and J. Sankaranarayanan.
Geotagging: Using proximity, sibling, and prominence clues to
understand comma groups. In GIR, page 6, Zurich, Switzerland,
Feb. 2010.

[13] M. D. Lieberman, H. Samet, and J. Sankaranarayanan.
Geotagging with local lexicons to build indexes for
textually-specified spatial data. In ICDE, pages 201–212, Long
Beach, CA, Mar. 2010.

[14] M. D. Lieberman, H. Samet, J. Sankaranarayanan, and
J. Sperling. Spatio-textual spreadsheets: Geotagging via spatial
coherence. In GIS, pages 524–527, Seattle, WA, Nov. 2009.

[15] H. C. Purchase. Which aesthetic has the greatest effect on
human understanding? In Graph Drawing, pages 248–261,
London, UK, 1997.

[16] S. Reddy, K. Shilton, G. Denisov, C. Cenizal, D. Estrin, and
M. Srivastava. Biketastic: Sensing and mapping for better
biking. In SIGCHI, pages 1817–1820, 2010.

[17] H. Samet, H. Alborzi, F. Brabec, C. Esperança, G. R. Hjaltason,
F. Morgan, and E. Tanin. Use of the SAND spatial browser for
digital government applications. CACM, 46(1):63–66, Jan. 2003.

[18] H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber. A
geographic information system using quadtrees. Pattern
Recognition, 17(6):647–656, November/December 1984.

[19] T. W. Sederberg and S. R. Parry. Comparison of three curve
intersection algorithms. Computer Aided Design, 18(1):58–63,
Jan. 1986.

[20] J. Wood, A. Slingsby, and J. Dykes. Visualizing the dynamics of
London’s bicycle-hire scheme. Cartographica, 46(4):239–251,
2011.

	Introduction
	Related Work
	Background
	Method
	Demonstration System
	Conclusions and Future Work
	References

