
Efficient One-click Browsing of Large Trajectory Sets

Benjamin Krogh, Ove Andersen, Edwin Lewis-Kelham, Kristian Torp
Dept. of Computer Science
Aalborg University, Denmark

{ bkrogh, xcalibur, edwin, torp }@cs.aau.dk

ABSTRACT
Traffic researchers, planners, and analysts want a simple way
to query the large quantities of GPS trajectories collected
from vehicles. In addition, users expect the results to be
presented immediately even when querying very large trans-
portation networks with huge trajectory data sets. This pa-
per presents a novel query type called sheaf, where users
can browse trajectory data sets using a single mouse click.
Sheaves are very versatile and can be used for location-based
advertising, travel-time analysis, intersection analysis, and
reachability analysis (isochrones). A novel in-memory tra-
jectory index compresses the data by a factor of 12.4 and
enables execution of sheaf queries in 40 ms. This is up
to 2 orders of magnitude faster than existing work. We
demonstrate the simplicity, versatility, and efficiency of sheaf
queries using a real-world trajectory set consisting of 2.7 mil-
lion trajectories (1.36 billion GPS records) and a network
with 1.5 million edges.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

Keywords
trajectories, traffic-analysis, moving-objects

1. INTRODUCTION
The proliferation of GPS-enabled devices continues to chal-

lenge researchers to develop new methods for analyzing large
trajectory data sets. A major challenge is creating visual-
izations that are both scalable, easy to interpret, and usable
for multiple purposes.

In this demo, we present a novel system for evaluating and
visualizing sheaf queries, on network constrained trajectory
data. The sheaf query is conceptually simple, and provides
an efficient way of browsing large trajectory data sets.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SIGSPATIAL ’14, Nov 04-07 2014, Dallas/Fort Worth, TX, USA
ACM 978-1-4503-3131-9/14/11.
http://dx.doi.org/10.1145/2666310.2666371

The idea is that the user selects a sheaf center, i.e., a di-
rected edge in the transportation network. Trajectories that
visit this center are then retrieved and visualized. Figure 1
illustrates this concept. The solid lines show a small (di-
rected) transportation network with a user selected sheaf
center and three trajectories that touch the sheaf center.
Each edge has a visit count, i.e., the number of times one
of these trajectories touch it. The sheaf then consists of all
edges with a non-zero visit count. A sheaf has an incom-
ing and an outgoing half. The incoming half consists of the
edges touched by trajectories before visiting the sheaf cen-
ter and the outgoing half consists of the edges touched after
visiting the sheaf center. The gray areas in Figure 1 show
the two sheaf halves.

Sheaf center

3
2

1

1

1
1

1

Outgoing

Incoming
3

Figure 1: The Sheaf Concept

Sheaves has a plethora of use cases, such as analysis of
location-based advertising, travel-times, congestion impact,
route choice behavior, and traffic optimization. Further,
sheaves are useful on both a regional (major roads) and
on a local scale (single intersection). The conceptual idea
of sheaves is from the traffic literature, but this is to the
best of our knowledge the first system capable of efficiently
evaluating sheaf queries on a large set of trajectories.

The system demonstrated supports sophisticated tempo-
ral filtering using any combination of time of day, day of
week, month of year, and within a date interval (see Sec-
tion 3.2). This filtering enables comparative analysis of peak
hour and non-peak hour traffic.

A novel and efficient in-memory index speeds up sheaf
evaluation by up to two orders of magnitude over baseline
methods. Evaluating a sheaf query takes less than 40 ms
on average. The index uses state-of-the-art compression [6],
which reduces memory requirements by a factor of 12.4, from
1494 MB, to 120.2 MB. The demonstration uses a very large
trajectory data set, containing 2.7 million trajectories (1.36
billion GPS records), and a transportation network consist-
ing of 1.5 million edges.

http://dx.doi.org/10.1145/2666310.2666371


2. RELATED WORK
The iRoad system [4] is based on the reachability tree,

which is a tree that includes all locations that can be reached
within a temporal window, from a user-defined root. Sheaves
resemble reachability trees, but are more expressive in that
they show the actual movement of objects, whereas reacha-
bility trees show the predicted movement.

Compression strategies for network constrained trajectory
data are discussed in [6]. The authors find that the best com-
pression is achieved using Shortest Path Encoding (SPE)
(see Section 3.3). The authors conclude that SPE is of lim-
ited applicability because decoding is too expensive.

We adapt and integrate SPE with the Hub Labeling (HL)
algorithm [1]. HL uses less than one µs to compute a short-
est path, which enables efficient decoding of SPE encoded
trajectories and makes SPE viable for real-world applica-
tions.

3. TECHNICAL BACKGROUND
The transportation network is modeled as a graph G =

(V,E), where V is a set of vertices and E is a set of directed
edges. Each edge, e ∈ E, starts at the vertex startvertex(e)
and ends at the vertex endvertex(e).

The position updates from moving objects are cleansed,
map-matched, and integrated into the data warehouse de-
scribed in [2]. The trajectory of a moving object describes
the historical movement of the object. For instance, driv-
ing to work or to the mall is a single trajectory. The path
of a trajectory, π = [e1, e2, . . . , en], ei ∈ E, is represented
by an ordered list of edges, where edge ei is visited before
edge ei+1. The temporal evolution of a trajectory is rep-
resented by a list of timestamps, [ts1, ts2, . . . , tsn], where
tsi is the time at which the moving object is at the vertex
vi = endvertex(ei). tsi is linearly interpolated between the
last position update before visiting vi and the first position
update after visiting vi.

3.1 Sheaf Definitions
The sheaf query is formalized in Equation 1. The result

consists of all edges from trajectories that touch the sheaf
center on edge ec. Each edge, e, in the sheaf must be on the
path, πt of a trajectory t ∈ T, where T is the set of trajec-
tories that touch ec. Further, the spatial network distance
between ec and e along πt, denoted by distnet(ec, e, πt), must
be less than the r. The temporal distance, disttime(ec, e, t),
between ec and e must be less than the period p.

sheaf(ec, r, p,T) = {e|e ∈ πt ∧ t ∈ T ∧
distnet(ec, e, πt) < r ∧ disttime(ec, e, t) < p} (1)

The r parameter is used to configure how local the sheaf
should be. For instance when analyzing an intersection, this
parameter can be used to limit the number of times a tra-
jectory can pass the intersection. The p parameter is useful
for reachability analysis, i.e., showing the edges that can be
reached from the sheaf center within a specific period p.

In some cases it is difficult to interpret the paths to/from
the sheaf center. The sheaf-tree improves this, by only show-
ing the dominating paths to/from the sheaf center. Each
edge, e, in a sheaf-tree has exactly one parent edge, parent(e).
The root edge that contains the sheaf center does not have
any parent. The sheaf-tree is computed using a breadth-first
search from the root of the tree that incrementally grows the

most frequent branches of the tree. If two branches inter-
sect at some point, only the most frequent branch continues.
This process is similar to the Incremental Network Expan-
sion algorithm in [7]. The sheaf-tree is formalized by Equa-
tion 2. The function prev(e, πt) returns the edge in πt prior
to e.

sheaf -tree(ec, r, p,T) = {e|e ∈ πt ∧ t ∈ T ∧
distnet(ec, e, πt) < r ∧ disttime(ec, e, t) < p ∧

prev(e, πt) = parent(e)} (2)

3.2 Sheaf Evaluation
In order to evaluate a sheaf query, the trajectory data

needs to be identified and retrieved. Two steps are used
for this. First, the set of trajectories, T, that touch e is
identified. Next, the full trajectory data for each trajectory
t ∈ T is retrieved. After these two steps, the remaining
processing is trivial aggregation.

The table design in Table 1 is used to create T. A compos-
ite B+-tree index on the columns eid, timeenter, timeleave,
and tid (in this order) enables efficient retrieval of the tra-
jectory identifiers that touch the edge containing the sheaf
center. Further, it is possible to apply temporal filters us-
ing this index. Concretely, the set of trajectories T can be
constrained such that each trajectory touch e within a spec-
ified time of day, day of week, month of year, and within
a temporal interval. For instance, it is possible to only in-
clude trajectories between 7:00 and 9:00 AM on Mondays,
in January or February, in the interval 2007 to 2008.

Column Description

tid The trajectory identifier
eid The edge identifier
timeenter The time trajectory tid entered eid
timeleave The time trajectory tid left edge eid

Table 1: On Disk Format for Trajectories

Retrieving the full trajectory data is more challenging.
State-of-the-art in network-constrained indexing, [8], focus
on retrieving the trajectories within a query range and can-
not retrieve individual trajectories efficiently.

Consider using a B+-tree, BBASELINE , on the columns
tid, eid, timeenter, and timeleave for retrieving trajectories.
Then each trajectory in T will, in the worst case, require one
random I/O. Since T can be very large (tens of thousands),
this is very inefficient. A new index for retrieving trajectory
data is therefore required, see Section 3.3.

3.3 Trajectory Compression
Efficient retrieval of trajectories is essential for the evalu-

ation of sheaf queries. This retrieval is accelerated by com-
pressing the trajectories and storing them in main memory.
The SPE path encoding is suggested in [6]. The intuition be-
hind SPE is that moving objects usually follow the shortest
paths between edges in a transportation network. A com-
pact representation is therefore to store only the (few) edges
that need to be connected with the shortest path. SPE is
lossless, and can represent any path through the transporta-
tion network. SPE is performed using the algorithm from
[6], modified to use HL for shortest path computations.

The two paths, πdash and πdot, in Figure 2 illustrate the
SPE encoding. In the figure, vertices and edges are rep-



resented by circles and solid lines, respectively. There is a
directed edge, e1,2, between vertex 1 and vertex 2 if the two
vertices are connected with a solid line.

1

2
3 4

5

6

7

8

Figure 2: Two Paths in a Transportation Network

The dashed and dotted paths are represented by the edges
πdash = [e1,2, e2,3, e3,4, e4,5, e5,7, e7,8] and πdot = [e8,7, e7,6,-
e6,4, e4,3, e3,2, e2,1], respectively. By examining the trans-
portation network in Figure 2, we observe that the shortest
path from e1,2 to e7,8 match exactly πdash between these two
edges. The SPE encoding of πdash is therefore SPE(πdash) =
[e1,2, e7,8]. SPE is the function used to encode the path.

The longest shortest-path from e8,7 along πdot ends on
e6,4. Because e6,4 is not the last edge in πdot another shortest
path from e6,4 to e2,1 is required. The encoding of πdot is
therefore SPE(πdot) = [e8,7, e6,4, e2,1]. Table 2 shows the
original and SPE encoded paths. A trajectory in our data
set touch on average 69 edges, which is reduced to 4 edges
by SPE. The first row in Table 3 shows the space savings for
the 2.7 million trajectories in our data set.

Id Original path SPE coded

πdash [e1,2, e2,3, e3,4, e4,5, e5,7, e7,8] [e1,2, e7,8]
πdot [e8,7, e7,6, e6,4, e4,3, e3,2, e2,1] [e8,7, e6,4, e2,1]

Table 2: SPE Coding of Trajectory Paths

Restoring the original path from an SPE encoded list of
edges is relatively simple. For each pair of consecutive edges,
(ei, ei+1) in an SPE encoded path, ei and ei+1 are connected
using the shortest path. Concretely, to decode the encoded
path πdash, it is necessary to compute the shortest path be-
tween endvertex(e1,2) and startvertex(e7,8). This shortest
path is [e2,3, e3,4, e4,5, e5,7]. The restored path is therefore
[e1,2, e2,3, e3,4, e4,5, e5,7, e7,8], i.e., the original path, πdash.

Thousands of trajectories may be included in a sheaf,
which implies thousands of shortest-path computations. For
instance, approx. 27 750 shortest paths are used to represent
the paths of the 9250 trajectories in Figure 3. Decoding
these trajectories using HL takes less than 60 ms.

The temporal information of trajectories is also compressed.
The temporal information of a trajectory is a list of increas-
ing integers, with one value per edge in the path. Such a
list is compressed using the technique described in [5]. On
the data set used, this reduces the size by a factor of 4, from
198 million 4-byte integers to 47.2 million. By reducing the
granularity from 1 second, to 30 seconds, the deltas become
smaller, and significantly improves the compression. This
further reduces the space consumption to 13.4 million in-
tegers, i.e., a reduction of one order of magnitude. Table 3
shows the summarized space savings by the spatial and tem-
poral compression.

Encoding the spatial and temporal information of a tra-
jectory is very efficient using this technical setup. More than
30 000 trajectories can be encoded per second using a desk-

top Intel i7-3770 CPU. As such, adding new trajectories to
the in-memory index is very efficient. The compressed in-
formation is stored in a list in memory, with a start and end
offset for each trajectory. Finally, Table 4 compares the per-
formance of the SPE index, and BBASELINE for evaluating
the sheaves shown in Section 4.

Data type Original Compressed Ratio

Spatial 742 MB 44.8 MB 16.6
Temporal 752 MB 75.4 MB 10.0

Table 3: Spatial and Temporal Compression

Implementation Figure 3 Figure 4 Figure 5

BBASELINE 39 796 ms 26 505 ms 29 938 ms
SPE index 60 ms 39 ms 40 ms

Table 4: Data Retrieval, SPE Index, and BBASELINE

4. DEMONSTRATION
We will demonstrate a number of scenarios using a very

large real-world trajectory data set consisting of 2.7 mil-
lion trajectories (1.36 billion GPS records). A web-based
interface is used, and we invite the audience to experiment
with sheaves using this interface. All screenshots use Google
Maps.

Sheaf parameter p

Sheaf parameter r

Temporal filters

Figure 3: Isochrone from Bridge, 9250 Trajectories

4.1 Isochrones
In the first scenario the user wants to examine how far

drivers can get within five minutes from the sheaf center,
i.e., the 5 minute isochrone [3]. The screenshot in Figure 3
shows such a sheaf. The sheaf center is placed at a bridge,
which makes the sheaf shape more clear. A five minute
temporal range is specified, and the green, yellow, and red
parts are reached within this limit. Specifically, green edges
are reached by [90-100]% of trajectories, yellow edges by [50-
90)%, and red edges by (0-50)%. Edges not reached by any
trajectory within the temporal period are here not included
in the sheaf.



Figure 3 also shows the temporal filter time-of-day is be-
tween 7:00 and 16:30 on weekdays on all months of the year
except July (summer vacation) in the interval from 2000
to 2014. The demonstration will show how the isochrones
change due to traffic congestion. Further, we will use the
sheaf query to find the regions that are within 10, 15, and
20 minutes driving from a hospital. Finally, the bridge ex-
ample will be used to demonstrate how easy the sheaf-tree
is to interpret compared to the regular sheaf.

4.2 Incoming/outgoing Analysis
In traffic analysis it is of interest where vehicles come from

and are going to. An example of such incoming/outgoing
trajectory analysis is shown in Figure 4, where the sheaf
center is placed between two roundabouts. The trajectories
shown are on workdays, between 7:00 and 9:00. The blue-
colored lines to the left and the red-colored lines to the right
show the incoming and outgoing half of a sheaf, respectively.
Further, the thickness of each edge indicates the number of
trajectories that touch it. From Figure 4, it is immediately
clear that most trajectories pass straight through the left
roundabout and take the second exit in the right round-
about. Note that the left roundabout has incoming traffic
from only two directions and that the five legged roundabout
to the right has trajectories in all four outgoing directions.

Incoming
Outgoing

Figure 4: Incoming/Outgoing, 3678 Trajectories

The demonstration will show how a shopping center can
use sheaves to determine where trajectories that pass the
center are coming from and going to. Such information is
highly relevant for location-based advertising. The temporal
filters can be used for comparing morning and afternoon
rush hours or for comparing last year’s trajectories with this
year’s trajectories.

4.3 Intersection Analysis
Signalized intersections regulate the flow of traffic in cities

and expensive equipment is often used to monitor the most
vital intersections. Using sheaves, it is possible to monitor
all intersections without additional equipment.

An analysis of a major intersection is shown in Figure 5.
The figure shows the outgoing half of a sheaf, with the center
in the green line, for weekdays between 7:00 and 9:00 from
1st of January 2012 and forward. Again, the width of the
lines indicates how many trajectories go in each direction.
For this particular intersection, 63% of the trajectories turn
left, 19% turn right, and only 16% go straight. 2% follow
other directions, e.g., take a U-turn or ends. This infor-
mation is very relevant for optimizing the traffic signals to
match the actual traffic.

2673 (100.0%)

1685 (63.0%)

423 (15.8%)

513 (19.2%)

Figure 5: Intersection Analysis, 2673 Trajectories

In the demonstration, we will show how sheaves can be
used to analyze how intersection usage changes throughout
the day. Further, we will also show how sheaves can be used
to identify frequently used exits along a motorway. This is
very relevant for traffic analysts.

5. SUMMARY
The demonstration shows how sheaves can be used for a

wide range of purposes including traffic analysis, location-
based advertising, and travel time analysis. A novel and
highly efficient technical setup enables random access to the
spatio-temporal information of each trajectory, and allows
users to interactively browse very large trajectory sets, using
only a single mouse click.

Acknowledgment
This work is supported by the REDUCTION project
www.reduction-project.eu.

6. REFERENCES
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F.

Werneck. A hub-based labeling algorithm for shortest paths
in road networks. In SEA, pages 230–241, 2011.

[2] O. Andersen, B. B. Krogh, and K. Torp. An open-source
based ITS platform. In MDM, volume 2, pages 27–32. IEEE,
2013.

[3] J. Gamper, M. Böhlen, and M. Innerebner. Scalable
computation of isochrones with network expiration. In
SSDBM, pages 526–543. Springer, 2012.

[4] A. M. Hendawi, J. Bao, and M. F. Mokbel. iRoad: a
framework for scalable predictive query processing on road
networks. PVLDB, 6(12):1262–1265, 2013.

[5] D. Lemire and L. Boytsov. Decoding billions of integers per
second through vectorization. Software: Practice and
Experience, 2013.

[6] P. M. Lerin, D. Yamamoto, and N. Takahashi. Encoding
network–constrained travel trajectories using routing
algorithms. Int. J. Knowledge and Web Intelligence,
4(1):34–49, 2013.

[7] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query
processing in spatial network databases. In PVLDB, pages
802–813. VLDB Endowment, 2003.

[8] I. S. Popa, K. Zeitouni, V. Oria, D. Barth, and S. Vial.
Indexing in-network trajectory flows. VLDB J.,
20(5):643–669, 2011.

http://www.reduction-project.eu/

