
SATO: A Spatial Data Partitioning Framework for Scalable
Query Processing

Hoang Vo
Emory University

hvo8@emory.edu

Ablimit Aji
∗

HP Labs
ablimit@hp.com

Fusheng Wang
Emory University

fusheng.wang@emory.edu

ABSTRACT
Scalable spatial query processing relies on effective spatial data
partitioning for query parallelization, data pruning, and load bal-
ancing. These are often challenged by the intrinsic characteristics
of spatial data, such as high skew in data distribution and high
complexity of irregular multi-dimensional objects. In this demo,
we present SATO, a spatial data partitioning framework that can
quickly analyze and partition spatial data with an optimal spatial
partitioning strategy for scalable query processing. SATO works in
following steps: 1) Sample, which samples a small fraction of in-
put data for analysis, 2) Analyze, which quickly analyzes sampled
data to find an optimal partition strategy, 3) Tear, which provides
data skew aware partitioning and supports MapReduce based scal-
able partitioning, and 4) Optimize, which collects succinct parti-
tion statistics for potential query optimization. SATO also provides
multiple level partitioning, which can be used to significantly im-
prove window based queries in cloud based spatial query process-
ing systems. SATO comes with a visualization component that pro-
vides heat maps and histograms for qualitative evaluation. SATO
has been implemented within the Hadoop-GIS, a high performance
spatial data warehousing system over MapReduce. SATO is also
released as an independent software package to support various
scalable spatial query processing systems. Our experiments have
demonstrated that SATO can generate much balanced partition-
ing that can significantly improve spatial query performance with
MapReduce comparing to traditional spatial partitioning approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
Database and GIS, Scientific databases

Keywords
Database, Data Warehouse, Spatial Partitioning, MapReduce, Sci-
entific Data Management, Visualization

1. INTRODUCTION
∗work was done as a Ph.D. student at Emory University.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
SIGSPATIAL’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
ACM 978-1-4503-3131-9/14/11 ...$15.00
http://dx.doi.org/10.1145/2666310.2666496 .

The proliferation of embedded devices and rapid advancement
in sensor technology have enabled enterprises to collect massive
amounts of spatial data that provide information about the geo-
graphical locations and trajectories of objects of interest. Timely
analysis and management of such spatial data is not only essen-
tial to business growth and better location intelligence for enter-
prises, but also a basic infrastructure requirement for the realiza-
tion of Internet of Things paradigm. The massive amounts of data,
coupled with the need for complex spatial analytics, require a high-
throughput and low latency query processing approach.

Data partitioning is a powerful mechanism for improving effi-
ciency of data management systems, and it is a standard feature in
modern database systems. For example, as of this writing, all major
DBMS vendors have horizontal and vertical partitioning techniques
built into their system. Aside from the fact that data partitioning
improves the overall manageability of large datasets, it improves
query throughput and latency in two ways. First, partitioning the
data into smaller units enables processing of a query in parallel,
and henceforth the improved throughput. Second, if the partition-
ing is performed effectively, I/O can be significantly reduced by
only scanning a few partitions that contain relevant data. For ex-
ample, consider a simple spatial query find all tweets that were
tweeted within a mall in California. If the tweets are spatially par-
titioned by their geographical location at the state boundary level,
only the partitions that contain California related tweets are need to
be scanned. However, if the dataset is not spatially partitioned, a
brute-force approach essentially performs a rather expensive whole
table scan operation.

Spatial data partitioning is a less explored research topic com-
pared to their relational counterpart, while being critical for query
performance. To the best of our knowledge, no spatial database
system provides a graceful approach to partition on the spatial at-
tribute. Previously, Paradise [7] – a parallel spatial database sys-
tem, used a regular fixed grid partitioning for parallel join process-
ing. However, there are several problems with this approach as
described in the original work. i) As spatial objects (e.g. polygons
and polylines) have extent, regular grid based spatial partitioning
would undesirably produce objects spanning multiple cell grids,
which need to be replicated and post processed. If such objects
account for a considerable fraction of the dataset, the overall query
performance would suffer from such boundary handling overhead.
ii) Fixed grid partitioning is skew averse, whereas data in most real
world spatial applications are inherently highly skewed. For ex-
ample, in OpenStreetMap (OSM), certain regions have more data
compared to others due to enthusiastic data contributors. If OSM is
partitioned with fixed grid approach with 1000x1000 grids, the av-
erage count of objects per tile is 993, but the tile with most objects
contains 794, 429 objects. In such case, it is very likely that par-

allel processing nodes assigned to process those dense regions will
become the stragglers, and the overall query processing efficiency
will be much affected. [9].

(a) Fixed grid partition

0 10,000 20,000 30,000 400,000 800,000
0

200

400

600

800

1,000

78,000

79,000

80,000

81,000

C
ou

nt
 o

f T
ile

s
Bin Center

Bin Width: 500
Tile size: 1000x1000
Tile object count avg: 993; stddev: 7,640
Largest count of objects in a tile: 794,429

(b) Spatial data skew

Figure 1: An example of fixed grid partition and spatial data-
skew

In this paper, we present SATO, an effective and scalable parti-
tioning framework that can partition a geospatial dataset into bal-
anced regions while minimizing the number of boundary objects.
The partitioning methods are designed for scalability, which can
be easily parallelized for high performance, for example, running
in MapReduce. SATO stands for four main steps in this frame-
work for spatial data partitioning: Sample, Aanalyze, Tear, and
Optimize. First, we sample a small fraction of the dataset to iden-
tify overall global data distribution with potential dense regions.
Next we analyze the sampled data with a partition analyzer that
produces a coarse partition scheme in which each partition region is
expected to contain roughly equal amounts of spatial objects. Then
we pass these coarse partition regions into the partitioning compo-
nent that tears the regions into more granular partitions that are data
skew aware and meet partition requirements. Finally, we analyze
the generated partitions to produce multi-level partition indexes and
additional partition statistics which can be used to optimize queries.
SATO is also implemented for parallelization. Besides running as a
standalone program, it is also integrated with Hadoop-GIS, a scal-
able MapReduce based spatial query processing framework [2]. In
this demo, we use a MapReduce based query processing model
to demonstrate that how effective partitioning can improve query
performance. However, the approaches described here can be com-
pletely applicable for any other distributed spatial data management
systems [3, 5, 8] that utilize partitioning for query processing and
optimization.

The rest of the demonstration proposal is organized as follows.
In Section 2 we describe the SATO framework in details. In Section
3, we introduce how SATO parallelizes the partitioning process and
how the results of the partitioning are used to facilitate query pro-
cessing. In Section 4, we report performance results. In Section 5,
we illustrate the demonstration details and how the system can be
used by a typical user. Finally, we conclude the paper in Section 6.

2. THE SATO FRAMEWORK
SATO assumes an input dataset contains a spatial field in the

WKT (Well-known text) format – other data representations can be
easily included and extended. The data type of the spatial field can
be any of Open Geospatial Consortium-support (OGC) spatial data
types. The dataset can contain other feature fields or attributes. If
a feature or attribure is provided, it is considered to be associated
with the corresponding spatial object, and co-located with the spa-
tial partition which contains the spatial object. Next, we explain the
four key steps in SATO.

2.1 Sample

In relational database systems, sampling is used in various tasks
to avoid full dataset scan. For example, typical histogram construc-
tion algorithms work on a small fraction of sampled data, thus avoid
the expensive computation of full dataset statistics. In the sampling
step, we apply a stratified sampling approach to sample the dataset.
One important control parameter here is the sampling ratio. Our ex-
periments show that a fraction of 1~3% is enough to fairly capture
the density distribution of datasets. Depending on the domain of
the dataset or the potential query workload, the sampling approach
can be tweaked to satisfy domain constraints. For example, if users
frequently run a join query between road objects and river objects,
we may statistically increase the sampling ratios of those objects,
so that the resulting partitioning scheme is optimized for the join
query.

2.2 Analyze
We use the Minimum Bounding Rectangle (MBR) of spatial ob-

jects in the sampled dataset as the approximation of their spatial ex-
tent, and feed them into the analyzer. The analyzer analyzes spots
of high density, and the overall data distribution to derive an op-
timal global partitioning scheme, which potentially produce fewer
boundary objects, while ensuring that the generated partitions are
balanced at the global partition level. Furthermore, for batch pro-
cessing systems such as Hadoop, we tweak the analyzer to generate
larger partitions to match the HDFS file block size. Partitions of
size similar to the HDFS file block size avoids file fragmentation
and improves I/O efficiency of future queries.

We have built a collection of six partition algorithms integrated
in the analyzer. We omit the technical details of those algorithms
which are described in the full paper. For each partitioning task, the
analyzer will assign one of the six algorithms that produces the best
partitioning result. For example, for global partitioning, analyzer
runs on the sampled dataset to produce a global partitioning; then
for each global partition, the analyzer runs on that specific partition
to derive an optimal partitioning scheme used to further refine that
partition into smaller ones.

2.3 Tear
In this step, we further partition each of the global partitions into

smaller local partitions. For each global partition, we use the par-
titioning algorithm, which was designated in the analyze step, to
further refine the partition. The actual partitioning of the data is ex-
ecuted in this step, and the output for each spatial object contains a
partition id that maps to a corresponding partition boundary. In our
prototype implementation, the local partition boundary is encoded
to the partition id, so that it may be further utilized by certain query
processing tasks. Since each partition task is independent of the
other, the partitioning can be done in parallel. In the demonstra-
tion, we use a MapReduce based parallelization to match the query
processing model of Hadoop-GIS. However, it is not challenging
to implement such partitioning in any other high performance com-
puting model.

In this step, we can also instruct the partitioner to generate par-
titions of specific size. For example, for parallel spatial database
systems, we can generate partitions that match the DBMS page
size which can increase the data loading performance and query
processing performance.

2.4 Optimize
After the partitioning is done, we optionally re-scan the data to

perform two complementary optimization tasks. First, for each par-
tition we collect basic statistics, such as the number of objects, the
geometry of partition boundary, and the number of boundary ob-

jects. The partitions statistics is persisted to the catalog for future
use, and a multi-level partition index is constructed from the parti-
tions boundaries and persisted to the file system. This multi-level
index contains a mapping between file block information and par-
tition boundary which can be later utilized by the query processing
task. Figure 2 shows a simplified version of a multi-level index for
MapReduce based spatial query processing systems. Second, we
re-evaluate each partition to ensure that the generated partitions are
balanced. As the partitioning is performed on the sampled dataset,
it is possible that some oversized or thin partitions are produced
due to over/under sampling. If we find such a partition, we start
a repartition process, which further partitions the oversized parti-
tion into multiple smaller ones to meet the partition size constraint.
In contrast, for thin partitions, we merge these with neighboring
partitions without violating the partition size constraint.

HDFS

Tile

Region

Tile

Figure 2: Multi-Level region based spatial index

3. PARTITIONING AND PARALLELIZATION

3.1 Partitioning Approaches in SATO
SATO has six built in partitioning algorithm that can handle var-

ious datasets from different domains, and each of them has its own
merits. Here, we sketch out those algorithms, and interested readers
can find specifics from the full technical paper. During the demon-
stration, we will visually present why certain algorithms are pre-
ferred for a specific partition task by illustrating the advantages and
disadvantages of those approaches.
Fixed Grid Partitioning. As the name indicates, the spatial uni-
verse is partitioned into K equal sized grids, and each grid is a
single partition.
Binary Split Partitioning. This is a top-down approach that cre-
ates spatial partitions by recursively dividing a given spatial region
into two non-overlapping subregions until the partitioning satisfies
the page size constraint.
Hilbert Curve Partitioning. This is commonly in many applica-
tions to obtain an approximate total ordering which preserves spa-
tial locality for multidimensional data. In our implementation, we
used Hilbert curve to map the centroids of the spatial objects to ob-
tain ordering values, and the whole dataset is sorted based on the
values. Then each consecutive b objects are grouped together to
satisfy the expected page size constraint, and their spatial extents
are used to form a spatial partition.
Strip Partitioning. In this approach, rather than defining a fixed
space, we slice off an “appropriate” amount of space from the spa-
tial universe where each slice roughly contains c objects.
Boundary Optimized Strip Partitioning. This algorithm is de-
signed to reduce the number of boundary objects while partition-
ing. It similar to Strip partitioning with the extension that it makes
greedy choice when producing partitions. While performing the
strip based partitioning, we consider partitioning in both dimen-
sions, and select the one which induces a smaller number of bound-
ary objects.
Sort-Tile-Recursive (STR) Partitioning. STR [4] first partitions

the spatial universe into large vertical strips. Then each strip is fur-
ther partitioned in the horizontal direction.

3.2 MapReduce Based Parallelization
In large scale query systems, partitioning is a one time process,

and the cost of partitioning is amortized by the improved query
performance in the long run. However, there are certain queries that
can benefit from an immediate and efficient repartition. Moreover,
in practice, parallel partitioning is considered to be one effective
way to improve overall ETL efficiency in large scale systems. If
the spatial partition process is a single-thread program, the memory
and computation time might be intractable for very large datasets.

We propose and implement two new scalable MapReduce–based
spatial partitioning approaches for this demonstraion. Both of these
approaches are used in the Analyze step to generate partition re-
gions. The first approach is designed for the Hilbert Curve where
we use a technique that resembles Hadoop Terasort [6] to sample
data for total ordering, and sorts values based on such partitioning.
In the Map phase of MapReduce, a spatial ordering anchor, such as
the center or Hilbert Curve value, is calculated and emitted as the
key. Next, the MapReduce framework will partition the objects into
groups based on their anchor location and sorts them on the anchor
value. At this point, dataset has been partitioned at a very coarse
granularity. Next, when the reduce phase starts, each reducer will
work on a single coarse partition, and further partitions them into
smaller partitions. Thus, at the end of the reduce phase, we have
the final partitioning layout. The second approach is more universal
and applicable to all algorithms. We perform an extremely fast spa-
tial histogram construction, and divide the space into large regions
with roughly equal numbers of objects. Our specific implementa-
tion uses a preliminary spatial density estimation, and successively
divides the largest rectangular region along one specific dimension
producing the minimal skew similar to the Min-skew approach in
[1]. The advantages of this approach is that the histogram compu-
tation on input data chunks can be performed independently and
quickly by mappers, while the aggregation of histograms and con-
struction of coarse region can be performed by a reducer. In the
following MapReduce step, objects are mapped into their corre-
sponding coarse regions, where each coarse region is handled by
a reducer that will execute a more fine-grained partitioning on this
region, with one of the six algorithms described above.

4. PERFORMANCE
We use a 50 node Amazon Elastic MapReduce (EMR) cluster

for our experiments. Each node is an extra-large EMR instance
equipped with 15 GB memory, 4 virtual cores and 4 disks with 420
GB storage. S3 is used as the primary data storage system for data
serving.
Datasets. We use two datasets for our experiments. The two datasets
are from two different domains each with its own unique charac-
teristics, which are representative of real world applications. The
first dataset is OpenStreetMap1. It contains spatial representation
of geometric features such as lakes, forests, buildings and roads.
Spatial objects are represented by a specific type such as points,
lines and polygons. The table schema is simple and it has roughly
70 columns. We use a subset of the OSM data which contains more
than 87 million polygonal objects. The second dataset is an Imag-
ing dataset from analytical pathology imaging studies for brain tu-
mor research, where boundaries of micro-anatomic objects in the
images are segmented and represented as polygons. We use a set of

1http://planet.openstreetmap.org

18 images, and each image contains 0.5 million spatial objects on
average.

We use a spatial join query to evaluate the effect of partitioning
on the query performance. Figure 3(a) shows the query process-
ing runtime of join query with 4 different partitioning approaches
and parameters. We can see from the figure that a proper partition-
ing approach can greatly increase query performance. Even for the
same partitioning approach, the partitioning granularity can signif-
icantly affect the query performance.

 0

 50

 100

 150

 200

 250

 300

103 104 105

T
im

e
(m

in
)

Partition size (# of objects)

(a) Join query performance

 0

 500

 1000

 1500

 2000

 2500

 6 12 25 50

T
im

e
(s

ec
)

Cluster size (# of nodes)

(b) Parallel partitioning

Figure 3: Query processing time and parallel partitioning time

We also test the parallel partitioning performance on the OSM
dataset with different cluster size configurations. Figure 3(b) shows
the scalability test for parallel partitioning task. It is clear from the
figure that, the parallel partitioning approaches have a very good
scalability. Query tasks that require ad-hoc partitioning can benefit
from such scalability, and overall query performance can be signif-
icantly improved.

5. DEMONSTRATION DETAILS
SATO runs on both local clsuters and Amazon Elastic MapRe-

duce.

Figure 4: SATO web interface

The demo will show how the user navigates and uses SATO to
effectively partition the input data. The system provides user inter-
face with interactive results, and users can provide various param-
eters such as input dataset, sampling method, and sampling ratio.
The user can optionally specify the sampling algorithm and asso-
ciated parameters. The system executes multiple MapReduce jobs
to sample and analyze the user data, and provides preliminary par-
tition results in a format of heat maps with statistics. The user can
scroll through dynamically generated visual maps and data summa-
rization to select a final algorithm to generate the actual partitioned
data. Data summarization includes object statistics of global, local

partitions and their storage space requirement. Figure 4 shows a
specific interface of the system used for data partitioning task.

The system can also provide a partition suggestion based on
the dataset characteristics, and visually show various parameters
to compare different approaches in color coded density map.

To demonstrate the difference between generated partitions and
the use of multi-level indexing scheme, we also provide Hadoop-
GIS as the spatial query processing system to utilize the output par-
titions from SATO. Hadoop-GIS will execute sample queries such
as containment and spatial join queries on pipelined SATO outputs
for different partitioning algorithms. The integrated system will
compute and display the results, as well as measure computational
cost. Here users can observe how query performance is affected by
providing different result datasets generated by different partition-
ing approaches.

6. CONCLUSION
In conclusion, our SATO framework is a scalable generic solu-

tion that can effectively handle major issues, such as data-skew and
irregularity of spatial objects, while optimizing future query per-
formance. For comparison, SATO can produce high-quality parti-
tioning on very large datasets such as OpenStreeMap polygons in
less than 10 minutes with MapReduce support, while it might take
hours for a standalone program to produce similar partitioning re-
sults. SATO is an open source system, which can run as standalone
or be parallelized in MapReduce. Therefore, with the emergence of
spatial Big Data, SATO is expected to attract interest from the open
source community and its functionalities is to be further extended.

7. ACKNOWLEDGEMENTS
This work is supported in part by NSF IIS 1350885, by NSF

ACI 1443054, by Grant Number R01LM009239 from the National
Library of Medicine and by Grant Number 1U24CA180924-01A1
from the National Cancer Institute. We are also grateful for the sup-
port from Amazon AWS in Education Research Grant, and Google
Summer of Code Project.

8. REFERENCES
[1] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in

spatial databases. In ACM SIGMOD Record, volume 28, pages 13–24,
1999.

[2] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.
Hadoop-GIS: A High Performance Spatial Data Warehousing System
over MapReduce. Proc. VLDB Endow., 6(11):1009–1020, Aug. 2013.

[3] A. Eldawy. Spatialhadoop: towards flexible and scalable spatial
processing using mapreduce. In Proceedings of the 2014 SIGMOD
PhD symposium, pages 46–50. ACM, 2014.

[4] S. T. Leutenegger, M. A. Lopez, and J. Edgington. Str: A simple and
efficient algorithm for r-tree packing. In ICDE, pages 497–506. IEEE,
1997.

[5] J. Lu and R. H. Guting. Parallel secondo: Practical and efficient
mobility data processing in the cloud. In Big Data, pages 107–25.
IEEE, 2013.

[6] O. O’Malley. Terabyte sort on apache hadoop.
http://sortbenchmark.org/Yahoo-Hadoop, 2008.

[7] J. Patel et al. Building a scaleable geo-spatial dbms: technology,
implementation, and evaluation. In SIGMOD, pages 336–347, 1997.

[8] S. Ray, B. Simion, A. D. Brown, and R. Johnson. A parallel spatial
data analysis infrastructure for the cloud. In SIGSPATIAL, pages
274–283. ACM, 2013.

[9] B. Sowell, M. V. Salles, T. Cao, A. Demers, and J. Gehrke. An
experimental analysis of iterated spatial joins in main memory. Proc.
VLDB Endow., 6(14):1882–1893, Sept. 2013.

