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ABSTRACT
We define a topology-based distance metric between road
networks embedded in the plane. This distance measure is
based on local persistent homology, and employs a local dis-
tance signature that enables identification and visualization
of local differences between the road networks. This paper
is motivated by the need to recognize changes in road net-
works over time and to assess the quality of different map
construction algorithms. One particular challenge is evalu-
ating the results when no ground truth is known. However,
we demonstrate that we can overcome this hurdle by using
a statistical technique known as the bootstrap.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Non-numerical Algorithms and Problems

General Terms
Theory, Algorithms, Experimentation, Measurement

Keywords
Map Comparison, Metrics, Persistence, Local Homology

1. INTRODUCTION
Comparing two graphs embedded in a metric space is

important in the field of transportation network analysis.
Given street maps of the same city collected from different
sources, researchers often need to know how they differ; see
Figure 1. The Open Street Map project1 provides street
map and trajectory data open to the public. Street map
comparison has received a lot of attention lately with the
emergence of algorithms that construct road networks from
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Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright 2014 ACM 978-1-4503-3131-9/14/11 ...$15.00
http://dx.doi.org/10.1145/2666310.2666390.

GPS trajectory data; see e.g. [1, 4, 10, 15, 17, 18]. Only re-
cently, first attempts have been made at comparing results
from different map construction algorithms [3, 6]. A few
distance measures have been used for this purpose [2, 6, 17],
but they are either heuristic in nature or must make strong
assumptions to provide theoretical guarantees. Overall, it
has remained a challenge to evaluate the quality of the re-
constructed networks due to (i) the absence of suitable map
comparison algorithms (that may require more than one dis-
tance value to capture the similarities and dissimilarities of
the maps) and (ii) the lack of applicable ground-truth maps
for comparison, especially when the goal of reconstruction
is a subgraph of the true road network.

(a) 2007 Road Network (b) 2013 Road Network

Figure 1: These two maps of Berlin were obtained
from two different sources, and are dated six years
apart. The 2007 map, obtained from TeleAtlas, ap-
pears to have less detail than the 2011 map, obtained
from OpenStreetMap. One goal of map comparison
is to locate where the road network has changed.

Let G0 = (V0, E0) be a road network represented as a
graph embedded in a compact metric space X. Although
not necessary, we may assume that X ⊂ R2 and that it
inherits the Euclidean norm. Suppose G1 = (V1, E1) is an-
other road network embedded in X. We wish to define a
distance between G0 and G1 that takes a combination of
spatial proximity and structural similarity into account. In
particular, we make the following contributions:

1. We present a novel topology-based distance measure
between road networks.

2. We define a local distance signature ψr : X→ R, which
assigns a non-negative real value to each point x ∈ X
that captures the difference between G0 and G1 as
observed by x.



(a) Different Topologies (b) GPS Trajectories

Figure 2: Left: Road networks can have a small
Hausdorff distance, but different topological struc-
tures. Right: GPS trajectories from university
buses in Chicago.

3. We show how to overcome the lack of a known ground-
truth road network when evaluating map construction
algorithms, by applying a statistical bootstrap to com-
pute a confidence set for the unknown road network.

We prove theoretical properties of our distance measure, and
we provide experimental results demonstrating the strengths
of this distance. The local distance signature allows us to
identify and visualize the local differences between the two
graphs. This paper provides the first theoretical foundation
for comparing the local topology of two road networks and
for defining distance measures for road networks in the ab-
sence of an applicable ground-truth road network.

2. MOTIVATION AND RELATED WORK
Given two embedded graphs G0 = (V0, E0) and G1 =

(V1, E1), we are interested in computing the distance be-
tween them. For example, G0 could represent the true road
network, and G1 could be the approximation of the true
network, computed from GPS trajectory data.

In this section, we outline two distance measures that
take the connectivity of the road networks into considera-
tion. First, however, we motivate why we are interested in
measuring the distance between road networks.

2.1 Motivation
Graph comparison lies at the core of many applied and

theoretical research avenues; see [12] for a review. The two
main reasons we are interested in computing a distance be-
tween road networks is to rank reconstruction algorithms
and to locate changes in road networks.

Ranking Reconstructions. A GPS trajectory T is a
sequence of points in R2 assumed to be close to a road net-
work G; see Figure 2b. Let T1, . . . , Tn be n trajectories,
which we assume have been sampled i.i.d. from some dis-
tribution over the space of all GPS trajectories. We wish

to construct Ĝn = Ĝn(T1, . . . , Tn) as an estimate of G. As
mentioned in the introduction, several algorithms exist to
reconstruct road networks from this trajectory data; see,
e.g., [1, 4, 10, 15, 17, 18]. One goal of having a well-defined
distance between graphs is to rank these algorithms.

For a particular known network G0 and reconstructed es-

timates of that network Ĝ1
n, Ĝ

2
n, . . . Ĝ

k
n, we compute the dis-

tance between G0 and Ĝin for i = 1, 2, . . . , k in order to

create a total ordering of the reconstruction algorithms for
G0. Doing this for many different graphs, we can analyze
the strengths and weaknesses of different algorithms. For
example, perhaps one algorithm outperforms the rest when
there is little or no noise in the trajectories, but a different
algorithm works best for noisy trajectories.

Detecting Changes in Road Networks. As shown in
Figure 1, road networks change over time. One application
of this distance metric, and, in particular, of the local dis-
tance signature ψr is to detect and locate changes in road
networks. For example, if roads that previously existed are
no longer observed via GPS trajectories, we may want to
detect this change. After recognizing this change, we may
then investigate why this change occurred.

2.2 Other Distance Measures
One way to measure distance between two embedded graphs

is to use the Hausdorff distance; however, this distance does
not take the connectivity of a graph into account. On the
other hand, sub-graph isomorphism and graph edit distance
calculate the amount of change needed to convert one graph
exactly into the second graph. For large graphs, this can
be rather expensive. Rather than look at the whole graph,
the two distance measures that we describe in this section
partially match points (or paths) in one graph to points (or
paths) in the other graph. Other algorithms exist, e.g, com-
paring shortest paths as presented in [17]; however, we only
include the algorithms most closely related to the distance
metric we propose in this paper in order to highlight the
differences between the algorithms.

Hänsel and Gretel Distance. As we mentioned above,
the Hausdorff distance does not take the local topology into
account. In [6], a sampling-based distance has been pro-
posed that incorporates the local connectivity of the graphs.

Fix parameters r > 0 (locality radius), d > 0 (jump dis-
tance), and δ > 0 (neighborhood threshold). Then choose a
random seed point s in G0. Next, place a red bread crumb
at s, as well as at all points in G0 at distance kd from s for
k an integer and kd < r. Here, the distance is measured
within G0. The same process is repeated with graph G1,
placing blue bread crumbs; see Figure 3a. Then a maximum
matching between the red bread crumbs and the blue bread
crumbs is computed, where a red bread crumb and a blue
bread crumb are matched if their distance is at most δ. This
results in ns red bread crumbs and ms blue ones, of which
ks are matched. Repeating this process for a large number
of seeds taken i.d.d., let n =

∑
s ns, m =

∑
sms, and k =∑

s ks. Then the precision is computed as pre0,1 = k/m,
the recall is computed as rec0,1 = k/n and the distance is
defined using the F -score:

Definition 2.1 (HG-Distance). The Hänsel and Gre-
tel (HG) distance is the statistical F -score, given by

F (G0, G1) = 2
pre0,1rec0,1

pre0,1 + rec0,1
.

We note here that F (·, ·) can take any value in the interval
[0, 1]. In this measure, higher values indicate a close match
between the graph and lower values indicate large differences
between the graphs.

This algorithm relies on graph sampling, and is therefore
nondeterministic. Specifically, since no convergence guaran-
tees are given, we cannot rely on this distance as a means



(a) Bread Crumbs (b) Map Matching

Figure 3: Left: To compute the HG distance, we
must first find a maximal matching between the red
and blue breadcrumbs. Right: To compute the PB
distance, the blue curve is map-matched onto the
black graph.

of ranking reconstruction algorithms. The distance mea-
sure that we propose, however, does provide a deterministic
distance metric.

Path-Based Distance. In [2], an approach to compute
distances between maps has been presented that is based on
quantifying how similar or different it is to travel within a
road network. Consider the set of paths between two ver-
tices u and v in Gi. A path between u and v is the image
of a continuous map α : [0, 1]→ Gi such that α(0) = u and
α(1) = v. Denote the set of all paths in Gi by Πi.

The distance measure is based on the Fréchet distance
between paths in Π0 and Π1. Let f, g : [0, 1]→ R2 be two
planar curves. The Fréchet distance δF between them is

δF (f, g) = inf
α

max
t∈[0,1]

‖f(t)− g(α(t))‖,

where α : [0, 1] → [0, 1] ranges over all continuous, surjec-
tive, non-decreasing reparameterizations. The Fréchet dis-
tance is well-suited for comparing paths because it takes
continuity and monotonicity of the curves into account.

Definition 2.2 (Path-Based Distance).
The Path-Based Distance between two graphs G0 and G1 is
defined as

−→
d path(G0, G1) = max

p0∈Π0

min
p1∈Π1

δF (p0, p1). (1)

By design, the path-based distance is directed and not sym-

metric, i.e.,
−→
d path(G0, G1) 6=

−→
d path(G1, G0). This anti-

symmetry is desirable, however. For example, G1 can be
the reconstructed road network from bus route data. In this
case, the bus routes correspond to a subgraph of the com-
plete road network G0.

Although this distance is deterministic, it does require a
rather strong assumption on the input graphs in order to
provide theoretical guarantees. In particular, the require-
ment that there can be no three-way intersections would
present a problem in most road networks.

3. LOCAL PERSISTENT HOMOLOGY
We present a distance measure between road networks

that compares the local homology of the graphs at different
scales. We refer the reader to [5, 14] and Appendix A and the
references therein for more details on persistent homology.

In words, the homology (of a graph) describes the con-
nected components as well as the cycles and branching struc-

tures present in the graph. The size of these components and
cycles, however, is not described by homology alone. Cycles
that enclose a small area are given equal importance as cy-
cles that enclose a large area.

In order to assign a size to each cycle in a consistent way,
we continuously thicken the graphs until all cycles are filled
in. In the process of thickening the graph, new cycles can
appear and existing cycles can disappear. The moment that
a cycle appears is called the birth of a cycle; the moment
a cycle is filled in is called the death of a cycle. In this
way, persistent homology defines a set of birth-death pairs,
which are plotted in a persistence diagram. The scale differ-
ence between the birth and the death of a feature is called
the lifespan, or the persistence, of a feature. Cycles with
long lifespans can be interpreted as important (homologi-
cal) features of the road network. The distance measure
that we use is based on finding a correspondence between
the homological features of the graphs.

More formally, let G1 = (V1, E1) and G2 = (V2, E2) be
two graphs embedded in X ⊂ R2. Let dG1 , dG2 : X → R
be the Euclidean distance functions that map every point
in X to the closest point in G1 and G2, respectively. The
thickened graphs mentioned above are realized as sublevel
sets of these distance functions: [Gi]

t := d−1
Gi

((−∞, t]).

(a) Neighborhood (b) t0-thickened (c) t1-thickened

Figure 4: For each x ∈ X, we take the intersection
of the disc U centered at x (shown in gray) with G
(shown in red). We look at the persistence diagram
obtained by thickening G and quotienting with X−U .
In this example, we see that there are two homology
generators at scale t0 (shown in cyan), but only one
at scale t1.

A sequence of growing topological spaces, such as this
sequence of thickened embedded graphs, is a filtration. We
look at a special filtration, the local topology filtration, which
is defined for a given open neighborhood U ⊂ X; for exam-
ple, U can be an open disc centered at a point x ∈ X. The fil-
tration that we consider is the sequence of topological spaces
indexed by t obtained by quotienting the graph thickened by
t with the part of the thickened graph not contained in U ;
see Figure 4. Formally, the local topology filtration is the
following continuous sequence of quotient spaces:

Fi(U) =
{
Xti(U) := [Gi]

t / ([Gi]
t ∩ X− U)

}
t≥0

. (2)

We obtain a set of homology generators with birth and death
times (or scales) by computing the persistent homology of
this filtration. For simplicity of exposition, we only consider
the one-dimensional homology (the relative cycles). We note
that we could also consider the zero-dimensional homology
(the connected components) with no changes to the theory
presented in this paper, and we observe that there are no
higher-dimensional generators.



For a fixed scale t, the homology classes of the quotient
space Xti(U) correspond to equivalence classes of paths that
either begin and end at the same point or begin and end
on the boundary of U . In Figure 4(b), the quotient space
has two generators (and three non-trivial homology classes).
The third homology class can be viewed as the sum of the
generating cycles. One of the two generators disappears
when the graph is thickened enough to completely cover one
of the holes, as shown in Figure 4(c).

Persistent homology, and, in particular, local persistent
homology is stable; if ‖dG1 − dG2‖∞ is small, then the cor-
responding persistence diagrams will be close. To make this
formal, we define a distance between persistence diagrams.
The bottleneck distance between persistence diagrams P1

and P2 is given by W∞(P1,P2) := inff ||p− f(p)||∞, where
f : P1 → P2 ranges over all bijections; see [14, Ch. VII].

Letting f1, f2 : M → R be the functions with persistence
diagrams P1 and P2, the stability of persistence diagrams
can be formally stated as the inequality: W∞(P1,P2) ≤
‖f1−f2‖∞, which was proven by [9, 11] under fairly general
conditions. Noticing that (2) is the filtration corresponding
to the restriction of dGi to U relative to ∂U , we have:

Corollary 3.1 (Local Bottleneck Stability).
Let U be an open subset of X. Let Pi be the persistence dia-
gram corresponding the the filtration Fi(U), defined in (2).
Then, the persistence diagrams P1 and P2 are well defined,
and W∞(P1,P2) ≤ ‖dG1 − dG2‖∞.

The analogous results hold for the Wasserstein distance.

4. LOCAL HOMOLOGY BASED DISTANCE
We define a local homology (LH) based distance. We show

that it is stable, and provide an approximation algorithm.

4.1 Distances
We compute the persistence diagrams Pi,r(x) correspond-

ing to the filtration Fi(Br(x)), where Br(x) is the ball of
radius r > 0 centered at x ∈ X. We now use P1,r(x)
and P2,r(x) to compare the local topologies of G1 and G2

near x. We define the local distance signature ψr : X→ R by
ψr(x) = W∞(P1,r(x),P2,r(x)), where W∞(·, ·) is the Bottle-
neck distance as defined in the previous section; see Figure 5.

We integrate the local distance signature over X to obtain
a fixed-radius local homology distance:

Definition 4.1 (Fixed Radius Distance). The fixed-
radius local homology distance is:

dLHr (G1, G2) =

∫
X
η(x)ψr(x) dx,

where η : X → R is a non-negative weight function that in-
tegrates to unity.

One weight function of interest is the uniform weight func-
tion η(x) = 1

|X| , where |X| denotes the Lebesgue measure of

X. We note here that dLHr is not a metric, as observed by the
fact that two different functions can have the same persis-
tence diagram. To avoid this issue, we choose a maximum
scale r1 > 0 and integrate dLHr (·, ·) over r:

Definition 4.2 (Local Homology Metric). The lo-
cal homology distance metric is:

dLH(G1, G2) =

∫ r1

0

ω(r)

∫
X
η(x)ψr(x) dx dr, (3)

where η : X→ R and ω : [0, r1]→ R are non-negative weight
functions that integrate to unity.

To compare the local homology based distance against
the distance measures mentioned in the previous section, we
look at Figures 6 and 7. In Figures 6a and 6b, we show two
examples that demonstrate difference that the local homol-
ogy distance will capture but the Hausdorff distance between
graphs does not capture. Figure 7 shows an example where
the near-connectivity of a graph is captured by the local ho-
mology based distance but not by the path based distance.

Finally, we present one variant of the local homology met-
ric, by integrating over the union of the graphs instead of
over the entire domain X. The advantage of using this vari-
ant is that we can ignore regions of the domain that are not
of interest.

Definition 4.3 (Local Homology Metric Variant).
The Local Homology Metric variant between road networks G1

and G2 is the normalized integral of dLHr over Y = G1 ∪G2:

dLHvar (G1, G2) =

∫ r1

0

ω(r)

|Y|

∫
U

ψr(x) dx dr, (4)

where ω(r) : [0, r1] → R is a non-negative weight function
that integrates to unity and |Y| denote the total length of
edges in Y.

4.2 Properties
In this section, we state the theoretical properties of the

LH metric between two embedded graphs; the proofs are
deferred to the forthcoming extended version of this paper.

As noted above, dLHr is not a metric in general; however,
it is a pseudometric.

Lemma 4.1 (Existence of Pseudometric). The fixed-
radius distance dLHr is a pseudometric.

In fact, the only metric property that dLHr does not satisfy
is the identity of indiscernibles; that is,

dLHr (G1, G2) = 0 =⇒ G1 = G2

does not hold. However, for all G1 6= G2, there exists a
radius r0 such that for all r ≤ r0, there exists a ball B of
radius r that intersectsG1 but notG2 (or vice versa). Hence,
for all r ≤ r0, we also have dLHr (G1, G2) 6= 0. Integrating
over x, we have:

Lemma 4.2 (Metric Space). If there exists r1 > 0
such that the weight function ω(r) is positive for all r < r1

and if η(x) is positive for all x ∈ X, then the distance dLH

is a metric.

In addition, the variant we present is also a metric:

Lemma 4.3 (Variant is a Metric). If there exists r1 >
0 such that the weight function ω(r) is positive for all r < r1,
then dLHvar (G1, G2) is a metric.

Small changes to graphs G1 and G2 should cause small
changes in the distance metric. This is, in fact, true:

Lemma 4.4 (Stability of Local Homology Metric).
Let dGi be the distance function to Gi. The local homology
distance is stable:

dLH(G1, G2) ≤ ||dG1 − dG2 ||∞.
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(b) Locally Dissimilar

Figure 5: Given two graphs, we obtain two persistence diagrams. We then pair the points in the diagrams,
as shown with the solid edges. The local distance signature ψr(x) is the length of the longest edge in this
pairing. On the left, the local distance signature is small, since the corresponding persistence diagrams are
close. On the right, the local distance signature is large.

(a) Multiple Discontinuities (b) Cycles

Figure 6: The Hausdorff distance alone is not strong
enough to distinguish between various types of dis-
crepancies between graphs. Left: The Hausdorff
distance fails at detecting multiple discrepancies be-
tween the pink and gray graphs. Right: The Haus-
dorff distance fails at detecting if cycles are broken.
However, the LH distance could be used to distin-
guish these five examples.

In order to interpret the local homology distance between
two embedded graphs, it is useful to know the set of potential
values for dLH .

Lemma 4.5 (Allowable Distances). The following up-
per bound holds for the local distance signature: ψr(x) ≤ r

2
for all x ∈ X. Moreover,

0 ≤ dLH(G1, G2) ≤ r

2
.

4.3 Computation
We approximate the local homology metric in three steps

working from the inside of (3) out. For simplicity, we assume
that we have uniform weight functions ω and η.

Step One: Computing ψr(x). Let x ∈ X and r > 0.
We can compute the homology H(t) of Xti(U) by computing
the homology of a corresponding nerve complex; see Ap-
pendix A).

We first must compute the persistence diagrams Pi,r(x)
for i = 1, 2. To do this, let E′i be a set of circular arcs that
cover ∂Br(x), and such that two arcs intersect in at most one

point. Furthermore, we assume that each line containing an
edge in Ei intersects each arc of E′i at most once. We note
here that such a subdivision is always possible by dividing
∂Br(x) into at most 2n + 1 arcs, where n is the number of
edges in Gi. In fact, we can do better than this for small
values of r. We consider the set of edges and arcs:

K′ = K′r(i) = Ei ∪ E′i,

The homology groups of the nerve Nt(K′) are isomorphic
to the homology groups of the quotient space Xt

i (Br(x));
thus, we can use the Nerve filtration to compute the persis-
tence diagrams. In practice, we use the Vietoris-Rips filtra-
tion provided in Dionysus.2

Step Two: Discretizing the integral over X for
fixed r. Let {Br(xi)}i=1...N be a finite cover of X. We esti-
mate the integral dLHr (G1, G2) with the following summation:

1

N

N∑
i=1

ψr(xi).

Although not necessary, we assume that the points in the set
{xi} lie on a lattice. If the points do not lie on a lattice, then
we will need to multiply ψr(xi) by a weight that is inversely
proportional to the density of the ball centers near xi.

Step Three: Discretizing the integral over r. In
Definition 4.2, the value r1 is a parameter. It is the largest
radius for which we wish to compute the fixed-radius dis-
tance. It is likely to be proportional to the maximum dis-
tance between corresponding vertices in the input graphs.
We assume that r1 and k > 0 are given, then we replace the
integral over r by the following summation:

1

k

k∑
j=0

1

N

N∑
i=1

ψ̂ j
k
r1

(xi).

5. THE BOOTSTRAP
One challenge in evaluating map construction algorithms

is to evaluate the reconstructed road networks when the

2Dionysus is a C++ library for computing persistent ho-
mology,developed by Dmitriy Morozov. http://mrzv.org/
software/dionysus/



Figure 7: The path-based distance between the gray and the pink graphs is constant for all three examples
shown; however, the local-homology distance decreases from left to right.

ground truth is unknown. To overcome this challenge, we
employ a statistical technique known as the bootstrap [13].

5.1 Correctness of Reconstructions
We would like to say that a road network construction

algorithm is correct if the reconstructed road network ap-
proaches the true road network as the number of trajecto-
ries used to create the reconstruction increases; however, we
must be more precise about what this means. Given a graph
G, we define the distance function dG : X→ R from a point
in the domain X ⊂ R2 to the nearest point in the graph G:

dG(x) := inf
g∈G
||x− g||.

Given n trajectories, let Ĝn be a reconstruction of the

unknown road network G. We say that limn→∞ Ĝn = G if
limn→∞ ||dĜn

− dG||∞ = 0. Equivalently, we could require

that the Hausdorff distance between Ĝn and G approaches

zero: limn→∞H(Ĝn, G) = 0. For reasons that will become

clear later, we prefer the former definition. If Ĝn limits to
G, then we say that the reconstruction algorithm is correct.
We formalize that requirement here, as we will need it later:

Property 5.1 (Correctness of Reconstruction).

If Ĝn is the road network reconstructed from n i.i.d. trajec-

tories, then: limn→∞ Ĝn = G.

For the reconstruction algorithm described in [4], the fol-
lowing holds:

Lemma 5.2 (Upper Bound on Approximation Error).

Let Ĝn be the road network reconstructed using the algo-
rithm in [4]. If εn/2 is the maximum map-matching (i.e.,
Fréchet-matching) distance between G and a trajectory Xi,
then: limn→∞ ||dĜn

− dG||∞ ≤ εn.

The term εn is the bias of the reconstruction. If, in addition,
we let εn tend to zero as n→∞, then we see that [4] satisfies
Property 5.1. We approximate the sublevel set filtration
of dG with the sublevel set filtration of dĜn

.

5.2 Applying the Bootstrap
Let G be a set of objects, with a distance d : G×G → R de-

fined. In our case, G is the set of all road networks embedded
in X ⊂ R, and d is the fixed-radius local homology distance.

Let G be an unknown road network, with P the probabil-
ity distribution over the space of all GPS trajectories over G.
We sample n points i.i.d. from P and from those n points

we construct Ĝn ∈ G. We assume Ĝn is an estimate of an
unknown G ∈ G and that Property 5.1 is satisfied. Fur-
thermore, we assume that n is large enough that the bias

introduced by the estimator Ĝn is negligible. We are in-

terested in the value of δ = d(G, Ĝn), but cannot compute
it directly since G is unknown. The distribution P induces
a distribution Pδ on distances between G and the random

variable Ĝn. For α ∈ (0, 1), we explain how we use the boot-
strap to obtain an upper bound on the random variable δ
with probability 1− α.

Let P̂n denote the uniform distribution over the n sampled
trajectories. Draw X∗1 , . . . , X

∗
n i.i.d. from Pn. This is equiva-

lent to sampling n trajectories from the original sample with

replacement. Compute Ĝ∗, the estimated graph computed
from X∗1 , . . . , X

∗
n. We repeat this process B times (with B

very large) to obtain Ĝ∗1, . . . , Ĝ
∗
B . Now, for each i ∈ 1 . . . B,

we compute δi = d(Ĝ∗i , Ĝn).
Thinking of δi as a random variable, we have the empirical

cumulative distribution function F̂n(q) = 1
B

∑B
i=1 I(δi ≥ q),

which approximates the CDF for δ. The upper α quantile

of F̂ , given by

qα = inf
{
q : F̂n(q) ≤ α

}
can be computed; see Figure 9b. Thus, a (1−α)-confidence

interval for the variance of d(G, Ĝn) is [0, qα].

6. EXPERIMENTAL RESULTS
In this section, we give our experimental results. First, we

visualize the local distance measure between two reconstruc-
tions of the road network in Athens, Greece. Second, we use
the bootstrap to compute a confidence set for the distance
between a reconstructed road network and a ground truth
road network, using GPS trajectories of buses in Chicago,
IL. Third, we demonstrate that our distance measure can be
used to rank reconstruction algorithms.

Datasets. The Athens dataset and source code of re-
construction algorithms from [4], [17] and [2] were down-
loaded from www.mapconstruction.org. This dataset con-
tains 129 GPS trajectories with a total length of 443.20km
(average: 3.82km and standard deviation: 1.45km) obtained
from school buses covering an area of 2.6km × 6km; the tra-
jectories range from 13 to 47 position samples, with a sam-
pling rate of 20s to 30s (average: 34.07s and standard de-
viation: 31.92s). The corresponding ground-truth map, ob-
tained from www.openstreetmap.org, consists of 3436 links
(edges) and 2694 nodes. It covers an area of 2.6km × 6km.
The edges have a total length of 193km.

The Chicago dataset and source code of the algorithm
in [7] were downloaded from bits.cs.uic.edu. The Chicago
dataset contains 889 GPS trajectories with a total length of
2869km (average: 3.22km and standard deviation: 894.28m)
obtained from university shuttle buses covering an area of
7km× 4.5km; the trajectories range from 100 to 363 position
samples, with a sampling rate of 1s to 29s (average: 3.61s
and standard deviation: 3.67s).

6.1 Local Signature
We illustrate the local distance signature with the Athens

dataset by comparing the road networks obtained from two



(a) Local Homology (b) LH Detailed View (c) Hausdorff (d) Fréchet

Figure 8: We compare two reconstructions of the Athens data set. The thicker gray road network is GBE and
the color-coded road network is GKP . The yellow parts of GKP correspond to sections of the graph that have
small signatures, and the red parts correspond to large signatures. Notice that the local homology distance
is the only one that picks up the locations of the missing intersections.

different reconstruction algorithms. Let GBE be the road
network reconstructed using the KDE algorithm found in [7]
and GKP be the shortest-path based algorithm found in [17].
Figure 8(a) and (b) illustrate the local distances between the
two road networks. In gray is the reconstructed graph GKP .
The color-coded road network is the reconstructed graph
GBE . The colors represent the local homology signature at
x ∈ GBE for radius r = 25m. The local homology signature
captures missing intersections, as illustrated in the detailed
view of the signatures. We contrast this to the Hausdorff
and the Fréchet signatures shown in Figure 8(c) and (d),
respectively. The Hausdorff signature at a point x ∈ GBE
is the distance to GKP . As shown, the Hausdorff signature
fails to capture these missing features. A complete compar-
ison between road networks must take topological informa-
tion into consideration. The Fréchet signature is the dis-
tance assigned to a vertex in [2] for link length three paths.
To capture the topological differences with confidence, we
would need to look at all paths, which is computationally ex-
pensive.
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Figure 9: We summarize the data from the boot-
strap applied to the local homology variant given
by (4). On the left is the histogram of the distances
from the bootstrap simulation. On the right is the
corresponding cumulative distribution function.

6.2 Bootstrap Algorithm
We use the Chicago dataset and the iterative road net-

work reconstruction algorithm of [4] in order to demonstrate
applying the bootstrap to road network comparison. We re-
sampled the n = 889 trajectories B = 1000 times with re-

placement and created graphs Ĝ∗1, . . . , Ĝ
∗
1000 using the iter-

ative algorithm. We use the bootstrap algorithm described
in Section 5 in order to estimate the distribution of dis-
tances dLHU (G, Ĝn) with the distribution of dLHU (Ĝ∗i , Ĝn).
When computing the bootstrap, we used the local homol-
ogy variant for a fixed radius r = 50 meters. We estimated
the integral over the bounding box of the graphs with 1330
balls on a regular grid, giving weight zero to those balls that
did not intersect either graph.

The bootstrap works best when the underlying distribu-
tion is approximately normally distributed. We look at the
estimated distribution in Figure 9A, and confirm that it is
approximately normally distributed. The distances obtained
in the bootstrap simulation ranged between 0.028084 and
2.655220, with the 95% quantile being 1.983330. Thus, with
95% certainty, the local homology distance between the un-

known G and the reconstruction Ĝn is less than 1.983303.

(a) Small p (b) Large p

Figure 10: The ground truth is the blue graph, a
regular grid over [0, 10] × [0, 10]. The red graphs
represent reconstructed graphs, with the quality of
the reconstruction decreasing as p increases.

6.3 Comparing Algorithms
In Section 2, we mentioned that the need to rank recon-

struction algorithms is one of the motivations for defining
a distance measure. In this section, we give experimental
evidence that the local homology distance measure outper-
forms other algorithms at this task. Then, we use the local
homology based distance algorithm to rank three road net-
work reconstruction algorithms.

In order to asses the ability of our distance measure to



PB HG LH
distance distance distance

Algorithm-1 #3 #3 #1
Algorithm-2 #2 #1 #2
Algorithm-3 #1 #2 #3

Table 1: This table shows the rankings of three road
construction algorithms, using three different dis-
tance measures: path-based, Hänsel and Gretel, and
the local homology based distance. For a full expla-
nation of this table, see Section 6.3.

rank reconstruction algorithms, we created a map G and
nine sets of estimations of that map with increasing allow-
able deviations from G. The map G is a regular grid over
[0, 10] × [0, 10] using the coordinates with even integers as
the vertices; see the blue graph in Figure 10.

The perturbation parameter is p, which is allowed to be
between zero and one. We perturbed G in three ways to
obtain Gp. First, we added diagonals through a cell with
probability p. Second, we deleted each edge (including the
added diagonal edges) with probability p. Third, we per-
turbed the vertex at (i, j) by choosing two numbers α and β
uniformly at random in the interval [−p, p] and moving the
vertex at (i, j) to (i + α, j + β). Thus, as p increases, the
distance to the ground truth G should increase as well, in
expectation. For example, see the red graphs in Figure 10.
For each value p, we generate 100 perturbations.

In Figure 11a, we observe that as p increases, so does
the median distance observed. Moreover, we see that the
middle 50% of the distances do not overlap until p = 0.8.
This indicates that the LH distance measure can success-
fully distinguish different values of p. We also compute sim-
ilar boxplots for two other distance algorithms: the Hänsel
and Gretel (HG)-distance and the path-based distance. Re-
calling that the HG-distance is an F -score, we observe that
distance should decrease as p increases. In fact, this is ex-
actly what we see: the median is strictly decreasing. The
middle 50% begin to overlap at p = 0.6. We interpret this
as follows: this controlled experiment illustrates that the
HG-distance can be used for ranking, but the local homol-
ogy based distance is more consistent and more sensitive to
perturbations. On the other hand, the path-based distance
seems to perform rather poorly at discriminating different
values of p.

Having justified the use of the local homology based dis-
tance for ranking reconstruction algorithms, we rank three
reconstruction algorithms on the Athens dataset. Algorithm-
1, given in [17], infers intersection nodes by detecting changes
in the direction of movement observed in the GPS trajecto-
ries. Edges are inferred by bundling trajectories that are
close to two given intersections. Algorithm-2, given in [4],
is an incremental algorithm that uses the Fréchet distance
between a new trajectory and the closest path in the cur-
rent road network in order to determine if an update needs
to be made. Algorithm-3, given in [6], uses ridges in a ker-
nel density estimate constructed over GPS trajectories in
order to determine locations of the roads. See Figure 12 for
the illustration of the Athens road network and the three
reconstructions, and Table 1 for a summary of the rank-
ings obtained.

Using the local-homology based distance, we find that
Algorithm-1 is the closest to the ground truth (with dis-
tance 20.65), and that Algorithm-2 the second closest (with
distance 20.89 from the ground truth). Algorithm-3 is the
farthest from the ground truth, being at distance 21.64.

For comparison, we look at the rankings obtained by us-
ing three different distance measures. First, we consider the
path-based distance of [2], computing the distance from the
reconstruction to the ground truth. Using this distance mea-
sure, Algorithm-3 is the closest to the ground truth, being
only 73 meters from it. Algorithms-1 and -2 have similar
distances of 229 and 224 meters, respectively. The fact that
Algorithm-3 is so relatively close to the ground truth can
be attributed to the use of kernel density estimates, as well
as the fact that Algorithm-3 captures fewer roads from the
ground truth.

Using a one-sided Hausdorff distance, we obtain the same
rankings as the path-based distance, but with a less se-
vere gap between Algorithm-3 and Algorithms-1 and -2:
Algorithm-3 is distance 74 meters from the ground truth,
Algorithm-2 is distance 82 meters, and Algorithm-1 is dis-
tance 84 meters.

Finally, the Hänsel and Gretel distance of [6] is the only
distance measure which ranks Algorithm-1 as the farthest
from the ground truth. We compute the HG-distance us-
ing r = 300 meters, d = 5 meters, and δ = 100 meters.
(See Section 2.2 for an explanation of these values). The
observed F -scores for this graph are 0.42 for Algorithm-2,
0.34 for Algorithm-3, and 0.25 for Algorithm-1. Since a vi-
sual inspection would probably rank Algorithm-1 as the best
reconstruction, we see that our distance measure is the only
measure that has captured the preferred rankings for this
data set.

7. CONCLUSION
In this paper, we defined a novel distance measure be-

tween road networks. Our local homology based distance
measure captures both spatial proximity and local topology,
by comparing the local persistent homology of the distance
functions to the road networks. One unique aspect of the
distance measure presented in this paper is that road net-
works are compared at different scales. We have shown how
to apply the statistical Bootstrap to give quality guarantees
for constructed road networks in the absence of the unknown
ground-truth. In addition to providing a single number to
quantify the distance between road networks, the local sig-
natures presented in this paper lends itself naturally to the
detection and visualization of regions where road networks
differ topologically; see Figure 8.

In future work, we will extend the experiment results pre-
sented in this paper by analyzing which features are cap-
tured by the different distance measures. In addition, we
plan to study notions of correctness of road network con-
struction algorithms and the convergence rate for the bootstrap.
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(a) Local Homology Based (b) Hänsel and Gretel (c) Path-Based

Figure 11: For each p-value, we show a boxplot of the distances obtained by generating 100 graphs. For
the LH distance (left), we observe that as p increases, the distance increases and the variability decreases.
In particular, we notice that the mean distance observed is strictly increasing with p. For the HG distance
(middle), we observe that the boxplots seem to decrease (indicating that the perturbations get farther from
the ground truth) as p increases. For the path-based distance (right), we observe that consecutive values of
p cannot be distinguished very well.

(a) Algorithm-1 (b) Algorithm-2 (c) Algorithm-3

Figure 12: From left to right, the local homology based distance between the reconstruction (shown in gray)
and the ground truth (shown in red) is increasing. The x- and y-coordinates are the offsets (in meters) from
an arbitrary location, given in Universal Transverse Mercator (UTM) coordinates. That location is UTM
Zone 34S, 482,400 meters east, 4,213,250 meters north.
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APPENDIX
This appendix has been abbreviated for space constraints.
Please refer to the forthcoming full paper for more details,
including full proofs of the theorems stated in this short paper.

A. COMPUTATIONAL TOPOLOGY
We refer the reader to [16, 19] for an introduction to topol-

ogy, and use this appendix to define the nerve of a set of
compact sets.

A.1 Compact Sets and Nerves
A topological space is called compact if every open cover

has a finite subcover. In particular, a subspace of Rn is
compact if and only if it is closed and bounded. Let K be a
collection of compact sets. We create a simplicial complex
from K:

Definition A.1 (Nerve). The nerve of K is the sim-
plicial complex

N(K) := {S ⊆ K : ∩ S 6= 0},

where ∩S denotes the intersection of all sets in S.

In words, every set in K corresponds to a vertex in N(K) and
each collection of sets S corresponds to a simplex if the com-
mon intersection of all sets in S is nonempty; see Figure 13.
Under the right assumptions, the nerve of K captures the
topology of | ∪ K|; in particular:

Lemma A.1 (Nerve Lemma [8]). Let K be a collection
of compact sets such that for all S ⊆ K, we have ∩S is either
empty or homotopic to a point. Then, the topological space
| ∪ K| is homotopically equivalent to N(K).

In particular, the homology groups Hp(|K|) and Hp(N(K))
are isomorphic.

(a) Compact Sets (b) Vertices (c) Nerve

Figure 13: On the left, we have a collection of sets.
In the middle, we add a vertex for each set. On the
right, we complete the simplicial complex by adding
a simplex for each collection of intersecting sets.

Given a road network G = (V,E), we add a scale pa-
rameter t > 0 to obtain a set of topological spaces indexed
by t:

Et := {[e]t : e ∈ E},

where [e]t denotes the set of points at most distance t from
the edge e, i.e., the Minkowski sum of e with the ball of
radius t. In words, we thicken each edge in E by t. When
the sets comprising E lie in R2, we only need to check subsets
up to size three in order to recover the homology of the union
of the elements in Et. Therefore, we describe next how to
determine the one-skeleton and the two-skeleton of Nr(K).

One-Skeleton. Let e1 and e2 be edges in G. To deter-
mine if {e1, e2} ∈ Nt(E), we must determine if ([e1]t)∩([e2]t)
is nonempty. The data structure we use is a matrix D, where
the rows and columns are indexed by the edges in G and the
ij-entry dij is the distance between the ith and jth edges.
We may think of D as a function D : E ×E → R. The one-
skeleton of Nt(E) has a zero-simplex for each edge in E and
a one-simplex for each pair ei, ej where i < j and dij ≤ t.

Two-Skeleton. Let e1, e2, and e3 be edges in G. To
determine if {e1, e2, e3} ∈ Nt(E), we must determine if
[e1]t ∩ [e2]t ∩ [e3]t is nonempty. We consider now the three-
dimensional matrix T : E×E×E → R whose ijk-entry tijk
is the smallest t for which the intersection is nonempty.

Computing tijk is equivalent to computing the distance
from an edge to the Voronoi vertex in the arrangement of
the edges e1, e2, and e3. To find the Voronoi vertex, we
intersect two bisectors. Generically, the bisector between
two edges ei and ej is a continuous curve defined by two
parabolas and a line segment. Given two bisectors bij and
bjk, we compute the finite intersection set bijk := bij ∩ bjk.
By definition, each bijk is the set of all points equidistant
to all three edges; we record the minimum such distance as
tijk. The triangle corresponding to the set {e1, e2, e3} is in
Nt(E) if tijk ≤ t.

The matrices D and T are sufficient to construct the two-
skeleton of Nt(E). In particular, the two skeleton of Nt(E)
is equal to the one-skeleton of Nt(E) plus a triangle for every
triple of edges ei, ej , ek for which tijk ≤ t.


