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ABSTRACT
We present an algorithmic framework for criteria-based seg-
mentation of trajectories that can efficiently process a large
class of criteria. Criteria-based segmentation is the prob-
lem of subdividing a trajectory into a small number of parts
such that each part satisfies a global criterion. Our frame-
work can handle criteria that are stable, in the sense that
these do not change their validity along the trajectory very
often. This includes both increasing and decreasing mono-
tone criteria. Our framework takes O(n logn) time for pre-
processing and computation, where n is the number of data
points. It surpasses the two previous algorithmic frame-
works on criteria-based segmentation, which could only han-
dle decreasing monotone criteria, or had a quadratic running
time, respectively. Furthermore, we develop an efficient data
structure for interactive parameter selection, and provide
mechanisms to improve the exact position of break points in
the segmentation. We demonstrate and evaluate our frame-
work by performing case studies on real-world data sets.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations
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Keywords
Trajectory, Computational Geometry, Segmentation

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SIGSPATIAL’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3131-9/14/11 ...$15.00
http://dx.doi.org/10.1145/2666310.2666415.

Figure 1: Segmentation of geese data. Red/pink
indicates migration flight, yellow stopovers. Blue
markers indicate end of a stopover.

1. INTRODUCTION
Movement tracking devices are currently widely available

for all kinds of applications. In ecology they are used for
tracking animals, and analysing their movement behavior [4].
For instance, tracking technology has been used to detect
stopover places of migrating geese [3]. A trajectory is recorded
as a series of timestamped locations, measured at regular or
irregular intervals. Currently, the amount of recorded data
is rapidly increasing, and methods are needed for processing
and analyzing it.

We study the following important analysis task: finding a
segmentation of a trajectory. A segmentation is a partition-
ing of a trajectory into pieces, which are called segments.
There are several ways to segment a trajectory. Previous
work focussed on finding a semantic annotation of the tra-
jectory [9], profile-based segmentation [7] and criteria-based
segmentation [2]. In this paper we will focus on latter type
of segmentation. In the criteria-based setting, segments are
chosen such that the movement inside each segment is ho-
mogenous in the sense that it fulfills a given criterion (e.g.,
on speed). The goal is to find a minimal number of segments
under this condition, which is equivalent to a maximal av-
erage length of segments. We assume that segments start
and end at data points of the trajectories (and not points
interpolated inbetween1). See Fig. 1 for an example. Seg-
mentation can be combined with classification of the seg-
ments. For this, the segmentation is done based on multiple
criteria, each of them defining a class, e.g., corresponding to
a movement state [3].

1We consider what is called discrete segmentation in con-
trast to continuous segmentation in some previous work.



Buchin et al. developed a framework that computes a seg-
mentation given a decreasing (monotone)2 criterion [2]: cri-
teria with the property that if they hold on a certain seg-
ment, they also hold on every subsegment of that segment.
Many simple criteria concerning homogeneity of location,
speed and heading are in this class. Also disjunctions and
conjunctions of those simple criteria belong to this class of
criteria. In this framework, a segmentation can generally
be computed in O(n logn) time, where n is the number of
data points. This also holds for the continuous segmentation
problem, in which the trajectories are interpolated linearly
between data points and segments may also start and end
between data points. The framework was used for segment-
ing animal tracks by movement states of migrating geese [3].

There are many meaningful criteria that are not decreas-
ing, such as minimum duration, but these criteria are harder
to handle. Aronov et al. [1] presented a simple general algo-
rithm using the start-stop matrix that runs in Θ(n2) time.
Due to the high running time, this algorithm is not suitable
for trajectories with a large number of data points.

In this paper we present a criterion-based segmentation
framework that runs in O(n logn) time, with n the number
of data points, which allows for:

• Handling a broad class of criteria: the stable criteria,
which are criteria that do not change their validity
along the trajectory very often. This includes decreas-
ing and increasing criteria and combinations of them.

• Segmentation by movement states, with rules govern-
ing state transitions and additional optimization goals
to determine the exact point of transitions.

• Interactive parameter selection, guided by the stability
of the resulting segmentations.

Note that the combination of a decreasing and increasing
criteria, e.g., minimum duration and maximum speed, are
neither increasing nor decreasing, but they are stable and
can therefore be handled in our framework. We demon-
strate our framework in a case study on movement data of
migrating white-fronted geese3.

2. FRAMEWORK
In this section we describe our conceptual framework for

criteria-based trajectory segmentation, deferring algorith-
mic details to later sections. Throughout the paper we as-
sume that a trajectory τ is given by a sequence of n triples
(xi, yi, ti), where (xi, yi) is the location of a moving entity
(e.g., an animal) at time ti. We denote the timestamped
locations of τ also by τ(i) = (xi, yi). We treat a trajectory
as the sequence of timestamped locations, hence a subtra-
jectory can only start and end at recorded time stamps. A
subtrajectory of τ starting at time ti and ending at (and
including) time tj is denoted by τ [i, j]. A segmentation of a
trajectory is a partition of a trajectory τ in subtrajectories
(called segments) such that these segments have disjoint in-
teriors and cover the whole trajectory τ . We use k to denote
the number of segments and si to denote the end point of
the ith segment; a segmentation is then given by τ [s0, s1],
τ [s1, s2], . . . , τ [sk−1, sk], with 0 = s0 < s1 < · · · < sk = n.

Our segmentation approach is based on criteria. Formally,
a criterion C is a function that maps a subtrajectory (candi-

2These criteria are called monotone in [2].
3see also the video: http://youtu.be/5JaRbYgykNg

date segment) to true or false. We denote the value of C for
candidate segment τ [i, j] by C(i, j). Intuitively, a criterion
conditions the movement on the segment, e.g., by requir-
ing a maximum speed and/or turning angle. A candidate
segment that satisfies C is called a valid segment, and a seg-
mentation consisting only of valid segments is called a valid
segmentation. The goal of criterion-based segmentation is
to find a valid segmentation of τ with a minimal number of
segments, given a trajectory τ and a criterion C. Such a
segmentation is called optimal.

Not all criteria can be handled equally. Previous work
focused on the class of decreasing criteria [2]. A decreasing
criterion has the property that if it holds on a certain can-
didate segment, it also holds on every subsegment of that
segment. There are numerous examples of this kind. For
instance, criteria that bound the range of a trajectory at-
tribute (such as speed and heading) are decreasing. For
these criteria, the greedy segmentation strategy will yield
an optimal result [2]. This strategy starts at the beginning
of the trajectory, and makes the first segment as long as
possible according to the criterion. The remainder of the
trajectory is then segmented in the same way, making each
segment as long as possible.

Another class are the increasing (monotone) criteria. An
increasing criterion has the property that if it holds on a cer-
tain segment, it also holds on all segments that contain that
segment. Important examples are the minimum length and
duration criterion that place lower bounds on length and
duration of a segment, respectively. Segmentation based on
increasing criteria only is not meaningful: either the whole
trajectory is “segmented” in one segment or the trajectory
cannot be segmented. However, Boolean combinations of
increasing and decreasing criteria can yield meaningful re-
sults, e.g., minimum duration and staying in an area. For a
combination of increasing and decreasing criteria, the greedy
strategy does not always yield an optimal result, however.

Consider the trajectory τ [0, 5] in Fig. 2. It is a regularly
sampled track (ti = i for all i = 0, . . . , 5) of an object that
is moving with constant acceleration (τ(i)− τ(i− 1) = i for
all i = 1, . . . , 5) starting at τ(0) = (0, 0). Assume that the
criterion is a conjunction of a duration criterion D (increas-
ing) and a bounded speed range criterion S (decreasing).
Criterion D requires a minimum segment duration of 3 and
criterion S allows for a maximum speed range of 4, where
the speed is estimated by forward-differentiation.

τ

v

0 1 2 3 4 5

Figure 2: Trajectory τ and speed v along τ . The gray
box has height 4 and indicates that τ [0, 4] satisfies S.

In this case, the greedy strategy picks τ [0, 4] as first seg-
ment, since this is the longest segment starting at t0 that
satisfies D ∧ S. There is no segment starting at t4 that
satisfies D, so the greedy strategy will fail to find a seg-
mentation. However, there is a segmentation τ [0, 2], τ [2, 5]
(optimal) which satisfies D ∧ S.

Our framework can handle Boolean combinations of in-
creasing and decreasing criterion. In fact, it can handle all
stable criteria. These criteria do not change their validity

http://youtu.be/5JaRbYgykNg


along the trajectory very often. More formally: Consider
all candidate segments ending at i ordered by increasing
length. Let v(i) denote the number of times the validity
changes along this order. A criterion is stable if and only if∑n
i=0 v(i) = O(n).
Our framework allows for classification of the segments

as well, when the classes can be described by criteria. The
algorithm then segments by the disjunction of the criteria
for all possible classes (e.g., movement states). As a result,
the algorithm computes a labeled classification of subtra-
jectories of the given trajectory. The concept of movement
states allows for a broad range of additional rules on the
segmentation. First of all, rules can be defined for break-
ing ties. The original segmentation problem only minimizes
the number of segments, and has no preferences among seg-
mentations with equal segment count. However, in practice
there are segmentations that are better than others, despite
having equal segment count, for example depending on the
exact location of segment boundaries. Those rules can be
formalized using movement states. Secondly, we can add re-
strictions on the state transitions by enforcing rules of the
form “in every segmentation movement state A can only be
followed by movement state B,C or D”. The framework also
allows for penalization of certain state transitions.

Outliers (e.g., resulting from GPS noise) can also be han-
dled efficiently by our framework. Also, there are outliers
that can be ignored, for instance very short stops during a
long flight. There are multiple levels at which we can handle
outliers. Previous work showed that a constant number of
outliers per segment can be ignored by a criterion [3], with-
out changing the monotonicity of the criterion. However, it
is more desirable to allow for a certain percentage of outliers
in each segment [1] (resulting in a non-monotone criterion).
Our framework approximates such a criterion of the form
“C except for a fraction f of the points” by:

(C except for 1 point ∧ number of points ≥ 1/f)∨
(C except for 2 points ∧ number of points ≥ 2/f) ∨ . . .

Outliers can also be handled at a higher level in the seg-
mentation framework. Consider the problem of stopping
or starting at outliers. To limit the number of consecutive
outliers we could for instance put segments starting or end-
ing at outliers in separate states respectively and forbid the
transition “ending at outlier” to “starting at outlier”.

The framework segments trajectories in O(n logn) time.
First, each criterion is transformed into a compressed start-
stop matrix (see Sections 3 and 4). The segmentation algo-
rithm is discussed in Section 5. Moreover, we can put extra
rules based on the movement states of the segments, as is
described in Section 6. Choosing the segmentation criterion
parameters is crucial but also difficult in practice, because
it requires domain knowledge. To fine-tune the parameters,
the segmentation needs to be computed multiple times, each
time using a slightly different setting of parameters. To aid
this process, we use an interactive process which is supported
by the stability diagram introduced in Section 7.

3. COMPRESSED START-STOP MATRIX
Aronov et al. [1] presented several algorithms for segmen-

tation. Mostly they focussed on continuous segmentation,
i.e., segmenting also at interpolated points, for which they
showed NP-hardness. For (discrete) segmentation, they gave

a simple algorithm which works for any computable crite-
rion. The first step of this method is to compute the start-
stop matrix. The storage of this matrix takes Θ(n2) space.
The second step is the computation of the actual segmenta-
tion from this matrix using a simple dynamic programming
algorithm in Θ(n2) time.

Our approach consists of two steps with similar goals.
First we construct a compressed start-stop matrix. This
data structure can efficiently test for any candidate segment
τ [i, j] whether it satisfies the criterion. This data structure
has size O(n) and can be computed in O(n logn) time for
a broad class of criteria. In the second step the segmen-
tation is computed from this compressed start-stop matrix
in O(n logn) time. Hence, our framework takes O(n logn)
time in total instead of Θ(n2), making the framework prac-
tical to use even on long trajectories. In this section we
introduce the compressed start-stop matrix. In Section 4
we discuss how to compute it for several criteria. The al-
gorithm that computes the optimal segmentation, given a
compressed start-stop matrix as input, is given in Section 5.

3.1 Start-stop matrix
A start-stop matrix stores the relation between a trajec-

tory τ and a criterion C. Consider the parameter space of
the set of subtrajectories of τ . For any candidate segment
τ [i, j], the start parameter i is associated with the column
index and the stop parameter j with the row index of the
matrix. So a matrix entry (i, j) in the upper left triangle
(i ≤ j) represents a candidate segment. Each of those is
assigned a value C(i, j), which is true if the criterion C is
satisfied by the candidate segment and false otherwise. A
candidate segment is called part of the free space if it satis-
fies C and it is part of the forbidden space otherwise.

A segmentation of τ into a sequence of segments τ [s0, s1],
. . . , τ [sk−1, sk] corresponds to a staircase in the start-stop
matrix. Consecutive segments τ [si, si+1], τ [si+1, si+2] share
a trajectory point. This means that the row index of matrix
entry corresponding to τ [si+1, si+2] is equal to the column
index of the matrix entry corresponding to τ [si, si+1]. Hence
the matrix entries corresponding to the segments τ [si, si+1]
together with the entries (si, si) on the main diagonal form a
staircase. Furthermore, a segmentation is valid if and only if
all non-diagonal entries of the staircase lie in the free space.
See Fig. 3 for an example of a valid segmentation.

stop
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Figure 3: A start-stop matrix and an optimal seg-
mentation into four segments. The free-space is
white, the forbidden space is gray. The segmen-
tation is valid, because the four segments (indicated
by dots) lie in the free-space.

3.2 Compressing the start-stop matrix
For many criteria the start-stop matrix can be compressed

significantly by applying run-length encoding to each row.



Run-length encoding is a simple form of data compression
in which runs are stored in a compressed form [8]. A run
is a sequence of consecutive values that are equal. In our
case, we have runs of true values and runs of false values,
which we call blocks and gaps, respectively. Runs are stored
as pair of value and count. We call this row-wise run-length
encoded start-stop matrix the compressed start-stop matrix.

Consider the start-stop matrix for a decreasing criterion.
The property “if C is satisfied by a certain segment, it is
also satisfied by every subsegment” implies that all matrix
entries to the right of a true value must be true. Recall that a
matrix entry (i′, j) right of a matrix entry (i, j) corresponds
to τ [i′, j] being a subsegment of τ [i, j]. A row of a decreasing
start-stop matrix hence consists of at most two runs: an
optional gap followed by a block. An example of a start-
stop matrix for a decreasing criterion is shown in Fig. 4(a).

In a similar way the start-stop matrix for an increasing
criterion can be compressed. The increasing property im-
plies that all matrix entries to the left of a true value must
be true. A row of such a start-stop matrix hence consists of
an optional block followed by a gap. An example is shown
in Fig. 4(b).

Using the compressed instead of the uncompressed start-
stop matrix for decreasing and increasing criteria reduces the
storage to O(n). In Section 4 we show that this compressed
start-stop matrix can be computed in O(n logn) for many
decreasing and increasing criteria.

Our algorithm is not limited to decreasing and increas-
ing criteria. In fact, it can handle any criterion that has
a compressed start-stop matrix with O(n) blocks, which is
the case for all stable criteria. Therefore, our framework
can compute the optimal segmentation in O(n logn) time
for any stable criterion given its compressed start-stop ma-
trix. Note that the same holds for start-stop matrices that
can be compressed to linear size using run-length encoding
on the columns; simply reverse the trajectory.

3.3 Combining and transforming compressed
start-stop matrices

Basic criteria can be combined to get compound criteria,
which can be more effective at segmenting trajectories than
basic criteria, as has been demonstrated in [3]. There are two
ways to combine criteria: the conjunction and disjunction.

Given two stable criteria C and C′ and their compressed
start-stop matrices, the compressed start-stop matrix of C1∧
C2 can be computed efficiently. The key observation is that
C1 ∧ C2 is satisfied by a candidate segment τ [i, j] if and
only if C1 and C2 are satisfied. Hence the free space of the
start-stop matrix of C1 ∧ C2 equals the intersection of the
free space of the start-stop matrices of C1 and C2. The run-
length encoded form of this intersection can computed per
row taking in total O(n) time. Similarly, the compressed
start-stop matrix of C1 ∨ C2 equals the union of the free
space of the start-stop matrices of C1 and C2. This union
can also be computed in O(n) time. There are several prop-
erties concerning combinations of increasing and decreasing
criteria.

Theorem 1. [2, Theorem 15] A combination of conjunc-
tions and disjunctions of decreasing criteria is a decreasing
criterion.

Theorem 2. A combination of conjunctions and disjunc-
tions of increasing criteria is an increasing criterion.

Proof. Let C and C′ be increasing criteria. We will show
that the conjunction C ∧C′ and the disjunction C ∨C′ are
increasing. First we consider the conjunction. Let τ ′ be a
subtrajectory of τ . Assume that C ∧ C′ is satisfied by τ ′.
Let τ ′′ be a supertrajectory of τ ′. Criterion C is satisfied
by τ ′′, because it holds for τ ′. The same holds for C′. This
implies that C ∧ C′ is satisfied by τ ′′. Hence C ∧ C′ is also
increasing.

Now we consider the disjunction. Let τ ′ be a subtrajectory
of τ . Assume that C ∨ C′ is satisfied by τ ′. Let τ ′′ be
a supertrajectory of τ ′. Without loss of generality assume
that criterion C is satisfied by τ ′. Then, C is also satisfied
by τ ′′. Hence C ∨ C′ is satisfied by τ ′′. This proves that
C ∨ C′ is increasing.

Note that the conjunction (or disjunction) of a decreasing
combined with an increasing criterion is not decreasing or
increasing. An example is given in Fig. 4.

stop

start

0
1
2

0 1 2

. . .

. . . n

n 8
7
7
3
8
7
6
5
4
3
2
1

3
4
3
6

stop

start

0
1
2

0 1 2

. . .

. . . n

n

7
4
6
5
4
3
2
1

12
11
8
8

1
3

2
1

(a) Decreasing criterion C1 (b) Increasing criterion C2
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(c) Criterion C1 ∧ C2

Figure 4: Two start-stop matrices and their con-
junction.

Criteria can also be transformed by applying negation.
Given a stable criterion and its compressed start-stop ma-
trix the compressed start-stop matrix of the negation of the
criterion can be computed efficiently: Change the forbidden
space to free space and vice versa. This can be done in
O(n) time. Applying negation to a decreasing or increasing
criterion “reverses” these properties, in the following sense.

Theorem 3. The negation of a decreasing criterion is an
increasing criterion and vice versa.

Proof. Let τ be a trajectory. Let C be a decreasing cri-
terion. Assume for the purpose of contradiction that ¬C is
not increasing. This means that there is a candidate seg-
ment τ [i, j] that does not satisfy C, for which a superseg-
ment τ [i′, j′] exists with i′ ≤ i and j′ ≥ j that satisfies C.
However, validity of τ [i′, j′] implies validity of τ [i, j] by the
decreasing monotonicity of C. This is a contradiction. The
proof of the other direction is analogous.

4. COMPUTING THE COMPRESSED
START-STOP MATRIX

The compressed start-stop matrix for a decreasing crite-
rion can be computed using the algorithm ComputeLongest-



Valid . Given a trajectory data set τ and a decreasing cri-
terion C the algorithm computes for every trajectory index
j the smallest index i for which τ [i, j] satisfies the criterion.
This index is stored in LVj . Given LVj it is straightfor-
ward to compute the actual compressed start-stop matrix in
O(n) time. For increasing criteria the compressed start-stop
matrix can be computed using the same algorithm. Simply
replace ¬C by C in ComputeLongestValid and negate the
resulting compressed start-stop matrix. The correctness of
this method is a direct consequence of Theorem 3.

Algorithm ComputeLongestValid(C, τ)
1. i← n;
2. Initialize empty DC ;
3. for j ← n to 0
4. do while i ≥ 0 ∧ DC .SegmentIsV alid
5. do i← i− 1;
6. DC .Extend(i);
7. LVj ← i+ 1
8. j ← j − 1;
9. DC .Shorten(j);

The algorithm ComputeLongestValid computes LVj by
moving two pointers i and j backwards over all n points
of the trajectory τ . Both pointers start at the last point of
the trajectory. Pointer i is moved backwards until the seg-
ment τ [i, j] is not valid. At that moment we can conclude
that LVj is equal to i+ 1. Then the pointer j is moved one
step and the next LVj is determined in a similar fashion.
Note that it is not necessary to reset pointer i to j, because
C is decreasing.

Testing whether τ [i, j] satisfies a criterion is not a straight-
forward task. Therefore the data structure DC is included in
the algorithm to keep track of the validity of candidate seg-
ment τ [i, j]. The actual form of this data structure depends
on the kind of decreasing criterion C that is considered. It
allows for three operations. First of all it can be queried
for the validity of τ [i, j] using the SegmentIsValid function.
Secondly the segment τ [i, j] can be extended by one point
at the start, when i is decreased by 1. Thirdly the segment
τ [i, j] can be shortened by one point at the end, when j is
decreased by 1.

The algorithm ComputeLongestValid consists of at most
O(n) steps in which the interval τ [i, j] is extended or short-
ened. The running time of the algorithm depends on the
precise data structure that is used for DC . Let M`(n),
Mr(n) and T (n) denote the running times of respectively
the Extend, Shorten and SegmentIsValid operations. The
running time of ComputeLongestValid can then be stated as
O(n(M`(n) +Mr(n) + T (n))).

The following paragraphs list some basic decreasing cri-
teria and the data structure DC that is used for computing
the corresponding compressed start-stop matrices.

Range criterion on attribute. There is a large class of
criteria of the form “for all points in the segment attribute
a should be within a range of size α”. Alternatively such a
criterion can be seen as an upper bound of α on the difference
between the maximal and the minimal value of attribute a
over all points in the segment.

The data structure DC keeps track of the minimal and
maximal element. For monotone attributes, such as time
and traveled distance, this is easy, because they can only
increase along the trajectory. The minimal and maximal

element of the segment always correspond to respectively
the first and last element. Keeping track of those elements
when extending or shortening the candidate segment can be
done in constant time. Testing the validity is also done in
constant time by comparing the difference between minimal
and maximal element with α.

For non-monotone attributes, such as speed, data struc-
ture DC is slightly more complicated. An ordered multiset
data structure such as a balanced binary search tree can
be used to keep track of all attribute values of the current
candidate segment. Extending and shortening the candidate
segment correspond to respectively inserting and deleting an
attribute value. Testing whether τ [i, j] is valid consists of a
query for the maximal and minimal element in the multiset
and comparing their difference with α. Using a balanced
binary search tree all three operations take O(logn) time.

Note that the range criterion on speed should ignore the
speed value of one of the endpoints. Otherwise a large
change in velocity would make segmentation impossible. The
algorithm ComputeLongestValid requires only a small change
to make this possible. If the starting point of a segment is
excluded we simply need to decrease all LVj values by one.
If the stopping point of a segment is excluded, all LVj need
to be shifted one step, that is: LVj ← LVj−1.

In practice, it can be very useful to allow for a constant
number c of outliers that do not need to lie within the range
of size α. This does not affect decreasing monotonicity. A
similar data structure can be used as before. We will con-
sider the c+1 canonical (ending at attribute values that are
present) ranges that cover all values except for c outliers. See
for example Fig. 5, where two outliers are allowed. Finding
those ranges can be done quite efficiently in O(c logn) time.
If the smallest range is less than α the candidate segment is
valid.

Figure 5: An ordered set of values and its corre-
sponding c + 1 canonical ranges that cover all but c
elements.

Lower bound / Upper bound on attribute. Another
class of criteria is of the form “for all points in the segment
attribute a should be ≥ γ (or ≤ γ)”. These criteria are espe-
cially useful in compound criteria. The same data structure
can be used as for the range criterion, but instead of com-
paring the difference between the extreme points, only the
maximal or minimal element is compared with γ. The run-
ning times remain the same.

Treating outliers again can be done more efficiently. Test-
ing whether all values except for c outliers are larger than γ
is equivalent to comparing the value of the cth order statistic
with γ. To allow for fast order statistics queries the binary
tree can be augmented into an order statistics tree. This tree
can retrieve the cth order statistic in O(logn) time. Note
that the running time is independent of c. The running times
of the insert and delete operations remain unchanged.

Angular range criterion on attribute. The range cri-
terion for angular attributes, such as heading and turn-
ing angle, is similar to the range criterion for ordinary at-
tributes. The only difference is that the value range is
wrapped around. For instance, the heading values π/6 and



11π/6 can be covered by a range of size π/3. If the upper
bound on the angular range α is less than π, the approach is
similar to the ordinary range criterion. We maintain a min-
imal and maximal element that differ less than π (modulo
2π) and span all values in between.

However, if the upper bound α is larger than π the circular
nature of the angular domain prevents us from maintaining
a meaningful maximal and minimal element. In that case
we will keep track of the largest gap between consecutive
angular values instead. The smallest range that can cover
all the attribute values has size 360◦ − g, where g ∈ [0, 2π)
is the angle of this largest gap. To keep track of this largest
gap we use two ordered multiset structures that both store
the set of gaps. The sets are ordered by respectively size
and angular order. Testing validity corresponds to a query
for the largest gap g and comparing 360◦ − g with α. Ex-
tending and shortening correspond to respectively splitting
and merging a gap, both taking O(logn) time using the set
structures.

The data structure can be extended to allow for a con-
stant number c of outliers. Instead of storing gap-intervals
that span exactly two values, we store intervals that span
exactly 2 + c values. Testing validity remains unchanged.
However, the extend and shorten operations have to change.
Inserting a value will change c intervals and create one new
interval. Deleting a value will change c intervals and delete
one. Both operations take O(c logn) time. An example is
given in Fig. 6 for two outliers.

(a) Before insertion (b) After insertion

Figure 6: Inserting of the dashed value in the angu-
lar range data structure allowing two outliers. Only
the changed intervals are shown.

Disk criterion. A disk criterion has the form “all points
in the segment can be covered by a circle with fixed radius
r”. We use a data structure DC to keep track of the smallest
enclosing circle of the points on the segment. The query cor-
responds to comparing the radius of the smallest enclosing
circle to r.

It is not straightforward to maintain the smallest enclosing
circle efficiently in a dynamic setting. The asymptotically
fastest technique lifts the problem to convex programming
over a half-space intersection [5]. Insertions, deletions and
smallest enclosing circle query are guaranteed to take only
polylogarithmic time. Using this data structure the algo-
rithm ComputeLongestValid has a near-linear running time.

However, the complex data structure described in [5] has
high constant factors in the running time. It is much faster
to maintain an approximate smallest enclosing circle using
our method described below. This can cause the algorithm
to compute a segmentation that is not exactly optimal with
respect to the exact disk criterion, but the differences (if any
are present) are mostly insignificant. Note that the approx-
imation ratio can be chosen arbitrary close to one.

The idea of the approximation scheme is to maintain a
constant size approximate convex hull and compute its small-
est enclosing circle when the structure is queried. The ap-
proximate convex hull consists of the (at most 2k) extreme
points in k regularly sampled directions. We will call this
the k-approximate convex hull. An example is shown in
Fig. 7. Thin lines are drawn through the points on the hull
to indicate the directions in the points are extreme. The
approximate enclosing circle is not the smallest enclosing
circle. There is a point that is not enclosed (indicated by
an arrow). However, Theorem 4 states that the two circles
cannot differ much.

Figure 7: The 4-approximate convex hull of a point
set and its smallest enclosing circle.

Theorem 4. Given a point set P . Let r and r′ be the
radii of the smallest enclosing circle of respectively P and
its k-approximate convex hull. Then,

1 ≥ r′

r
≥ 1− 1

2 cot( π
2k

)
= 1−O(

1

k
).

To maintain the k-approximate convex hull we store the
point set k times, each point set ordered in a different regu-
larly sampled direction. Using an efficient set structure, in-
sertion and deletion take O(logn) time per set, so O(k logn)
time in total. Getting the k-approximate convex hull also
takes O(k logn) time. Computing the smallest enclosing
disk for this set of points can be done using a randomized
incremental algorithm in O(k) [6]

5. COMPUTING THE OPTIMAL SEGMEN-
TATION

First we will discuss an algorithm that computes the op-
timal segmentation given an uncompressed start-stop ma-
trix [1]. This dynamic programming algorithm is based on
the following property:

Theorem 5. The optimal sequence of segments for τ [0, i]
(if it exists) consists either of just one segment, or it is equal
to an optimal sequence of segments for τ [0, j] appended with
a segment τ [j, i], where j is an index such τ [j, i] is valid.

Theorem 5 allows us to transform the segmentation prob-
lem to a shortest path problem in an unweighted directed
acyclic graph on n vertices, having the start-stop matrix
as adjacency matrix. To find this shortest path from 0 to
n the program SimpleComputeSegmentation is used. In this
dynamic program the optimal segmentation of τ [0, i] is com-
puted for all i = 0, . . . , n. Instead of storing the complete
segmentation for each i, only the starting index of the last
segment (last) and the total number of segments (count) is
stored. The actual segmentation can be retrieved from the
dynamic programming table in O(n) time.



Algorithm SimpleComputeSegmentation(τ, C)
1. Sg[0].last← nil; Sg[0].count← 0;
2. for i← 1 to n
3. do Sg[i].count←∞
4. for each j for which τ [j, i] satisfies C
5. do if Sg[j].count+ 1 < Sg[i].count
6. then Sg[i].count← Sg[j].count+ 1;
7. Sg[i].last← j;

For each index i the algorithm loops over all valid candi-
date segments τ [j, i], while maintaining the optimum. The
optimal segment in this context is the segment τ [j, i] for
which the optimal segmentation of τ [0, j] consists of the
smallest number of segments.

Our approach is similar to SimpleComputeSegmentation:
The algorithm ComputeSegmentation loops over all indices
i and for each i it determines the optimal last segment. The
difference is that our algorithm finds this optimal segment
more efficiently. Instead of processing the valid starting in-
dices one by one, a whole block of consecutive valid indices
is processed at once. These blocks correspond to the blocks
in the compressed start-stop matrix S at row i. Processing
a block of valid indices is a complex operation. To allow for
this operation the table Sg is changed to a balanced binary
tree T . A node in T corresponds to an entry in Sg and has
three fields: last, count and index. The tree T is ordered
on index.

Algorithm ComputeSegmentation(τ,S)
1. Initialize empty T ;
2. Create new node ν0;
3. ν0.index← 0; ν0.count← 0;
4. T .Insert(ν0)
5. for i← 1 to n
6. do Create new node ν;
7. ν.index← i;
8. ν.count←∞;
9. for each block b at row i of S
10. do ν′ ← T .GetMinimalCount(b);
11. if ν′.count+ 1 < ν.count
12. then ν.count← ν′.count+ 1;
13. ν.last← ν′.index;
14. T .Insert(ν);

For each row i in the compressed start-stop matrix the
query algorithm GetMinimalCount is executed c times, where
c is the number of blocks at row i. Furthermore, a new ele-
ment storing the optimal segmentation for τ [0, i] is created
and inserted in T taking O(logn) time. Our algorithm runs
on stable criteria. Hence the total number of blocks is O(n).

The input of the GetMinimalCount query is a block b at
row i of the compressed start-stop matrix. Block b covers
the indices b.begin, b.begin+1, . . . , b.end, which are starting
indices of valid candidate segments ending that end at i.

The goal of the GetMinimalCount procedure is to find
the candidate segment starting at j ∈ [b.begin, b.end] for
which the optimal segmentation of τ [0, j] consists of the
smallest number of segments. This corresponds to find-
ing the node in T with minimal count over all nodes with
index ∈ [b.begin, b.end].

To find this node one could simply visit all nodes with
index ∈ [b.begin, b.end] and keep track of the one with
minimal count, but this can be done more efficiently. Ac-
cording to the binary search tree property these nodes with

index ∈ [b.begin, b.end] are located between the paths to
b.begin and b.end. Figure 8 shows an example.

Figure 8: A tree T and two search paths. The nodes
in the white subtrees and the white nodes on the
paths are between the two search paths.

A node ν is between the paths to b.begin and b.end if and
only if it is
1. on the path to b.begin , with ν.index ≥ b.begin, or
2. on the path to b.end, with ν.index ≤ b.end, or
3. in the right or left subtree of a node in respectively set 1
or 2.

There are at most O(logn) nodes in set 1 and 2, and
there can be a linear number of nodes in set 3. However,
the number of subtrees in set 3 is at most O(logn). To
speed up the search the balanced binary search tree T is
augmented with the fields ν.mincount and ν.argmincount,
which are equal to respectively the minimal value of count
over all nodes in the subtree rooted at ν and a pointer to
the node where this minimum occurs. This enables us to
find the node with minimal count in a subtree in constant
time. The algorithm GetMinimalCount can thus loop over
all nodes (set 1 and 2) and subtrees (set 3) located between
the search paths to b.begin and b.end, while maintaining
the node with minimal count, taking O(logn) time in total.
Hence ComputeSegmentation takes O(n logn) time.

6. SEGMENTATION BY STATES
The most natural way to define a criterion for the segmen-

tation according to behavioral movement states is a disjunc-
tion of subcriteria, of which each subcriterion corresponds
to a behavioral state:

Behavior 1 ∨ Behavior 2 ∨ · · · ∨ Behavior m.

As was described in Section 3.3, segmenting according to
such a disjunction can be done by taking the union of the
compressed start-stop matrices. However, taking the union
of the compressed start-stop matrices makes us loose valu-
able information: the segmentation algorithm cannot distin-
guish between different classes of segments.

The algorithm ComputeSegmentation can be changed in
such a way that this information remains. In this extended
version the input consists of the m compressed start-stop
matrices that correspond to the m behavioral states. The
loop of lines 9-13 over all blocks of the compressed start-stop
matrix is executed once for each of the m start-stop matri-
ces. Given the m individual start-stop matrices, classifica-
tion of the segments is possible. To store the classification
each node will have one extra field storing the movement
state of the last segment. When the optimal starting point
of the last segment is changed on line 13 the movement state
corresponding to the current compressed start-stop matrix
is assigned to this field. The running time of this segmenta-
tion/classification algorithm is O(mn logn).



6.1 Adding optimization goals in case of ties
A segment is put into the first class, whose criterion it sat-

isfies. Intuitively, the order in which the start-stop matrices
are handled corresponds to the order of “preference”. How-
ever, this order does not yield real guarantees. One could
also order all optimal segmentations (equal segment count)
by the number of segments of class i that they contain (and
in case of ties, on the number of segments of class i′, etc).
Keeping track of the number of segments of each class and
doing a lexicographical compare instead of the simple com-
parison of line 11 takes only O(m) additional time, which
does not affect the asymptotic running time.

There is another way of breaking ties that is especially
useful when segmenting trajectories of animals that show
pausing or stopping behavior (see Section 8 for an exam-
ple). This kind of behavior can usually be described by
a disk criterion. Segmenting without defining extra rules
for breaking ties, can yield strange results biased towards a
certain direction (forward or backward). For example, con-
sider the trajectory in Fig. 9. Assume that it is segmented
according to a disjunction criterion containing a disk and
bounded turning angle criterion (≤ 60◦). Making the last
segment as long as possible would result in the segmentation
in Fig. 9(a). Making the last segment as short as possible
results in the situation in Fig. 9(b). Both of them are not
what we would expect from a good segmentation. They are
biased towards respectively the front or the back: the seg-
ment that satisfies the disk criterion ends in a strange “limb”
at its front- or back-end.

To counteract this biased behavior rules can be defined to
break ties based on the segment classes. In Fig. 9, one could
make the algorithm pick the last segment as short as possible
if it satisfies the bounded turning angle criterion, and pick
the last segment as long as possible if it satisfies the disk
criterion. This would result in the segmentation in Fig. 9(c),
which is preferred over the other two segmentations.

start

stop

start

stop

start

stop

(a) Last segment
as long as possible

(b) Last segment
as short as possible

(c) Class depen-
dent tie breaking

Figure 9: Three optimal segmentations. Pausing
segment is depicted thicker.

The tie breaking strategy is easy to incorporate in the
algorithm. Simply pick the left-most or right-most valid
starting index that is reported by GetMinimalCount . Note
that two different variants of GetMinimalCount are needed:
one to find the left-most and another to find the right-most
valid optimal starting index within the block. To enable this
query on T , it needs to be augmented with two different
argmincount fields, one to store the left-most and another to
store the right most-node where mincount occurs. This can
be done without affecting the asymptotic running time.

6.2 Follow relations between movement states
In practice, transitions between movement states are not

occurring at random, they are often well-structured. The

transitions can be modeled by a (weighted) graph on m ver-
tices. We will present a method to enforce those transition
relations on a segmentation.

This method requires the computation of m segmentation
trees T1, T2, . . . , Tm, instead of one (as described in Section
5). Each tree Tc stores the optimal segmentation for the
subtrajectory τ [0, i] that ends in movement state c for all
i = 1, . . . , n.

Consider the computation of the optimal segmentation for
τ [0, i+ 1] ending at state c. Assume that c is only preceded
by states p1, p2, . . . , pd according to the transition graph.
As before, the start-stop matrix of state c determines which
segments (ending at i + 1) are valid. Recall that in the
unrestricted setting the starting index of the last segment
is chosen such that it started at the index j for which the
optimal segmentation of τ [0, j] has minimal segment count.
This index can be computed efficiently using the GetMini-
malCount queries. In the restricted case this definition of
best segment changes: the last segment starts at the in-
dex j for which the optimal segmentation of τ [0, j] ending
at p1, or p2, or . . . , has minimal segment count. To com-
pute this index we execute the GetMinimalCount query on
Tp1 , Tp2 , . . . , Tpd .

Enforcing hard follow restrictions can result in situations
where no valid segmentation exists. An alternative approach
is to penalize less likely transitions, and to minimize the total
penalty of the segmentation. Our framework supports this
approach too.

7. INTERACTIVE PARAMETER
SELECTION

Most criteria that we have discussed involve parameters,
such as the upper bound α on the angular range of the head-
ing and the radius r of the covering disk, for example. Tun-
ing these parameters is complex, and there is no well-defined
ground truth. Hence, an interactive setting is needed. This
interactive process can be guided by the stability of the pa-
rameter values. A value is unstable if a small change to its
value can result in a large change in the segmentation, i.e.,
in a change of the number of segments. To measure the
stability of a parameter value we run the segmentation al-
gorithm multiple times with different parameter values and
count the number of segments for each of the resulting seg-
mentations. The more stable value ranges correspond to the
“flat” parts of the step function, that is, the parts with the
least variation in number of segments (see Section 8 for an
example).

To compute the stability of parameter values, we need to
compute the segmentation of the same trajectory multiple
times using the same criterion, but with different parameter
values. For decreasing criteria, information can be reused
in the different runs. For this purpose we use the double-
and-search method described by Buchin et al. in [2], but
instead of testing validity for segments directly, we query
a data structure that is constructed once and used in all
runs with different parameter values. For most decreasing
criteria this yields a significant speed up of the double-and-
search method. The running time is reduced from O(n logn)
to O(k logn) time, where k is the number of segments.

The data structure is basically a table that stores certain
criterion-dependent information for all segments of length
1, 2, 4, 8, . . . . For instance, for the range criterion on speed,



the maximal and minimal speed is stored, and for the (ap-
proximate) disk criterion the extreme points in all k di-
rections are stored. The data structure can efficiently (in
O(logn) time) test the validity of any segment given a cer-
tain parameter value. In case of the range criterion it can
check whether a certain segment is valid by retrieving the
maximum and minimum value from the tables and testing
whether their difference is small enough. A naive use of the
retrieve query, i.e., in each step of the double-and-search
method, yields a running time of O(k log2 n). However, by
reusing information during the search, we can reduce this
running time to O(k logn).

8. CASE STUDY
We assess the performance of our framework by analyzing

two trajectories of migrating white-fronted geese [10] during
their spring migration. The goal is to segment this data
set into migration flight and stopovers (including wintering,
breeding, and moult). Fig. 10 shows the segmentation as
computed by our framework.

Figure 10: Trajectories of two migrating geese.
Red/pink segments are flight, yellow segments are
stopovers. Blue markers indicate end of a stopover.

The data was previously analyzed and manually segmented
by domain experts [10]. A stopover segment is characterized
by its limited variation in location. Therefore, the disk cri-
terion is used for stopovers. Note that a stopover is not
simply a stop, but a resting place, where a goose rests, flies
(short stretches) and feeds for at least 48 hours [10] before
moving on. During flight geese maintain the same heading
for long stretches. This clearly differs from the seemingly
undirected motion that can be observed at stopovers. To
deal with this, we use the angular range criterion for head-
ing for flight. On this data set, a disk with radius 30 km and
an angular range of 1.7 radians yield the best segmentation
result, that is, the segmentation that is most similar to the
domain-expert’s segmentation by hand.

Finding suitable parameters was an interactive process.
Our search was aided by stability diagrams (see Section 7).
The stability diagram of Fig. 11 was very helpful in our
search for a good angular range bound. The diagram clearly
shows a stable region between 1 and 2.5 radians. We picked
three different values in this stable region: 1, 1.7 and 2.5 and

Figure 11: Stability diagram of the turning angle.

segmented according to those parameter settings. There is
a trade-off between large stopovers that can cover parts of
flight segments and small stopovers that leave some of the
stop points uncovered that will be either incorrectly labeled
as flight, or that will form extra stopovers. The middle value
1.7 proved to be a suitable compromise. A typical example
motivating our choice is shown in Fig. 12.

(a) α = 1.0 rad

(b) α = 1.7 rad

(a) α = 2.5 rad

Figure 12: Segmentations for varying heading range
bound α.

A similar analysis was done to find a suitable disk radius.
The stability diagram indicated several stable regions. We
tried one value from each of the most stable regions: 10 km,
30km and 40 km. We preferred 30km, because it resulted
in stopovers of size similar to those in the manual segmen-
tation. A radius of 40km mislabeled numerous migration
flight segments as stopovers. A radius of 10km was good at
detecting stops, but not at finding stopovers. For this 10km
radius the manually labeled stopover segments were split in
stops (labeled stopover) and non-migration flight (labeled
migration flight) (see Fig. 13).

(a) r =30 km (b) r =10 km

Figure 13: Segmentations for varying radius r.



The criteria as discussed above are successfully detecting
stopovers, but are mislabeling some short stops (< 48h) as
stopover. That is why we placed a minimal duration cri-
terion (48h) in conjunction with the disk criterion. This
resulted in the short stops being labeled migration flight.
Furthermore, we noticed numerous artificial splits in the
stretches of migration flight, because geese do not main-
tain their heading on all data points in the migration flight
(according to manual segmentation). Geese can fly in a com-
pletely different direction for a very small period of time af-
ter which they change back to the previous heading (zigzag).
Allowing a constant number of outliers per segment would
help the segmentation, since flight segments are then merged.
However, a constant number of outliers causes small flight
segments to cover a significant part of the stopovers, so many
even that complete stopovers can be missed by the algo-
rithm. Instead, we allow a number of outliers proportional
to the number of points in the segment (using the method
described in Section 2). In this specific case we have chosen
an outlier percentage of 20%. Allowing this percentage of
outliers effectively reduces the number of consecutive flight
segments. Most of them are merged, which is preferred.

Just optimizing with respect to the number of segments,
does not restrict the chosen breakpoints between segments.
Thus, we added the rule that flight segments must be as
short as possible and stopovers as long as possible using the
method described in Section 6.1. This tie breaking method
performs very well especially compared to the alternative:
making flight as long as possible and stopovers as short as
possible. See Fig. 14 for part of one of the segmentations.

(a) Long stops, short flight (b) Short stops, long flight

Figure 14: Segmentations with different tie breaking
rules.

We conclude that our segmentation framework proved to
be useful in practice. In contrast to previous approaches [3],
our framework offers mechanisms for optimizing the break-
points, choosing parameter values, and handling outliers in
a more consistent way, which are effective in practice. The
resulting segmentations are very close to the manual seg-
mentation. Our labeling agrees with the manual labeling on
respectively 96.3 and 92.6% of the total points.

9. CONCLUSIONS
We have introduced a framework for criteria-based seg-

mentation that can efficiently (in O(n logn) time) handle a
more powerful class of criteria than previous algorithms. It
allows for segmentation by movement states and in contrast
to previous methods we can add a broad range of state-based
rules governing state transitions and additional optimization
goals to fine tune the exact point of transitions. We have
also introduced interactive parameter selection.

Our segmentation framework proved to be useful in prac-
tice and yielded segmentations similar to manual ones. Hence
they can substitute these, where a manual segmentation is

not possible, e.g., due to the size of data to be analyzed. In
this context the interactive approach has a large potential.
Incorporating advanced statistical methods into interactive
parameter selection could guide the user even more.

On the algorithmic side, future work could focus on the
more advanced tie breaking and state transition rules, es-
pecially with focus on outlier handling. Furthermore the
results on efficient queries for different parameter values in
decreasing criteria might be generalized to stable criteria.
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