
How to Eat a Graph: Computing Selection Sequences
for the Continuous Generalization of Road Networks

Markus Chimani
University of Osnabrück

markus.chimani@uni-
osnabrueck.de

Thomas C. van Dijk
University of Würzburg

thomas.van.dijk@uni-
wuerzburg.de

Jan-Henrik Haunert
University of Osnabrück
janhhaunert@uni-

osnabrueck.de

ABSTRACT
In a connected weighted graph, consider deleting the edges
one at a time, in some order, such that after every deletion
the remaining edges are still connected. We study the prob-
lem of finding such a deletion sequence that maximizes the
sum of the weights of the edges in all the distinct graphs
generated: the weight of an edge is counted in every graph
that it is in. This effectively asks for the high-weight edges
to remain in the graph as long as possible, subject to con-
nectivity. We apply this to road network generalization in
order to generate a sequence of successively more generalized
maps of a road network so that these maps go well together,
instead of considering each level of generalization indepen-
dently. In particular, we look at the problem of making a
road segment selection that is consistent across zoom levels.

We show that the problem is NP-hard and give an inte-
ger linear program (ILP) that solves it optimally. Solving
this ILP is only feasible for small instances. Next we de-
velop constant-factor approximation algorithms and heuris-
tics. We experimentally demonstrate that these heuristics
perform well on real-world instances.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling ; H.2.8 [Database Management]: Database
Applications—Spatial databases and GIS
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1. INTRODUCTION
Map generalization is the process of deriving a map of a

smaller scale from a given map. During this process, some
map objects are eliminated; others are aggregated or simpli-
fied. A high degree of automation has been achieved for the
generalization of static topographic maps, which national
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mapping agencies typically produce at a small number of
different scales [5]. For interactive maps that allow for con-
tinuous zooming, however, many problems of automatic gen-
eralization are still open. Generally, the aim is to avoid sud-
den changes caused by generalization during zooming [22].

In this paper, we address interactive maps of road net-
works in which the road segments successively disappear
when a user zooms out. To this end, we represent a road net-
work as a graph whose edges (that is, the straight-line seg-
ments of the polylines representing the roads) are weighted
by an importance measure, which can reflect road category
or relevance for navigation. We present algorithms that,
given a weighted graph (a road network at the largest scale)
decide in which order the edges of the graph are removed
from the map when scale decreases. The results of our algo-
rithms could be used to set up data structures that provide
users with maps of arbitrary scales. That is, similar to Van
Oosterom and Meijers [23], who deal with the generalization
of polygonal maps, we suggest computing the sequence of
edge removals once and reusing it each time a user queries a
map. We assume that, once we have computed the sequence
of edge removals, we can map every edge removal to a scale
by following existing guidelines about the relationship be-
tween the scale and the number of map objects selected for
that scale [19]. Furthermore, to achieve the impression of
a continuous transformation process, we suggest combining
our selection method with existing algorithms for line sim-
plification and morphing [4, 15].

An important constraint when generalizing geographic net-
works is that a connected network must be kept connected
[14]. Therefore, simply removing the edges in increasing
order of importance is not an acceptable solution to our
problem. Nevertheless, we generally should try to avoid the
removal of important edges for as long as possible. We take
this concern into account by measuring the quality of the
map (at any fixed scale) with the total weight of all displayed
edges. Then, we ask for a sequence of edge removals that
maximizes the sum of weights over all distinct maps that are
shown between the original map and the empty map (which
finally will be shown at a very small scale), while requiring
that at each scale the displayed graph is connected. See
Figs. 1 and 10 for some example snapshots computed using
our algorithms.

Related Work.
Map generalization can be modeled with a set of con-

straints, each of which is concerned either with the legibility
of the output map or with the preservation of character-



(a) Input road network (G0). (b) After 2480 edge deletions (G2480). (c) After 2880 edge deletions (G2880).

Figure 1: Three steps of GreedySelection’s solution on a map of Würzburg, where the edges have been weighted
using PageRank and road class as described in Sec. 8; edge weight is indicated using line width. Notice that
some low-weight edges remain in the north-east almost until the end since they form an important connection.

istic features of the input map [3]. Usually, it is impos-
sible to fully satisfy all constraints, thus some constraints
are relaxed. Optimization is often chosen to satisfy those
constraints best [9, 17, 24]. For maps supporting continu-
ous zooming, however, most of the existing algorithms itera-
tively perform small steps of generalization without optimiz-
ing a global objective [23]. An edge-based selection method
for continuously zoomable network maps has been presented
by Aliakbarian [1]. We discuss this method in more detail in
Section 3 and show that, when measuring quality according
to our objective function, the method is arbitrarily bad.

Most similar to our general approach by optimization is
the approach of Schwartges et al. [16], which is to compute
active ranges for points of interest in a map that admits
continuous zooming. In this context, an active range is an
interval of scales in which a point is visible. By allowing
only one active range for each point it is avoided that points
flicker on and off during zooming. Schwartges et al. optimize
the total length of all active ranges while requiring that the
map never contains two points whose distance is smaller
than a user-set value. This is similar to our approach in
the sense that the objective function aggregates a criterion
of map quality (that is, preservation of information) over
all scales. Originally, the concept of active ranges has been
introduced for the labeling of zoomable maps [2]. Similar
approaches have been used for labeling maps that can be
rotated [8] and maps that follow the trajectory of a user [7].

The generalization of geographic networks with a single
target scale has been examined extensively; multiple re-
searchers have pointed out the importance of network con-
nectivity [1,3,12,14,27]. Given a connected graph that repre-
sents a geographic network and whose edges are weighted by
travel time, Mackaness and Beard [14] have suggested gener-
alizing the network by computing a minimum spanning tree
T of G (which is the smallest subgraph of G that keeps all
vertices of G connected) and adding edges from G to T until
an acceptable degree of completeness is reached. We argue,
however, that for a generalized road network we need not
select all vertices of the input graph. Therefore, for every
scale, we do not require a connected spanning subgraph of

G to be selected but a connected subset of the edges of G.
Weighting the edges of a road network by importance is

often considered a crucial step preceding the selection. For
this purpose, graph-theoretical measures such as between-
ness centrality [12] and PageRank [21] have been used. We
make no assumption about how the edges of the graph are
weighted but consider betweenness centrality and PageRank
as good choices if the map is intended for navigation.

Instead of selecting on the basis of edges, some gener-
alization methods for road networks select on the basis of
strokes [18,26,27], which are paths in which every two con-
secutive edges have similar orientations. The reason is that
humans perceive a stroke as one unit which should not be
broken apart [18]. Our edge-based approach, on the other
hand, has the advantage that the generalization from the
largest to the smallest scale is performed in very small steps,
which can support the impression of a continuous transfor-
mation process. Therefore, we think that the knowledge of
strokes would be best integrated in our method by requir-
ing connectivity for each stroke, that is, allowing edges to
be removed only from the two ends of a stroke. This con-
nectivity constraint has been used before [20] but not for
continuously zoomable maps. However, since the problem
of removing the edges in an optimal order is new, we focus
on the more common definition of connectivity.

One of our algorithms is based on results from schedul-
ing theory. We observe that our objective function has been
studied under the names total weighted completion time and
linear delay penalties. Subject to arbitrary precedence con-
straints between jobs, minimizing the total weighted com-
pletion time is NP-hard [13], but there exist polynomial-
time algorithms for several restricted classes of precedence
constraints, for example for rooted forests [11]. Our connec-
tivity constraint has not been studied in this setting.

Our Contribution.
When a sequence of maps is shown during a zoom oper-

ation, what criteria are essential for the quality of that se-
quence? According to those criteria, how can we efficiently
compute a map sequence that is (close to) optimal? Those



two questions are almost completely unexplored in the map
generalization literature. Computing a well-generalized map
by optimization is rather common, of course, but a sequence
of well-generalized maps is not necessarily the same as a
good sequence of maps. New approaches are needed that
ensure consistency and aggregate quality across zoom lev-
els, while satisfying constraints at every scale. We consider
our work a small but crucial step in that direction.

In particular, we present a new approach to the problem of
finding a good sequence of edge removals in order to define
how a map of a road network becomes successively more
generalized when the map’s scale decreases. We optimize a
global objective function that reflects the completeness of
the map, aggregated over all scales, and ensures that, at
every single scale, the displayed road network is connected.

We define the problem of finding an optimal removal se-
quence formally (Sect. 2), give an efficient greedy heuristic
(Sect. 3), and prove that the problem is NP-hard (Sect. 4).
Then, we present an exact method based on integer pro-
gramming (Sect. 5) and two different approaches that both
have an approximation guarantee of 1/3: one based on bal-
anced tree partitions (Sect. 6) and one that uses an existing
scheduling algorithm (Sect. 7). Finally, we present some
experimental results (Sect. 8) and our conclusion (Sect. 9).

Though we focus on the application to map generalization
here, our algorithm TreeSchedule (Sec. 7) can also be seen
in a more general scheduling context.

2. PROBLEM DEFINITION
We define the problem of computing an optimal sequence

of edge removals as follows.

Problem 1 (EdgeScheduling). Given a connected
graph G = (V,E) with m edges and edge weights w : E →
R+
≥0, find a permutation S = 〈e1, . . . , em〉 of E such that

• for i = 0, . . . ,m − 1, the subgraph Gi ⊆ G induced by
the edges with index larger than i is connected, and

• Q(S) :=
∑m−1

i=1 W (Gi) is maximized, where
W (Gi) :=

∑m
j=i+1 w(ej) is the total weight of Gi.

In other words, Gi needs to be connected and arises from
G by deleting the edges e1, . . . , ei together with all result-
ing degree-0 vertices. Hence, from now on we use the term
“deleting an edge e” to mean removing e and updating the
vertex set V such that it only keeps the vertices with at least
one incident edge.

Note that G0 = G and that Gm−1 contains only one edge,
thus for i = 0 and i = m − 1 the graph Gi is trivially con-
nected. When measuring the quality Q(S) of a solution S,
we do not include the weight of G0 since W (G0) is identi-
cal for all possible solutions. Obviously, excluding W (G0)
from the objective function does not have an influence on
whether or not a solution is optimal. It can have an impact
on approximation factors, however.

3. A GREEDY HEURISTIC
To better understand the problem, we introduce a simple

greedy algorithm (Algorithm 1), which we will refer to as the
greedy algorithm. It iteratively deletes a minimum-weight
admissible edge from the current graph G = (V,E), where
an edge e is admissible if G remains connected after deleting
e or if e is the only edge in G.

Algorithm 1: GreedySelection

1 Let S be a new array of m = |E| edges.
2 for i = 1 to m do
3 S[i] = a minimum-weight admissible edge in G
4 Delete edge S[i]

5 return S
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Figure 2: A bad case for the greedy algorithm.

The greedy algorithm may seem reasonable as it attempts
to postpone the deletion of heavy edges: they will then con-
tribute to the objective value for longer. It is easy to see,
however, that the algorithm’s result can be arbitrarily bad
compared to an optimal solution. Consider the instance in
Fig. 2, where the input graph G is a path of k+k2 +1 edges.
In this path, the first k edges have weight one, the next k2

edges have weight zero, and the last edge has weight two.
The greedy algorithm first deletes all edges of weight one,

then the edges of weight zero, and finally the edge of weight
two. The solution S that we obtain has quality

Q(S) = [(k − 1) + . . .+ 1] + (k + k2) · 2 =
5

2
k2 +

3

2
k .

Now, consider the solution S∗ obtained by deleting the edges
in the reverse order, that is, by always picking the rightmost
edge in Fig. 2. This solution has quality

Q(S∗) = (k2 + 1) · k + [(k − 1) + . . .+ 1] = k3 +
1

2
k2 +

1

2
k

which is strictly better than S if k > 2.
As Q(S∗) is a polynomial of higher degree than Q(S),

the ratio Q(S∗)/Q(S) exceeds any constant-factor bound if
we choose k large enough. Therefore, the solution S of the
greedy algorithm can be arbitrarily bad compared to S∗.

This worst-case quality notwithstanding, the greedy al-
gorithm is of practical interest. We have seen experimen-
tally that it tends to give good results on realistic instances
(Sec. 8). Furthermore, with proper data structures it can be
implemented to run efficiently.

Theorem 1. Algorithm GreedySelection computes a fea-
sible solution. Its objective value may be arbitrarily far from
the optimum. The algorithm can be implemented to run in
O(m log2m ) time.

Proof. The correctness of the algorithm is evident, and
we discussed the non-approximation above. It remains to
show that the claimed runtime can be achieved. Line 3 of
the pseudocode is crucial; we handle it in O( log2m ) time.
Then the claimed bound follows.

Consider the remaining graph during an iteration of the
loop. An edge e = uv is admissible if, after deleting e, the
graph still has a path between u and v. The edge is also
admissible if at least one of u and v has degree 1: then
e is a dangling edge and can be deleted without harming
connectivity. The latter can be tested in constant time. For
the former we use the dynamic connectivity data structure



of Holm et al. [10]. It handles edge deletions, insertions, and
connectivity queries between pairs of vertices in amortized
O( log2m ) time each, so we can test the admissibility of an
arbitrary edge in that time.

After sorting the edges by increasing weight, which takes
O(m logm ) time, we test each edge in this order. If the
edge being considered is admissible, we pick it next in the
schedule and delete it from the graph. If the edge is not
admissible, then we are not allowed to delete it now. Instead,
we mark it as being on hold and continue with the next edge.

Whenever we do delete an edge e, we check whether either
of its endpoints has its degree reduced to one, where the
neighboring edge e′ is on hold. If this happens, e′ was not
admissible before the deletion of e, but is admissible now.
This cannot happen on both side of e, so e′ is well-defined.
Then e′ is the minimum-weight admissible edge in the new
graph: it is the only newly-admissible edge and its weight
must be minimum since we tried to delete it before. This
process can cascade along a path, but cannot branch.

The runtime follows from the fact that each edge is con-
sidered for deletion at most twice—once for “normal” dele-
tion, and possibly once more when it becomes a dangling
edge on hold. In either case, the deletion requires amortized
O( log2m ) time.

See Fig. 1 for a solution computed using this algorithm;
the data set is described in Sec. 8. Note in Fig. 1(b) that
the edge deletions mostly follow the road classes, but that in
the north-east a few low-weight edges remain. This is due to
the connectivity constraint: these edges form a bridge with
a high amount of weight on both sides. They remain even
in Fig. 1(c).

We note that Aliakbarian [1] proposes an iterative algo-
rithm that is somewhat similar to GreedySelection. This al-
gorithm first stores the edges in a queue, sorted by weight. In
every iteration, the algorithm takes an edge from the queue,
starting with the least important edge. If the selected edge
is admissible, the algorithm deletes it from the graph. Oth-
erwise, the algorithm reinserts the edge at the back of the
queue. In Fig. 2, for example, it would attempt to delete
the zero-weight edges first, but without success. Depending
on how the algorithm resolves ties, it may then delete all
unit-weight edges, then the edge of weight two, and finally
the zero-weight edges. This means that on this instance,
the algorithm performs even worse than GreedySelection, as
it keeps the zero-weight edges until the very end. We also
note that a straightforward implementation of Aliakbarian’s
method would take Ω(m3 ) time in the worst case. Using the
dynamic-connectivity data structure, this can be improved
to O(m2 log2m ), but it can occur that the algorithm actu-
ally performs quadratically-many iterations.

4. NP-HARDNESS
We now analyze the computational complexity of Edge-

Scheduling. We show that it is NP-hard.

Theorem 2. Given an instance I = (G,w) to the Edge-
Scheduling problem and an integer bound Qmin, the deci-
sion problem of whether I has a solution S with Q(S) ≥
Qmin is NP-complete, even if G is planar.

Our proof is by reduction from SteinerTreeInPlanar-
Graphs, which is known to be NP-complete [6]. We abbre-
viate it as P-SteinerTree.

r1

r2

r3

G

T

Figure 3: A graph G with three terminals r1, r2, r3
(left) and a Steiner tree T spanning them (right).

r1

r2

r3

G
W

W

W

M

1

1

1

1

.

.

.

G

Figure 4: A P-SteinerTree instance (left) and
the corresponding EdgeScheduling instance (right).
The edges present in G receive weight zero.

Problem 2 (P-SteinerTree). Given a planar graph
G = (V, E), a set R ⊆ V of terminals, and a positive integer
bound β, is there a subtree T of G that spans R and has at
most β edges?

Before proving Theorem 2, we give a coarse idea of the rela-
tion between the Steiner tree problem and the generalization
of road networks. Suppose the planar graph G in Fig. 3 (left)
represents part of a road network and the vertices r1, r2, r3
are of ultimate importance. For example, they might be the
only access to important roads that are not part of G. Sup-
pose now that for a map of a certain scale we have an edge
budget: we are allowed to select a certain number of edges
from G. Deciding if we can select a connected subgraph of G
that spans all terminals is essentially P-SteinerTree. The
following proof uses a similar idea, but we have to consider
that EdgeScheduling asks for a sequence of edge deletions
rather than for a single subgraph of the input.

Proof of Theorem 2 (sketch). The construction is as
follows; exact calculations have been omitted due to space
restrictions. Clearly EdgeScheduling is in NP. We prove
NP-hardness by reduction from P-SteinerTree: for a given
instance (G = (V, E),R, β), we construct the instance (G,w)
of EdgeScheduling as shown in Fig. 4. The graph G is ob-
tained from G by adding, for each terminal r ∈ R, a new
vertex vr and a new edge er = rvr of weight W . Call these
the terminal edges. Let u be an arbitrary vertex among
the new vertices. We create M vertices and connect each of
them to u with a unit-weight edge: call these anchor edges.
The original edges of G receive weight zero.

Suppose that G contains a tree T of β edges spanning
R. Then, in the EdgeScheduling instance, the following
is allowed: first delete all original edges that do not be-
long to T , then all anchor edges, then all terminal edges,
and, finally, all edges of T . In this way, the existence of
a Steiner tree with β edges gives a lowerbound on the opti-
mal quality achievable. In the opposite direction, picking W
sufficiently large guarantees that any optimal solution of G
has a similar structure: some original edges, then the anchor
edges, and then a combination of terminal edges and original
edges spanning R. Call this second group of original edges
the Steiner edges. Picking M sufficiently large guarantees



Maximize
∑
e∈E

m∑
d=1

(d− 1) · w(e) · xed (1)

m∑
d=1

xed = 1 ∀e ∈ E (2)∑
e∈E

xed = 1 ∀1 ≤ d ≤ m (3)

∑
e′∈N(e)

m∑
d′=d+1

xe′d′ ≥ xed ∀e ∈ E, 1 ≤ d < m (4)

xed binary ∀e ∈ E, 1 ≤ d ≤ m (5)

Figure 5: An integer linear program for Edge-
Scheduling.

that any optimal solution with at most β Steiner edges has
higher quality than any optimal solution with more than β
Steiner edges. This gives a value Qmin that allows us to de-
cide whether G has a Steiner tree of a certain size. Picking
W := m+ |R|+ 1 and M := (|R|+m) · |R| ·W + 1 suffices.
Note that the constructed instance has polynomial size.

5. INTEGER LINEAR PROGRAMMING
Since the EdgeScheduling problem is NP-hard, it is

natural to consider integer linear programming. This will
allow us to compute optimal solutions, though this will only
be feasible for small instances. This serves a double pur-
pose. First of all, it allows us to verify that our problem
statement makes sense: is an optimal solution to our opti-
mization problem actually a good sequence of maps? Sec-
ondly, having optimal solutions to (small) instances enables
us to experimentally investigate the quality of our heuristics
and approximation algorithms.

A solution to the EdgeScheduling problem is a permu-
tation of the graph’s edges: we seek an indexing 〈e1, ..., em〉
of the edges as described in the problem definition (Sec. 2).
We call these indices “deletion indices.”

The integer linear program is given in Fig. 5. We have a
binary decision variable xed for every edge e ∈ E and every
possible deletion index 1 ≤ d ≤ m: if xed = 1, then e is the d-
th edge to be deleted. The objective function can be cleanly
expressed using these variables (Eq. 1), where we note that
the weight of G0 is correctly ignored. We require that every
edge is deleted exactly once (Eq. 2) and that every deletion
index occurs exactly once (Eq. 3). Finally, we ensure con-
nectivity at every arising subgraph in the deletion sequence
using the following constraint: for every edge e (except the
one that is deleted last) it must hold that one of its adjacent
edges is deleted later—otherwise edge e, directly before its
deletion, would be disconnected from the final edge. This
constraint is implemented in Ineq. (4), where we use N(e)
to denote the set of edges adjacent to e.

6. CONSTANT-FACTOR APPROXIMATION
We will now discuss a polynomial-time algorithm that, in

contrast to the aforementioned greedy approach, guarantees
a constant approximation ratio. Our ultimate algorithm will
achieve a ratio of 1/3 in the worst case, but in order to

G TG

Figure 6: Transforming G into a tree TG.

describe it, we will start with somewhat weaker algorithms.
The following observation is essential.

Theorem 3 (Wu et al. [25]). Let T be a tree. We
can edge partition T into k subtrees, for k = 2, 3, 4, such
that the ratio between the number of edges in the smallest
and the largest subtree is at most 2. This partition can be
found in linear time.

We note that, at the cost of raising the edge ratio to 3, Wu
et al. also present polynomial solutions for larger k. Those
are, however, not readily applicable to our approaches. Fur-
thermore observe that there are indeed instances where the
ratio 2 is unavoidable.

In our problem, we are given a general weighted graph G,
rather than a tree. Therefore, we will first construct a tree
TG from G with the same number of edges: cf. Fig. 6. Start
with TG as any spanning tree of G. For every edge uv ∈
E(G) not initially in TG, we add a new vertex v′ together
with the edge uv′ into TG. Observe that this gives a 1-to-1
correspondence between edges of TG and G.

6.1 Approximation via 2-partition
We start very näıvly, by using Theorem 3 to obtain an

edge partition of TG into two connected components such
that the larger component holds at most twice as many edges
as the smaller. This induces an edge partition (F1 : F2) in
G with the same property. For j = 1, 2, let Hj denote the
subgraph of G induced by Fj . Since each Hj is connected,
we can generate a solution graph sequence by first deleting
all edges of one of those subgraphs, and only then picking
edges of the other. We say we eat one component before
the other. Thereby, we do not care much about the precise
deletion sequence within the component Hj , j = 1, 2, as long
as the remaining graph (not only the component) remains
connected after each deletion step.

Let wj := W (Hj) and cj := |Fj | be the weight and the
number of edges of the two components, respectively. If we
start with eating H1, we will have at least c1 subgraphs in
our sequence, namely G1, . . . , Gc1 , that contain the whole
component H2. Hence, each Gi, 1 ≤ i ≤ ci, has weight
at least w2, and the overall solution will have an objective
value of at least c1w2. By simply choosing the better option
between eating H1 or H2 first, we can guarantee a solution
value of at least APX := max{c1w2, c2w1}.

Theorem 4. The above algorithm achieves an approxi-
mation ratio of at least 2/9 and requires O(m ) time.

Proof. Let v be any vertex contained in bothH1 andH2.
Observe that we do not care how the individual components
Hj are eaten, as long as, when eating the first of the two
component, the vertex v is retained until the end. This
is trivially achieved, for example by a post-order traversal,
resulting in the given running time.



In the optimal solution, it may be the case that only a
(small) constant number of edges holds all the weight of the
graph and can be kept in the graph until the very end. Such
a solution would yield an optimum objective value approach-
ing OPT := m ·W , where W := W (G) is the total sum of
all edge weights.

It hence remains to show that APX /OPT ≥ 2/9. As-
sume w.l.o.g. that c1 ≤ c2. Recall that w1 + w2 = W ,
c1 +c2 = m, and c2 ≤ 2c1. We hence ask where the function
max{c1w2, c2w1} attains its minimum. Straight-forward al-
gebra shows that this happens for c1 = m/3, c2 = 2m/3 and
w1 = W/3, w2 = 2W/3, and we hence have c1w2 = c2w1 =
2mW/9 = 2

9
OPT .

6.2 Approximations via 3- and 4-partitions
We can reuse the above ideas to obtain algorithms based

on 3- and 4-partitions. However, we have to be more careful
in our bounding arguments.

Similarly to before, consider a k-partition (k = 3, 4) of
TG subject to Theorem 3, and let F1, . . . , Fk be the in-
duced partition edge sets of G. For j = 1, . . . , k, let Hj ,
wj := W (Hj), and cj := |Fj | be the connected edge-induced
subgraph, its weight, and its edge cardinality, defined anal-
ogously to above.

Consider the auxiliary graph H on vertices n1, . . . , nk.
Each vertex na (a = 1, . . . , k) in H represents a component
Ha. Two vertices na, nb are adjacent if and only if there ex-
ists some vertex in G that is incident to an edge of Fa and to
an edge of Fb. Since G is connected, H is connected as well.
Our algorithms will, again, eat our graph componentwise.
We may only eat a component Ha if H remains connected
after removing na.

First, let us concentrate on k = 3. ThenH is either a cycle
(triangle) or a path. In the former case, we can start with
eating any component. In the latter case, assume w.l.o.g.
that n2 is the inner vertex. We may start with eating either
H1 or H3. Afterwards, we may choose freely among the
two remaining components. Only looking at the values of
wj , cj for j = 1, 2, 3, our algorithm will decide on the best
eating order of the three components. There are at most six
different orders to consider.

Theorem 5. The algorithm that eats the given graph G
componentwise in the optimal order, based on a 3-partition
subject to Theorem 3, achieves an approximation ratio of at
least 3/10 and requires O(m ) time.

Proof. Since k = 3 is a constant, there are only a con-
stant number of eating orders (6, in fact) to check. Eating
a single component can again be done arbitrarily, and hence
runs in the claimed time for the disjoint components. We
may still assume that the optimum solution OPT is (arbi-
trarily close to) mW .

It suffices to consider the four available eating orders when
H is a path (w.l.o.g. the inner vertex is labeled n2). If any
of these attain 3

10
OPT , the solution for cyclic H is also

at least as good. Assume we eat the components in order
〈H1, H2, H3〉. Then, the weight w2 is retained for the first
c1 many graphs in the solution sequence. The weight w3 is
even retained for at least c1 + c2 subgraphs. Our algorithm
will hence find a solution of objective value at least

ζ := max

{
c1w2 + (c1 + c2)w3, c1w3 + (c1 + c3)w2,
c3w2 + (c3 + c2)w1, c3w1 + (c3 + c1)w2

}

subject to

c1 + c2 + c3 = m, w1 + w2 + w3 = W,

ca ≤ 2cb, ca, wa ≥ 0 ∀a, b ∈ {1, 2, 3}.

We find the worst possible approximation ratio by asking
where ζ attains its minimum. Solving the above system
readily gives ζ ≥ 3

10
OPT . This is achieved by setting c1 =

c3 = 2
5
m, c2 = 1

5
m, w1 = w3 = 1

2
W, w2 = 0.

Now, consider the case k = 4.

Theorem 6. The algorithm that eats the given graph G
componentwise in the optimal order, based on a 4-partition
subject to Theorem 3, achieves an approximation ratio of at
least 1/3 and requires O(m ) time.

Proof. The runtime argument is identical to the one for
k = 3; we can concentrate on the approximation guarantee.

The auxiliary graph H can only be one of the following
types: a path, a star (with three arms), a cycle, a cycle
through three vertices plus one edge, or a complete graph.
The latter three types all contain a path through all vertices
as a subgraph, and hence allow all eating orders the path
allows (plus some additional ones). Hence it suffices to show
that if H is a path or a star, we can always find an eating
order achieving ratio 1/3.

If H is a path, assume w.l.o.g. that the edges are (n1, n2),
(n2, n3), (n3, n4). We may start with eating either of the
path’ two ends (component H1 or H4). The second compo-
nent may then be either the other of those two components,
or the component corresponding to the former inner vertex
that was incident to the vertex selected first. For the third
component, we may freely choose between the two remaining
ones. Enumerating all feasible eating orders, we obtain the
following function for a lower bound on the solution value.

ζpath = max



c1w2 + (c1 + c2)w3 + (c1 + c2 + c3)w4,
c1w2 + (c1 + c2)w4 + (c1 + c2 + c4)w3,
c1w4 + (c1 + c4)w2 + (c1 + c4 + c2)w3,
c1w4 + (c1 + c4)w3 + (c1 + c4 + c3)w2,
c4w3 + (c4 + c3)w2 + (c4 + c3 + c2)w1,
c4w3 + (c4 + c3)w1 + (c4 + c3 + c1)w2,
c4w1 + (c4 + c1)w3 + (c4 + c1 + c3)w2,
c4w1 + (c4 + c1)w2 + (c4 + c1 + c2)w3,


.

Similarly, if H is a star we obtain the following function;
assume w.l.o.g. that n4 is the central vertex:

ζstar = max



c1w2 + (c1 + c2)w3 + (c1 + c2 + c3)w4,
c1w2 + (c1 + c2)w4 + (c1 + c2 + c4)w3,
c1w3 + (c1 + c3)w2 + (c1 + c3 + c2)w4,
c1w3 + (c1 + c3)w4 + (c1 + c3 + c4)w2,
c2w1 + (c2 + c1)w3 + (c2 + c1 + c3)w4,
c2w1 + (c2 + c1)w4 + (c2 + c1 + c4)w3,
c2w3 + (c2 + c3)w1 + (c2 + c3 + c1)w4,
c2w3 + (c2 + c3)w4 + (c2 + c3 + c4)w1,
c3w1 + (c3 + c1)w2 + (c3 + c1 + c2)w4,
c3w1 + (c3 + c1)w4 + (c3 + c1 + c4)w2,
c3w2 + (c3 + c2)w1 + (c3 + c2 + c1)w4,
c3w2 + (c3 + c2)w4 + (c3 + c2 + c4)w1



.

In either case, we require the following side constraints:

c1 + c2 + c3 + c4 = m, w1 + w2 + w3 + w4 = W,
ca ≤ 2cb, ca, wa ≥ 0 ∀a, b ∈ {1, 2, 3, 4}. (6)

By solving the above systems algebraically, we obtain that

min
c1,...,c4,
w1,...,w4,
subj. to (6)

{ζpath, ζstar} ≥
1

3
OPT .



This value is attained, e.g., by ζpath for c1 = c4 = 1
3
m, c2 =

c3 = 1
6
m, w1 = w4 = 1

2
W, w2 = w3 = 0.

One may wonder if the above strategies can be extended
to k-partitions with k ≥ 5. We only know that an edge ratio
of 3 (instead of 2) is achievable for such partitions. This
drop seems to always result in worse approximation ratios
than the one for the 4-partition.

7. TREE SCHEDULING
We now develop another approximation algorithm, which

we call tree scheduling since it is based on a more careful
consideration of the tree TG. A version of this algorithm
matches our best approximation factor, 1/3, and is exact
on trees; recall that the greedy algorithm is arbitrarily bad
even on paths (Fig. 2). We also present a more efficient
version that works well in practice, but for which we only
prove approximation factor 2/9.

A motivation for this more complicated algorithm is that
the algorithms from the preceding section may give results
that are unreasonable from a practical perspective: they
delete some part of the graph completely before moving on
to another part of the graph. When applied to road segment
selection, this could mean (depending on TG) that we com-
pletely delete one half of the map before deleting even the
least important segment in the other half. The tree schedul-
ing algorithm is more sophisticated in that respect, and we
have determined experimentally that on realistic instances
it approximates very well (see Sec. 8).

The starting point for this algorithm is to look at the
EdgeScheduling problem in terms of scheduling theory:
consider the edges of the graph as jobs to be processed on
a single machine: processing the job corresponds to delet-
ing the edge. Then our objective function is known as total
weighted completion time or linear delay penalties (see the
related work section). To the best of our knowledge, our con-
nectivity constraint has not been studied in the scheduling
literature. There is, however, much work on various other
classes of precedence constraints, i.e., the requirement that
some job i must be processed before job j. A job can only be
processed once all jobs that must precede it have been pro-
cessed. For a set of such constraints, the precedence graph
has an arc (i, j) if job i is constrained to go before job j. If
this graph is a rooted forest, then a schedule that optimizes
our objective function can be determined in polynomial time
using Horn’s algorithm [11]. An implementation that runs
in O(n logn ) time on n jobs is given by Lawler [13].

On trees, we can model the connectivity constraint of
EdgeScheduling using a set of precedence constraints. Let
T be a tree and r an edge in T . Perform a graph search of
the edges of T , starting at r. Since G is a tree, this gives
a well-defined parent relation on the edges. This relation
is a tree, directed toward r; call it P (T, r), cf. Fig. 7. In-
terpreting P (T, r) as a set of precedence constraints on the
edges, it is equivalent to the connectivity constraint under
the assumption that r is deleted last: if indeed we delete r
last, then for any edge e, all its descendants in P (T, r) must
be deleted before we can delete e.

Theorem 7. EdgeScheduling on a tree T = (V,E) can
be solved optimally in O( |V |2 log |V | ) time.

Proof. Let r be any edge in T , and assume it is deleted
last in an optimum solution. Then P (T, r), computable in

P (T, r)

T
rr

Figure 7: Transforming a tree into a set of job prece-
dences P (T, r), starting from some root r.

linear time, exactly models the connectivity constraint. An
optimal scheduling of P (T, r), obtained by Lawler’s algo-
rithm, gives an optimal solution to EdgeScheduling. Run-
ning this subalgorithm for each possible choice of r achieves
the theorem.

Now we consider general graphs. First we construct a tree
TG as in the preceding section. Then we compute sched-
ules based on P (TG, r), for one or more root edges r. This
clearly guarantees connectivity of the remaining graph at
every step, but forcing connectivity along TG introduces un-
intended restrictions on the schedule: by taking this step we
lose optimality (but recall that the full problem isNP-hard).
We could test every possible root, like in Theorem 7.

Theorem 8. Testing all possible roots, the above algo-
rithm runs in O(m2 logm ) time and has an approximation
ratio of at least 1/3 on general graphs.

Proof. Construct TG as before; this can be done in linear
time. Construct P (TG, r) for every edge r ∈ E. Solve each of
these scheduling problems and return the best result. Using
Lawler’s algorithm gives the claimed running time.

Now consider the solution found by the approximation al-
gorithm in Theorem 6, which has approximation factor at
least 1/3. Let r be the edge that it deletes last. Since
this solution keeps TG connected and ends at r, it satisfies
P (TG, r); it is otherwise arbitrary. The tree scheduling algo-
rithm finds the optimal scheduling under these constraints.
Hence, when the correct edge r is used, the algorithm’s ap-
proximation factor is at least as good. The algorithm tries
all r.

We now consider a faster variant of the algorithm that
checks only a single root; we can efficiently find a root that
results in approximation ratio 2/9.

Theorem 9. Using a single root found in linear time, the
above algorithm runs in O(m logm ) time and has an ap-
proximation ratio of at least 2/9 on general graphs.

Proof. Consider the factor-2/9 approximation algorithm
from Theorem 4. It uses a balanced edge partition (F1 : F2)
of TG and decides, based on the number of edges and the
total weight in each, to eat one of F1 or F2 completely be-
fore the other. This is what gives the approximation guar-
antee; within F1 and F2, the order of deletion is arbitrary.
W.l.o.g. let F1 be the set of edges it eats first and let r be any
edge in F2 that has a neighboring edge in F1. Then P (TG, r)
allows a solution that eats F1 before F2; the algorithm finds,
in fact, the optimal solution subject to P (TG, r), hence its
approximation factor is at least as good. The runtime fol-
lows immediately, since we test only one root and this root
can be found in linear time (Theorem 3).



8. COMPUTATIONAL EXPERIMENTS
We have implemented GreedySelection, the tree schedul-

ing algorithm and the integer linear program (ILP) in C++,
using Cplex 12.6 for solving integer linear programs. Run-
times were measured on an IntelR© CoreTM i5-2520M CPU
at 2.5 GHz; memory usage was not an issue.

For the tree scheduling algorithm, we get TG by taking a
maximum-weight spanning tree and extending it to contain
all edges (as in Fig. 6). Unless otherwise noted, our imple-
mentation tests only a single root: the heaviest edge in the
input is used for r when constructing P (TG, r). Then the
approximation ratio 2/9 from Theorem 9 is not guaranteed,
but the experiments show that this choice of r works well.
We call this implementation TreeSchedule.

The implementation contains two departures from the ear-
lier description of the algorithms. Both changes result in a
simpler implementation with a worse asymptotic runtime,
but do not affect the output. Since we observe a low run-
time in practice, we would recommend this implementation
unless the runtime is explicitly found to be problematic. We
have implemented GreedySelection without the dynamic con-
nectivity data structure: we simply check connectivity via
depth-first search. We have implemented TreeSchedule using
Horn’s algorithm [11] instead of Lawler’s algorithm [13].

In this paper we present experiments using two real-world
data sets. The Wuerzburg data set is a crop of the Open-
StreetMap road network of Würzburg, Germany,1 and con-
sists of 2995 road segments. The Dallas data set is the
largest connected component in the City of Dallas GIS Ser-
vices’ road network of Dallas, Texas.2 This data set contains
3×105 road segments.

In order to determine weights for the road segments, we
have used either betweenness centrality or PageRank, as in-
dicated per experiment; these are standard choices for scor-
ing the importance of road segments [12,21]. It is also com-
mon to generalize based on road class information, which is
available in our data sets. We have multiplied the weight of
some road segments by a factor of 3 or 5 based on the road
class.3 In this way, the optimization problem asks for the
lower-class roads to be deleted first, unless they are struc-
turally important (either for the connectivity constraint or
because of high centrality). Though somewhat arbitrary,
this choice of weights does not seem particularly objection-
able and gives reasonable results.
Dallas and Wuerzburg are much too large to solve opti-

mally using the integer linear program. We have used the
following procedure to generate realistic small data sets from
a large data set. We start at a random vertex in the road
network and perform a breadth-first search until a desired
number of vertices is reached. We take the road network
induced by these vertices (which will have some more road
segments than vertices). We generated 150 such random
subgraphs of Wuerzburg with 40 vertices, a further 50 sub-
graphs with 50 vertices, and 15 subgraphs with 60 vertices.

First we consider the integer linear program. Fig. 8(a)
shows a histogram of runtimes on the random 40-vertex sub-
graphs of Wuerzburg. The average runtime is 4.5 s, with a

1
http://download.geofabrik.de/

2
http://gis.dallascityhall.com/

3We have multiplied the weight of road segments marked
primary, EXPY, FWY or TPKE by a factor 5, and road segments
marked secondary, HWY or BLVD by a factor 3.

few outliers up to 90 s. This increases to an average of 16.8 s
for the 50-vertex instances and further to 118 s for the 60-
vertex instances. By then, runtimes of multiple minutes are
common. Results on Dallas are similar, though slightly
faster because the network is sparser, resulting in graphs
with fewer edges.

Next, we consider GreedySelection and TreeSchedule. On
the small instances from the preceding paragraph, both al-
gorithms require virtually no time. Figs. 8(b) and 8(c) show
a histogram of their observed approximation ratio, which we
can determine since the ILP gave us an optimum solution.
Both algorithms give very good solutions on these instances,
always staying within 99% of the optimum. We also see that,
of the two algorithms, TreeSchedule gives better solutions,
even finding the optimum in 85% of the instances.

The tree scheduling algorithm involves the choice of a
root. Depending on the chosen root, it performs better or
worse than the greedy algorithm, but there is almost always
a root that performs at least as well. A typical situation
is displayed in Fig. 9(a), where GreedySelection achieves an
approximation quality of 99.5%: the tree scheduling algo-
rithm gives better solutions only for about 1/3 of the possi-
ble roots. However, simply picking the heaviest edge in the
graph as the root turns out to dominate the greedy approach
in all the 40-vertex graphs tested (150 graphs) and in 98%
of the 50-vertex graphs (50 graphs).

Finally, we evaluate the algorithms on the full data sets,
see Figures 1 and 10 for graphical snapshots. On these
graphs we cannot feasibly determine the optimum, but can
compare GreedySelection and TreeSchedule. In Fig. 9(b) we
see that on Wuerzburg, the tree scheduling algorithm is con-
sistently better than the greedy algorithm, but not by much.
This is the case almost regardless of the choice of the root:
the quality still depends on the chosen root, yet on this
graph the tree scheduling algorithm dominates the greedy
algorithm in all but 7 out of 2995 possible roots (the heav-
iest edge was, again, one of the dominating choices). The
results on Dallas are similar. This is in stark contrast to
the smaller instances discussed before (Fig. 9(a)). It ap-
pears that on larger instances, it becomes more important
to do “smart” scheduling than it is to be (un)lucky with se-
lecting the root. This shows that the full enumeration over
all possible roots is not essential on large graphs. This is
convenient since trying all m roots may easily become too
costly in practice. On smaller graphs, however, where the
algorithms are fast anyhow, testing all roots is worthwhile
and dominates the greedy approach.

9. CONCLUSION & DISCUSSION
The solutions given by some of our approximation algo-

rithms (Sec. 6) can be, in a sense, unreasonable: completely
delete a particular area of the graph, before deleting any-
thing else. We have two remarks about this. On the one
hand, we give a heuristic (Sec. 3) and a different approxi-
mation algorithm (Sec. 7) and have found that they do give
reasonable results in practice. On the other hand, it does
suggest that our current problem statement does not model
all relevant criteria of map generalization: if it is possible
for a solution to be evaluated as good, even though it is ac-
tually bad, then we may need to adjust the objective func-
tion and/or constraints. We are not deterred by this state
of affairs, since it is only natural that the correct model is
not immediately clear when first introducing a rigorous op-
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Figure 8: Histograms of runtime and observed approximation factor on 150 subgraphs of Wuerzburg, each with
40 vertices and on average about 60 edges. Edge weights are set using betweenness centrality and road class.
Note that the rightmost bar in Figs. 8(b) and 8(c) represents factor 1, that is, optimal solutions.

 0

 1

 2

 3

 4

 5

 6

 7

 0.94  0.95  0.96  0.97  0.98  0.99  1  1.01

Co
un

t

Approximation factor

(a) Observed approximation ratio on a 40-vertex subgraph
of Wuerzburg (49 edges). Observe that an optimum solu-
tion is found using one of the roots.

 0

 200

 400

 600

 800

 1000

 1200

 0.998  0.999  1  1.001  1.002  1.003  1.004  1.005  1.006

Co
un

t

TreeSchedule quality / GreedySelection quality

(b) Ratio of solution quality of TreeSchedule w.r.t. Greedy-
Selection on the full road network Wuerzburg. Observe that
the former dominates the latter for almost every possible
choice of root.

Figure 9: Quality of TreeSchedule for each possible root; weights set using PageRank and road class.

timization approach to a new topic. Future work will have
to address these issues.

For example, in addition to global connectivity, we would
like to ensure that, at every scale, the edges belonging to
the same stroke form a connected path. This would help
readability of the network. Furthermore, we would like to
ensure that, at every scale, the graph nicely spans the map
plane, that is, it must not leave large parts of the map empty.
Like in the literature on static map generalization, it seems
beneficial to formalize these (and other) considerations, so
that proper optimization techniques may be applied.
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