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ABSTRACT
Mobile users engage in novel and exciting location-based
social media applications (e.g., geosocial networks, spatial
crowdsourcing) in which they interact with other users sit-
uated in their proximity. In several application scenarios,
users define their own proximity zones of interest (typically
in the form of polygonal regions, such as a collection of
city blocks), and want to find other users with whom they
are in a mutual enclosure relationship with respect to their
respective proximity zones. This boils down to evaluat-
ing two point-in-polygon enclosure conditions, which is easy
to achieve for revealed user locations and proximity zones.
However, users may be reluctant to share their whereabouts
with their friends and with social media service providers,
as location data can help one infer sensitive details such as
an individual’s health status, financial situation or lifestyle
choices. In this paper, we propose a mechanism that allows
users to securely evaluate mutual proximity zone enclosure
on encrypted location data. Our solution uses homomor-
phic encryption, and supports convex polygonal proximity
zones. We provide a security analysis of the proposed solu-
tion, we investigate performance optimizations, and we show
experimentally that our approach scales well for datasets of
millions of users.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

General Terms
Security, Experimentation

Keywords
Location Privacy, Homomorphic Encryption

1. INTRODUCTION
An increasing number of services that provide a geo-spatial

dimension to user interaction are surfacing in today’s online
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Figure 1: Mutual Proximity Zone Enclosure Detec-
tion

landscape. These range from scenarios such as snapshot
queries sent to map services (e.g., GoogleMaps) to more
complex types of interaction where users report their history
of movement in return for personalized services, location-
centric recommendations, etc. Most of these applications
also involve a social media component, where users inter-
act with social network friends based on their geographical
proximity.

Location-based social networks (LBSN) may allow com-
plex location-based interaction among users. However, many
such providers are not trustworthy, and loose terms of ser-
vice agreements allow them to share location data with var-
ious third parties for purposes that are often not in the best
interest of users. Personal location data may allow an ad-
versary to stage attacks ranging from physical assault and
stalking, to inferring sensitive information about an individ-
ual’s health status, financial situation or lifestyle choices. It
is thus necessary to build a secure framework for sharing
and processing location data, and cryptographic approaches
are a promising direction to achieve this aim [8, 10, 27, 21].

Previous work [8, 27] has addressed effectively the scenario
where a client finds securely the result to a query for a nearby
point (e.g., nearest-neighbor queries). However, in practice,
more complex types of interaction are necessary. In a typical
scenario, each user may want to establish a proximity zone
of interest, e.g., the down-town area of a city, or a region
comprising of several city blocks. In this context, users are
eager to find friends with whom they are mutually situated
within each other’s interest zones.

Each user will have as personal data two objects: a point
location (current user location), and a proximity zone, in
the form of a convex polygonal region. Users encrypt this
information, and upload it to the LBSN service provider
(SP), e.g., Foursquare. At different times, the same user can
act in two roles: as a query initiator, in which case the user
is referred to as client, or as a target user (or simply, target)



of another user’s proximity zone query. Figure 1 illustrates
two cases where a particular target represents a match or a
non-match for a given client query.

Users typically organize in groups, and they can share en-
cryption keys within a group, which can be distributed using
a different channel than the social network (e.g., through
a secure connection established directly through their cell
phone provider, encrypted email, etc.). The challenge is to
design cryptographic techniques that allow users to evalu-
ate securely proximity zone queries, i.e., determine whether
two users are mutually enclosed within each other’s proxim-
ity zones. This condition should be evaluated by the SP at
the request of the client, but without requiring the targets
to be directly involved in the protocol (i.e., in an “offline”
setting). Due to the latter requirement, existing interactive
techniques for secure polygon enclosure evaluation [2, 19]
are not suitable.

Furthermore, users may not fully trust their friends, and
even if they do, they may not want friends to always know
where they are. Instead, only the outcome of the mutual
proximity zone enclosure evaluation should be disclosed by
the protocol, and no other information about their locations
or zones, other than what can be derived from the evaluation
outcome.

In this paper, we address the problem of secure mutual
proximity zone enclosure evaluation. Specifically:

• We formulate the problem of secure mutual proximity
zone enclosure evaluation, and we introduce a frame-
work for solving it using homomorphic encryption and
order-preserving encryption.

• We propose two protcols: Client-in-Target-Zone (CTZ)
that allows a client to securely determine when her lo-
cation is enclosed in the proximity zone of a target, and
Target-in-Client-Zone (TCZ) through which the client
learns if the target’s location is within the client’s prox-
imity zone.

• We provide performance optimizations that allow the
SP to filter targets situated far from the client’s loca-
tion, and thus reduce the amount of necessary CTZ
and TCZ evaluation rounds.

• We provide a security analysis of the proposed scheme,
and we conduct an extensive experimental evaluation
which shows that our proposed technique scales well
to datasets of millions of users.

The remainder of the paper is organized as follows: Sec-
tion 2 provides necessary background on the system model
and the building-block cryptographic primitives used. Sec-
tion 3 introduces the proposed protocols for secure mutual
proximity evaluation. Sections 4 provides the security anal-
ysis of our protocols. Section 5 presents the experimental
evaluation results, followed by a survey of related work in
Section 6 and concluding remarks in Section 7.

2. PRELIMINARIES

2.1 Cryptographic Building Blocks
Advanced Encryption Standard (AES) [1] is the most
widely used symmetric cryptography technique. It supports
only two operations: encryption (EA) and decryption (DA),
both requiring knowledge of the same secret key.

The Paillier cryptosystem is an asymmetric additive ho-
momorphic encryption scheme. Encryption, denoted by EP ,
requires knowledge of the public key only, whereas decryp-
tion DP requires the private key. The additive homomor-
phic property allows computation of the ciphertext of a sum
of plaintexts directly from ciphertexts of individual terms,
without decryption, and only with knowledge of EP :

EP (m1 + m2) = EP (m1)× EP (m2)

In addition, it is possible to perform multiplication with
a scalar value v under the ciphertext:

EP (m)v = EP (m× v)

Paillier encryption is semantically secure, i.e., an adversary
who intercepts two ciphertexts cannot derive any relation-
ship among the respective plaintexts. In particular, the same
plaintext encrypted twice will result in different ciphertexts.
Mutable Order-Preserving Encryption (mOPE) [23]
is a novel technique that allows secure and efficient compar-
ison between numbers. The mOPE scheme in a client-SP
setting works as follows: the client has the secret key of
a symmetric cryptographic scheme, e.g., AES, and wants to
store the dataset of ciphertexts at the SP in increasing order
of corresponding plaintexts. The client and the SP engage
in a protocol that builds a B-tree. The SP only sees the
AES ciphertexts, but is guided by the client in building the
tree structure. The algorithm starts with the client stor-
ing the first value, which becomes the tree root. Every new
value stored at the SP is accompanied by an insertion in the
B-tree.

The SP maintains a mOPE table that stores for each value
its AES-encrypted label, as well as an encoding of the path
from the tree root to the label of that value. The SP uses
the encoding to evaluate order relationships among values.
The mOPE tree structure is kept balanced due to the use of
B-trees. The height of the tree is low, thus all search oper-
ations are efficient. To ensure the balanced property, when
insertions are performed, it may be necessary to change the
encoding of certain ciphertexts. Typically, mutability can
be done very efficiently, and the complexity of the operation
(i.e., the maximum number of affected values in the tree) is
logarithmic in the number of stored values. As shown in [23],
mOPE satisfies IND-OCPA, i.e., indistinguishability under
ordered chosen-plaintext attack. The scheme does not leak
anything besides order of values.
ElGamal cryptosystem. ElGamal [4] is a multiplicative
homomorphic asymmetric encryption system that allows com-
putation of encrypted products under the ciphertext:

EG(m1 ×m2) = EG(m1)× EG(m2)

ElGamal is not directly used in our method, but it is a build-
ing block for the GT protocol described next.
GT Protocol. The secure comparison greater-than (GT)
protocol was proposed in [14] and it allows two parties Alice
and Bob holding numbers x and y to determine which one
is greater between the numbers, without revealing any in-
formation except for the comparison outcome. For an n-bit
integer s, define the 0-encoding S0

s and the 1-encoding S1
s of

s as two sets of binary strings, as follows:
S0
s = {snsn−1...si+11|si = 0, 1 ≤ i ≤ n}
S1
s = {snsn−1...si|si = 1, 1 ≤ i ≤ n}

S0
s and S1

s contain a number of strings equal to the number of
0 and 1 bits in the representation of s, respectively. The GT
protocol reduces integer comparison to the set intersection



Figure 2: System Model

problem. Given values x and y, x > y if and only if S1
x and

S0
y have a common element. For example, let x = 6 = 1102

and y = 2 = 0102. Then S1
x={1,11} and S0

y={1,011}. Since
S1
x ∩ S0

y = {1}, it results that x > y. On the other hand,
if x = 2 = 0102 and y = 6 = 1102, we have S1

x={01} and
S0
y={111}. Since S1

x ∩ S0
y=∅, then x ≤ y.

Alice, who holds x = xnxn−1...x1 prepares a 2 × n table
T [i, j], i ∈ {0, 1}, 1 ≤ j ≤ n, where T [xj , j] = EG(1) and
T [xj , j] = EG(rj) for some random rj . Bob, who holds y,
receives the table from Alice and computes for each string
t = tntn−1...ti ∈ S0

y the ciphertext product ct = T [tn, n] ×
T [tn−1, n − 1] × ... × T [ti, i]. All ciphertexts are sent to
Alice who decrypts them and determines by the properties of
ElGamal encryption that S1

x and S0
y have a common element

if and only if one of the ciphertexts is the encryption of 1.
For example, consider n = 3, x = 6 = 1102 and y = 2 =

0102. Alice computes a 2× 3 table T [i, j]

T = {{EG(1), EG(r1), EG(r2)}, {EG(r0), EG(1), EG(1)}}

Next, Bob computes ct for each string in its set S0
y = {1, 011}:

c1 = T [1, 3] = EG(1)
c011 = T [0, 3]× T [1, 2]× T [1, 1] = EG(r2)×EG(1)×EG(r0)

When Alice decrypts the ciphertexts, she obtains 1 for the
first ciphertext and determines that x > y.

2.2 System Model
Our system model, illustrated in Figure 2, comprises of

three parties: targets, client (or querying user), and service
provider (SP). Note that, the same user can act as client
or as target at different times. Targets periodically update
their location and proximity zone with the SP. The SP is a
location-centric service, e.g., the Foursquare LBSN.

Our goal is to enable the client to securely find targets
with whom she is in a mutual proximity relationship. We
must protect both the client’s and the targets’ locations and
proximity zones privacy from the SP. In addition, we must
protect each target’s location and proximity zone from the
client, i.e., the client must only be able to learn which tar-
gets satisfy the mutual proximity condition (and whatever
information can be inferred from this result), but no target’s
location or proximity zone must be disclosed to the client.

The problem is challenging because the SP needs to check
the proximity condition on encrypted data. Existing solu-

Symbol Definition
EA,DA Encryption/Decryption using AES
EP ,DP Encryption/Decryption using Paillier
EG,DG Encryption/Decryption using ElGamal
EM ,DM Encryption/Decryption using mOPE
GT Secure integer comparison protocol [14]
CTZ Client-in-Target-Zone Detection Protocol
TCZ Target-in-Client-Zone Detection Protocol

Table 1: Summary of Notations

Figure 3: Polygon Enclosure Evaluation

tions such as [7, 2, 15, 19, 3] do allow secure polygon en-
closure evaluation, but they are interactive in nature, hence
all parties must actively participate in each query. This is
not realistic in practice, as targets cannot participate in in-
tensive computations all the time. We assume an offline,
or asynchronous model, where the targets do not directly
participate in mutual proximity detection.

The SP holds a (private) Paillier decryption key, and the
corresponding public key is available to all users (i.e., tar-
gets and client). Paillier encryption is used to protect tar-
gets’ data against the client, while at the same time allowing
proximity test computations on ciphertexts. The SP is able
to perform both EP and DP operations, whereas the targets
and client only EP . All users (i.e., targets and client) share
a secret AES key, used to encrypt data stored at the SP,
hence they can perform both EA and DA operations. AES
encryption is used to protect the client and targets against
the SP. The users also share a mOPE key to encrypt their
coordinates, such that the SP is enabled to perform inequal-
ity tests on encrypted data. In addition, each client creates
a public/private ElGamal key pair used to run the GT pro-
tocol with the SP. The client is able to perform EG and DG,
whereas the SP can only perform EG. Also, we note that all
the discussed encryption functions assume a plaintext space
of integers. However, this space is typically very large, and
can accommodate very large fractional numbers (i.e., coor-
dinates) converted to integers, with high precision, as in [7,
19].

We assume that the SP is honest but curious. The SP
does not tamper with the location data received from the
targets, it does not drop any messages, and runs the prox-
imity detection protocol as designed. However, in addition
to correctly executing the protocol, it attempts to learn the
locations and proximity zones of the targets and the client.
Also, we assume that there is no collusion between the SP
and users. Table 1 summarizes the notations used.

3. SECURE MUTUAL PROXIMITY ZONE
ENCLOSURE

In Section 3.1, we present a secure protocol to detect client
enclosure in the target’s zone (CTZ), followed in Section 3.2
by the dual protocol to test target enclosure in the client’s
zone (TCZ). In Section 3.3, we propose optimizations to
reduce the number of CTZ and TCZ invocations. We sum-
marize the complete approach in Section 3.4.

3.1 Client-in-Target-Zone (CTZ) Enclosure
Consider the example in Figure 3, where the target’s zone

is the polygon P1P2P3 with edges B1, B2, B3, and C(xC , yC)
is the client’s location. Assume that C is inside the target



Figure 4: CTZ: placement relative to one line

zone’s minimum bounding rectangle (MBR)1. To find if the
zone encloses the client, one can draw a vertical line through
point C, and determine the two polygon edges that intersect
the line, in this example B2 and B3 (for convex polygons,
it is guaranteed that there will be two intersecting edges).
The client is enclosed in the zone if C is above one of the
edges (B3 in the figure) and below the other (B2). Any other
relative placement (e.g., points C′ and C′′ in the diagram)
means that the client is outside the target’s zone. Next, we
show how to securely perform these steps.

First, we show how to determine the placement of a point
relative to a single line. For the line segment of the ith

polygon edge that starts at point Pi(xi, yi) and has slope
Si, the line equation is:

y = Si(x− xi) + yi

which can be also written as

y − Si ∗ x = −Si ∗ xi + yi

We denote by Li and −Ri the left and right hand of the
equation, respectively:

Li = y − Si ∗ x = −(Si ∗ xi − yi) = −Ri (1)

If we plug in the client’s coordinates in Eq. (1), the right-
hand side Ri has a fixed value (independent of C), whereas
the value of Li depends on C. Each target will send to the
SP the value of Ri for all its zone edges, doubly-encrypted
first with Paillier, and then with AES encryption:

EA(EP (Ri)) = EA(EP (Si ∗ xi − yi))

as well as EA(EP (Si)). These two items are periodically
uploaded to the SP with every location update.

Upon receiving a query, the SP sends both encrypted
items to the client who decrypts them using DA, and then
computes using the homomorphic property of Paillier en-
cryption the encrypted left-hand side of Eq. (1) as follows2:

EP (Li) = EP (yC)× EP (Si)
−xC = EP (yC − Si ∗ xC) (2)

Furthermore, the client computes

EP (Li+Ri) = EP (Li)×EP (Ri) = EP (yC−(Si∗(xC−xi)+yi))

If Li + Ri > 0, it signifies that the client’s point is above
the line, otherwise it is below or on the line. Thus, only the
sign of Li +Ri is necessary for evaluation. However, should
the client send EP (Li + Ri) to the SP, the latter may infer

1We defer discussion on how to securely determine MBR
enclosure until Section 3.3.
2Although the plaintext space of Paillier encryption consists
of positive integers, one can employ a binary encoding to
represent negative numbers as in [7].

Figure 5: CTZ: placement relative to two lines

additional details about the target’s location. To prevent
such disclosure, we employ additive blinding, whereby the
client selects a random number k and computes:

EP (Li + Ri)× EP (k) = EP (Li + Ri + k)

The blinded value is sent to SP, which decrypts it and ob-
tains Li + Ri + k. Next, the client and the SP execute the
GT protocol [14], in order to learn which value is greater be-
tween k and Li +Ri +k. This way, the client learns the sign
of Li +Ri, and hence whether its location is above the line,
whereas the SP learns nothing. Figure 4 summarizes the
protocol to securely evaluate the client’s placement relative
to a single line.

Recall that, secure polygon enclosure evaluation requires
finding the relative placement of the client location with
respect to two lines. For instance, in Figure 3 the client
learns that its location C is situated above B3 and below
B2, and concludes it is enclosed by the polygon. Given the
ith and jth edges of a polygon and their respective lines
y = Si ∗ (x− xi) + yi and y = Sj ∗ (x− xj) + yj , the client
computes

EP ((Li+Ri)×(Lj+Rj)) = EP (LiLj+LiRj+RiLj+RiRj) =

EP (LiLj)× EP (LiRj)× EP (RiLj)× EP (RiRj), where

EP (LiLj) = EP (Li)
Lj = EP (Li)

yC−Sj×xC =

EP (Li)
yC × EP (SjLi)

−xC , and

EP (SjLi) = EP (Sj(yC−SixC)) = EP (Sj)
yC×EP (SiSj)

−xC

Next, EP (LiRj) and EP (RiLj) can be computed as fol-
lows:

EP (LiRj) = EP (Rj)
Li = EP (Rj)

yC × EP (SiRj)
−xC

EP (RiLj) = EP (Ri)
Lj = EP (Ri)

yC × EP (SjRi)
−xC

Every target sends periodically to the SP as location updates
items EA(EP (RiRj)), EA(EP (SiSj)), EA(EP (SiRj)) and
EA(EP (SjRi)), as well as EA(EP (Ri)), EA(EP (Si)),
EA(EP (Rj)), and EA(EP (Sj)), as shown in Figure 5.

Upon receiving a query, all the above values are sent by the
SP to the client, who performs decryption DA to obtain the
Paillier ciphertexts and applies the homomorphic operations
described above. Then, the client performs additive blinding
to determine EP ((Li + Ri)(Lj + Rj) + k) and sends it to
the SP. Next, the SP decrypts the ciphertext and obtains



Figure 6: TCZ: placement relative to one line

(Li+Ri)(Lj+Rj)+k, followed by the GT protocol execution
between client and SP, after which the client determines the
sign of (Li + Ri)(Lj + Rj). If the sign is negative, then the
client location is enclosed by the target’s polygon.

The last component of CTZ to be discussed is how to
find the two target polygon edges intersecting the vertical
line passing through the client location C. Denote by l the
number of edges of the target’s polygon. By taking in order
the x-axis coordinates of the l polygon vertices, we obtain a
set of l intervals. Finding which edges intersect the vertical
line passing through xC is the same as finding which two
such intervals contain coordinate xC . If the query point is
inside an interval [xi, xj ], where j = (i+ 1) mod l, then the
following condition must be satisfied3:

xi < xC < xj .

This condition can be efficiently evaluated with the help of
mOPE encryption, reviewed in Section 2.1. The evaluation
is done at the SP using the mOPE-encrypted values sent
by the target and the client. Specifically, the target sends
to the SP (in its periodic update) pairs EM (xi), EM (xj) for
all of its polygon sides, whereas the client sends EM (xC) at
query time.

The SP evaluates the outcome of the following conditions
for each target polygon edge:

EM (xi) ≤ EM (xC), EM (xC) ≤ EM (xj)

and if both hold, then the edge is marked as one of the
two intersecting edges. Note that, the client does not learn
anything about the target polygon from this secure compar-
ison process, because the comparison is performed entirely
at the SP. However, with the above protocol the SP may
learn which of the target’s polygon edges contain xC (i.e.,
the index of the intersecting edge in the polygon). This may
allow the SP to find certain characteristics of the polygon,
such as the fact that two consecutive edges intersect the ver-
tical line, which may disclose a particular polygon shape. To
prevent such additional disclosure, the target can randomly
permute the mOPE-encrypted intervals before sending them
to the SP.

3.2 Target-in-Client-Zone (TCZ) Enclosure
Next, we focus on the dual problem of determining se-

curely whether a target’s location is enclosed within the
proximity zone of the client. Recall that we are solving this
problem in the more challenging offline setting, where only

3The condition assumes that xi ≤ xj . Each target will en-
sure before encryption that each interval is represented such
that the x coordinates are swapped if the condition does not
hold.

the SP and the client C participate in the computation,
whereas the targets do not. Denote by T (xT , yT ) the loca-
tion of the target. Following the same steps as in the CTZ
case, we first show how C can determine the relative place-
ment of T with respect to one of C’s polygon edges, then we
extend this to relative placement with respect to two edges,
and finally we show how to determine the two polygon edges
intersecting the vertical line passing through T .

Let y = Si(x − xi) + yi be the line equation for the ith

edge of C’s polygon. The client must determine whether T
is above or below the line. Figure 6 illustrates the protocol:
targets send periodically to SP EA(EP (xT )) and EA(EP (yT )).
Upon receiving a query, the SP sends these encrypted items
to the client, who computes:

EP (Ri) = EP (Si ∗ xi − yi)

EP (Li) = EP (yT − Si ∗ xT ) = EP (yT )× EP (xT )−Si

EP (Li + Ri + k) = EP (Li)× EP (Ri)× EP (k)

where Li and Ri have the same significance as in Eq. (1),
and k is an additive blinding term. Then, the client sends
EP (Li + Ri + k) to SP which decrypts it and obtains Li +
Ri + k, following which the client and the SP engage in the
GT protocol. The client determines whether Li + Ri > 0,
and consequently whether T is above the ith polygon edge
of the client.

The client must find the relative placement of the tar-
get with respect to two edges of the client’s polygon. Fur-
thermore, the client should learn only whether the target is
above one edge and below the other, but should not learn the
outcome of any individual edge test. Given the ith and jth

polygon edges and their respective lines y = Si ∗(x−xi)+yi
and y = Sj ∗ (x− xj) + yj , the client computes:

EP ((Li+Ri)(Lj+Rj)) = EP (LiLj+LiRj+RiLj+RiRj) =

= EP (LiLj)× EP (LiRj)× EP (RiLj)× EP (RiRj), where

EP (LiLj) = EP ((yT − Si ∗ xT )(yT − Sj ∗ xT )) =

= EP (y2
T − (Si + Sj)xT yT + SiSjx

2
T )

= EP (y2
T )× E(xT yT )−(Si+Sj) × E(x2

T )SiSj

and EA(EP (y2
T )), EA(EP (xT yT )), EA(EP (x2

T )) are period-
ically uploaded to SP by each target, as shown in Figure 7.
Next, the client determines

EP (LiRj) = EP (yT−Si∗xT )Rj = (EP (yT )×EP (xT )−Si)Rj

The client computes similarly EP (RiLj) and EP (RiRj) and
uses additive blinding with random k to compute EP ((Li +
Ri)(Lj + Rj) + k), which is sent to the SP. The SP de-
crypts the message using the Paillier private key and obtains
(Li + Ri)(Lj + Rj) + k. Next, the client initiates the GT
protocol, at the end of which the client learns the sign of
(Li + Ri)(Lj + Rj), and hence whether the target is inside
the client’s polygon or not. Meanwhile, the SP does not
learn anything about the evaluation outcome.

The remaining component of TCZ is to find the two edges
of the client’s polygon that intersect the vertical line passing
through T . Denote the set of x-axis projections of the l-sided
client polygon edges as x′i, x

′
j , where j = (i+1) mod l. The

SP needs to determine the client polygon’s edges for which

x′i < xT < x′j .



Figure 7: TCZ: placement relative to two lines

The evaluation is done at the SP using the mOPE-encrypted
pairs EM (x′i), EM (x′j) sent by the client for all its polygon
sides, as well as the value EM (xT ) sent by the target with
its periodic update.

The SP evaluates the outcome of the following conditions
for each client polygon edge:

EM (x′i) ≤ EM (xT ), EM (xT ) ≤ EM (x′j)

and if both hold, then the edge is marked as one of the
two intersecting edges. As in the case of CTZ, to prevent
additional disclosure, the client can randomly permute the
mOPE-encrypted intervals before sending them to the SP.

3.3 MBR Filtering
The CTZ and TCZ protocols introduced so far make ex-

tensive use of Paillier and ElGamal encryption operations,
which are computationally expensive. To reduce the perfor-
mance overhead, we introduce as an optimization a filtering
step that reduces the number of targets that need to be
considered. Specifically, each target sends the SP, in addi-
tion to the encrypted items needed for CTZ and TCZ, an
encryption of the minimum bounding rectangle (MBR) of
the target’s proximity zone polygon. If the client’s location
is not included in the MBR, then it will not be inside the
polygon either. Furthermore, checking secure enclosure in
a rectangle is considerably simpler and faster than polygon
enclosure. We employ for this test the mOPE scheme [23]
described in Section 2.1.

Each target determines the MBR of their proximity zone
(as illustrated in Figure 8), encrypts the MBR lower left and
upper right coordinates using mOPE, and sends them to the
SP as EM (xLL), EM (yLL), EM (xUR) and EM (yUR). At
query time, the client also encrypts its query point (xC , yC)
using mOPE, and sends the SP EM (xC) and EM (yC). When
the SP receives the query, it checks whether the MBR con-
tains the query point through simple numerical comparisons:

EM (xLL) < EM (xC) < EM (xUR)

EM (yLL) < EM (yC) < EM (yUR)

If both conditions (i.e., four inequalities) hold, the SP will
initiate the CTZ and TCZ protocols for the currently consid-
ered target, otherwise it will move to the next target. Due
to the efficiency of mOPE, this operation is fast. Unfortu-
nately, mOPE does not have homomorphic properties, and
it does not permit evaluation of more complex tests than
scalar inequality. Hence it is not suitable for CTZ and TCZ,
where Paillier and ElGamal encryption are still necessary.

Figure 8: MBR Filtering

3.4 Complete Protocol
The pseudocode in Algorithm 1 shows the complete pro-

tocol for secure mutual proximity zone enclosure evaluation.
We focus on the online component, i.e., query processing.
The offline component is straightforward: each target peri-
odically uploads to the SP the encrypted items specified in
the Sections 3.1, 3.2 and 3.3.

The first step consists of target filtering. The client C
sends her coordinates encrypted with mOPE to the SP,
and the latter checks which target polygon MBRs (also en-
crypted with mOPE) enclose C’s location. Targets that
fail this check are eliminated from further processing. For
each remaining target, the second step consists of perform-
ing CTZ. If the target passes the CTZ evaluation, the third
and final step is to run the TCZ protocol. Any target that
passes the TCZ test is part of the client’s final result.

Within the CTZ protocol, C first determines (lines 1-2)
which two of the target T ’s polygon sides intersect the ver-
tical line passing through C’s location. Recall that, since
we assume convex polygons, it is guaranteed that there are
always two such sides. C does not learn any information
about the sides other than their indexes. Next, C computes
the relative placement of its location with respect to these
two sides (line 3). If the location is above one of the lines
and below the other, then the CTZ test is successful. TCZ
proceeds in a similar fashion.

Algorithm 1: Secure Mutual Proximity Zone Enclosure

T = set of targets
R = ∅ /* set of results with matching targets */
Client: Send encr. location C and polygon PC to SP
SP : For ∀T ∈ T
SP : If (C /∈ T.MBR) /* MBR filtering */
SP : skip to next T
SP : If (CTZ(C.location, T.polygon) = false)
SP : skip to next T
SP : If (TCZ(T.location, C.polygon) = false)
SP : skip to next T
SP : R = R ∪ T

Algorithm 2: CTZ (Location C, Target Polygon PT )

SP ⇔ Client (interactive):
1. Let V be the vertical line passing through C
2. Find two sides B1 and B2 of PT that intersect V
3. If (C is in between B1 and B2)
4. Return true
5. Return false



Algorithm 3: TCZ (Location T , Client Polygon PC)

SP ⇔ Client (interactive):
1. Let V be the vertical line passing through T
2. Find two sides B1 and B2 of PC that intersect V
3. If (T is in between B1 and B2)
4. Return true
5. Return false

4. SECURITY DISCUSSION
Privacy of Client and Target Locations against SP.
The SP must not learn the locations or proximity zones

of either the client C or the target T . We discuss only the
privacy of the client location, as a similar reasoning holds
for the privacy of the target location.

First, in the MBR filtering step, due to the use of mOPE
encryption, the SP learns only whether the client location is
inside the MBR of the target polygon or not. The SP cannot
pinpoint the client to a specific region within the MBR (or
outside of it, in case the MBR enclosure test fails). Further-
more, the SP does not know what are the actual coordinates
of the MBR. Since every MBR has the same number of edges,
all encrypted MBR coordinates are indistinguishable to the
SP, according to the IND-OCPA property of mOPE.

Second, in the CTZ protocol execution (or TCZ in the
case of target locations), when finding the two target poly-
gon edges that intersect the vertical line passing through C,
the enclosure tests for all l intervals (one for each target poly-
gon edge) are done on top of mOPE-encrypted ciphertexts.
Since mOPE satisfies IND-OCPA, the SP cannot distinguish
between the corresponding x-axis coordinates. All the client
learns is that C’s xC coordinate is enclosed by two intervals,
which is true for every possible client location and convex
target polygon that passed the filtering step.

Third, when performing the placement test relative to two
lines, the client uses additive blinding when computing the
value EP ((Li +Ri)(Lj +Rj)+k). Therefore, the SP cannot
learn the exact values of the left- and right-hand sides of
Eq. (1), and does not learn anything about the polygon edges
or the client location.

Privacy of Target Locations against the Client.
During the mutual proximity zone protocol, the client C

only receives items encrypted with Paillier encryption, which
is semantically secure, hence no information can be derived
from the ciphertexts. In addition, all evaluation results are
binary outcomes (i.e., yes/no) that are obtained through
the GT protocol. At the end of the protocol, the client only
learns whether the target is in the mutual proximity zone
enclosure relationship with the client, and nothing else.

Security of Additive Blinding. The final steps of the
CTZ and TCZ protocols include an additive blinding opera-
tion with the purpose of protecting the exact value of Li+Ri

from the SP. When the client computes EP (Li + Ri), it se-
lects a random number k and then determines EP (Li +Ri +
k) = EP (Li +Ri)×EP (k). Then, the SP obtains the plain-
text Li + Ri + k and the client initiates the GT protocol.

We provide a brief security analysis of the additive blind-
ing operation. Let v = Li+Ri, and assume that v has n bits
(i.e., all coordinates are mapped to a n-bit fixed precision
representation). Denote v’s value domain by dv = [vl, vu]
where vl and vu are the domain boundaries. The cardinality
of the value domain is m = 2n. Consider a number k with n′

Figure 9: Additive Blinding: c = v + k

bits and value domain dk = [kl, ku]. The cardinality of dk is

m′ = 2n′
. Then, the domain dv+k of v+k is [vl +kl, vu +ku]

and the size of the domain is m′ + m− 1 = 2n′
+ 2n + 1.

An example of additive blinding v+k is illustrated in Fig-
ure 9, where dv = [−2, 2], dk = [−3, 3] and dv+k = [−5, 5].
Denote c = v + k. When c ∈ [vu + kl, vl + ku] = [−1, 1],
c can be the result of blinding any value in dv. Hence, the
SP cannot learn anything about v given c. However, when
c is outside the highlighted interval, c may not be obtained
through blinding from any value in dv. Hence, there may be
some information that SP learns about v. Next, we quantify
this probability and show it is negligible in practice.

In Figure 9, there are m ∗ m′ = 2n+n′
elements in the

table. The number of elements in the highlighted interval

is m ∗ (m′ −m + 1) = 2n ∗ (2n′
− 2n + 1) and the number

of elements outside the interval is m(m − 1) = 2n(2n − 1).
The probability that an element is outside the interval is

m(m−1)/{m∗m′} = (m−1)/m′ = (2n−1)/2n′
≈ 1/2n′−n.

In practice, given that the plaintext space of the encryption
functions used is at least 1024 bits, one can easily set n = 256
and n′ = 512, leading to a probability of returning an addi-
tively blinded value which leaks information of 1/2256, hence
negligible.

5. EXPERIMENTAL EVALUATION
We implemented a prototype of the proposed techniques

for secure mutual proximity zone enclosure, namely: CTZ
(Section 3.1), TCZ (Section 3.2) and the MBR filtering pro-
tocol (Section 3.3). We also implemented the GT protocol
from [14] (Section 2.1) which is used as a building block in
our CTZ and TCZ protocols. We developed the prototype
using Java JDK 1.6, and we executed all experiments on
a 3.4GHz Intel i7 CPU machine with 16GB RAM running
Windows 8.

Experimental Settings. We use Paillier and ElGamal
encryption, both with 1024-bit key strength, and 128-bit
key AES encryption. We represent each coordinate using
n = 128 bits, which determines the size of the tables created
by the GT protocol. The client and target locations are
randomly distributed in the domain [0, 106]2. We consider
a number of targets between 200, 000 and 1 million. We
generate proximity zones as convex polygons with number
of edges varying from 3 to 7. The polygon extent influences
the MBR filtering step, so we also vary the polygon size
(measured as the resulting MBR size) from 500 × 500 to
4000 × 4000. Table 2 summarizes the parameter settings,
with default values shown in boldface.



Figure 10: PPD vs CTZ+TCZ (100K targets)

Figure 11: Performance vs. Number of Targets

We use as performance metrics CPU time at the SP and
the client, and the amount of client-SP traffic generated. For
each experiment, we averaged the results over 1, 000 random
queries, and we used 10 distinct random seeds for each run.

5.1 Comparison with Benchmark
To the best of our knowledge, our technique is the first

one to allow secure mutual proximity zone testing in the of-
fline case (i.e., where targets do not participate in the proto-
col). We use as benchmark the Private Proximity Detection
(PPD) method from [19], which requires both client and tar-
gets to be online. The protocol from [19] is an adaptation
of our earlier work in [7] where Paillier encryption is used
to compute the orientation of the client location with re-
spect to all polygon edges of the target. When the edges
are sorted in counter-clockwise direction, by plugging in the
client x coordinate in the line equation of all edges, one can
determine that the client is enclosed by the polygon if all y
results (i.e., orientations) are negative. PPD needs to be run
twice for each target, to check mutual proximity. Note that,
PPD needs to perform orientation evaluations with respect
to all edges of the polygon, as opposed to our method which
only considers two edges, and is hence more efficient.

Figure 10 shows the CPU time for our method and PPD.
Our method clearly outperforms PPD by close to seven or-
ders of magnitude (the time axis is logscale). PPD is not
practical even for 100K targets, as the time to process a
single query is more than 2 hours. On the other hand, our
method achieves a time of under 10msec. Clearly, applying

Parameter Values
Paillier Key 1024 bits
ElGamal Key 1024 bits
AES key 128 bits
Number of targets 200K, 400K, 600K, 800K, 1000K
Polygon edges 3, 4, 5, 6, 7
Polygon MBR Size 500×500, 1K×1K, 2K×2K, 4K×4K

Table 2: Experimental Parameter Settings

Figure 12: Performance vs. Number of Edges

Figure 13: Performance vs. Polygon Size

directly interactive methods like PPD or [2] is not suitable
for secure mutual proximity detection.

One of the reasons why PPD is so slow is that it per-
forms no filtering of targets. In contrast, we make use of
the novel mOPE encryption to reduce the number of TCZ
and CTZ rounds. For fairness, in the rest of this section,
we adapt PPD to also include the filtering based on poly-
gon MBRs. Figure 11 shows the relative performance of our
method and PPD when varying the number of targets. Fil-
tering improves a lot the performance of PPD, but it is still
slower than our method by a factor of four on average. In
addition, the communication bandwidth used is close to ten
times higher for PPD, due to running GT for every poly-
gon edge. As expected, all methods scale linearly with the
number of targets. In the worst case, our method requires
100msec processing time, and 60KB communication.

Figure 12 shows the performance overhead when varying
the number of edges in the proximity zone polygons. Note
that, the PPD overhead grows linearly with the number of
edges, as it needs to run orientation evaluation for each edge.
On the other hand, our method’s cost does not increase sig-
nificantly with the number of edges (the only part that de-
pends on edge count is finding the edges that intersect the
vertical line, but that only requires inexpensive mOPE se-
cure comparisons). Similarly, the GT protocol only has to
be executed for two edges, hence the communication cost of
our method is also constant.

In Figure 13 we vary the extent of the polygonal regions.
Larger polygons decrease the effectiveness of the MBR fil-
tering step, and the overall cost when polygon size grows is
higher for both PPD and our method. However, we maintain
our relative advantage over PPD. The results so far show the
clear superiority of the proposed method over PPD, even
when we enhance the latter with filtering. In the remainder
of this section, we no longer consider PPD, and we focus
on the evaluation of the different components of our secure
protocol.

5.2 Performance Breakdown for CTZ/TCZ
We investigate the performance overhead breakdown for

the three components of the proposed technique: filtering
step, CTZ and TCZ. We vary both the number of targets,



Figure 14: Breakdown vs. number of targets

Figure 15: Breakdown vs. size of proximity zones

and the polygon size (recall that the number of edges does
not significantly influences performance for our method).
Figure 14 shows that the CPU time consists mostly of MBR
filtering. As the number of targets grows, the proportion
of filtering time decreases, reaching roughly half of the to-
tal time for 1 million targets. The remaining CPU time is
equally spent on CTZ and TCZ. The communication cost is
also equally spent between CTZ and TCZ. The filtering step
only requires the client to send its encrypted coordinates to
the SP once, which is a negligible amount of communication.

Figure 15 shows the performance breakdown as polygon
size increases. For larger polygons (hence larger MBRs), the
filtering step’s effectiveness decreases considerably, as fewer
targets are eligible for filtering. A considerably larger num-
ber of CTZ and TCZ evaluations are necessary, so almost all
CPU time is split equally among these steps. Overall, the
CPU time increases significantly with polygon size, and so
does the communication cost, the latter exhibiting the same
equal share among CTZ and TCZ. Nevertheless, the perfor-
mance overhead remains practical, with under one second of
CPU time and one megabyte of communication needed in
the worst case. Note that, we did not use parallelism in our
implementation, but using multiple cores is likely to result
in close-to-linear speedup, due to the inherent parallelism
of the protocol (each target is independently evaluated from
the others).

6. RELATED WORK
Protecting location data is an important problem that

has been addressed in a variety of settings. For instance,
two approaches for location protection have been investi-
gated in the context of private queries to location-based
services (LBS). The objective here is to allow a querying
user to retrieve her nearest neighbor among a set of pub-
lic points of interest without revealing her location to the
LBS. The first approach is to use cloaking regions (CRs)
[9, 5, 18, 12]. Most CR-based solutions implement the spa-
tial k-anonymity paradigm and assume a three-tier archi-
tecture where a trusted anonymizer sits between users and
the LBS server and generates rectangular regions that con-
tain at least k user locations. This approach is fast, but
not secure in the case of outliers. The second approach uses

private information retrieval (PIR) protocols [8, 7]. PIR
protocols allow users to retrieve an object Xi from a set
X = {X1, X2, . . . , Xn} stored by a server, without the server
learning the value of i. The work in [8, 7] extends an exist-
ing PIR protocol [6] for binary data to the LBS domain and
proposes approximate and exact nearest neighbor protocols.
The latter approach is provably secure, but it is expensive
in terms of computational overhead.

Privacy has also been addressed in spatial query outsourc-
ing [13], where data points are encoded by the data owner
according to a secret transformation. Users who know the
transformation key map their 2-D queries to 1-D points and
the query processing is done in the 1-D space. However, the
mapping can decrease the result accuracy and the transfor-
mation may be vulnerable to reverse-engineering. The work
in [25] uses a secret matrix transformation to hide the data
points and the query is also transformed. When the server
receives the transformed data and the transformed query, it
determines which data point is nearest to the query. The
method provides exact results, but the matrix transforma-
tion is vulnerable to chosen plaintext attacks, as shown in
[27].

The solutions in [10, 11] propose the use of a secure index
for NN queries. The secure index is given to the client, and
the server has the secret key to decrypt each node in the
secure index. When there are many data points, the size of
the secure index is very large. The work in [22] proposes
a scheme using oblivious transfer [20] and PIR, which is
provably secure, but very expensive. Furthermore, it only
handles point-point distances, but not polygonal regions.

In this paper, our goal is to determine whether two users
are mutually situated in each other’s proximity regions. In
[16] a scheme using Paillier encryption is proposed to com-
pute the distance of two users using the GT protocol [14]. It
determines only whether the two users are within a certain
distance. In [17] a grid-based scheme is proposed. When
the server receives the regions of users, the server computes
a minimum and maximum distance between the cloak re-
gions to filter out far-away users. Then, the users refine the
result in a peer-to-peer manner using a secure multi-party
computation (SMC) protocol [26]. [24] suggests an adap-
tive grid-based scheme using vicinity regions. However, the
technique incurs false positives. [21] proposes a scheme using
equality testing. A user’s location is approximately selected
as one of the points in a grid. Then, by performing a secure
equality test, it is determined whether two users are nearby.

Our solution is closely related to secure polygon enclosure.
The work in [2] proposes a scalar product protocol and a
vector dominance protocol using homomorphic encryption
and secure multiparty computation [26]. Building upon the
two, it then proposes a secure two-party point-in-polygon
inclusion protocol. However, it is very expensive, and does
not work in offline mode. The PPD method from [19] also
assumes online targets, and it is clearly outperformed by
our solution, as shown in Section 5. The recent work in [15]
proposes a scheme to test mutual proximity zone enclosure.
However, the targets must disclose the slope of each edge of
their zones to the client, hence the security of the method is
low, and it is vulnerable to chosen plaintext attacks.

7. CONCLUSIONS
In this paper, we proposed a secure mechanism for mu-

tual proximity zone enclosure evaluation. Mobile users de-



fine their own zones of interest, and then are able to pri-
vately find friends with whom they are in a mutual proxim-
ity zone enclosure relationship, without having to disclose
information about their location or proximity zones. Fur-
thermore, our solution allows offline evaluation of mutual
proximity, i.e., the target users need not be directly involved
in the protocol, and only the querying user (client) and the
SP run the secure protocol. We provided a security analy-
sis of the proposed protocols for secure client-in-target-zone
(CTZ) and target-in-client-zone (TCZ) evaluation, and we
showed through experiments that the performance achieved
is practical, with sub-second processing times for up to 1
million users. In future work, we plan to extend our crypto-
graphic protocols to support more complex types of queries,
such as top-k queries with respect to the amount of overlap
of users’ proximity zones. In addition, we will study tech-
niques to accelerate protocol execution using parallelism and
graphical processing units (GPUs).
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