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ABSTRACT 

Surrounds is a topological relation that can exist between two 
regions or between collections of regions in ℝ!. This paper 
provides an algebraic construction for surrounds within a partition 
and provides a complementary graph-theoretic approach for the 
detection of the surrounds conditions created by the operations 
within the algebra. These two approaches are contrasted to one 
another. Constraints are placed upon surrounds to maintain 
certain algebraic benefits and the consequences of their 
relaxations are assessed. 

Categories and Subject Descriptors 
H.2.8 [Database Applications]: Spatial databases and GIS 

General Terms 
Management, Design, Human Factors, Theory. 

Keywords 
Discrete space, topology, spatial reasoning. 

1. INTRODUCTION 
The preposition surrounds refers to spatial configurations in 
which one object conceptually separates an embedding space into 
at least a pair of bounded and unbounded separations. The object 
that forms this separation surrounds anything that is located in the 
one of the bounded separation. 

Reality and language expose us to wide varieties of surrounds as a 
term. The term is used in military strategy, where a discrete set of 
troops removes points of egress from an area. The term is used 
when objects nearly encircle other objects, such as how European, 
Middle Eastern, and African landmass surround the 
Mediterranean Sea. The term is also used for a landlocked country 
like Switzerland, an area itself that surrounds a German exclave 
Büsingen. 

Mathematically, however, surrounds implies a more rigorously 
specified relation where the cells outside of a particular cell 
become disconnected into n separated collections of connected 
cells. While human languages operate in the realm of a conceptual 
surrounds preposition as previously commented, automated 
mapping systems and geographic information systems (GISs) do 

not operate in human linguistic realms. These types of systems 
need rigid decision standards to produce viable spatial queries, of 
which surrounds serves as an important one yet to be addressed.  

This paper focuses on surrounds within the setting of partitions of 
the plane ℝ!, that is, subdivisions of ℝ! into mutually exclusive 
cells. In partitions, two cells can be disjoint or they can meet, yet 
the other topological relations [14] known from simple regions—
overlap, coveredBy, inside, covers, and contains—are impossible. 
The eighth region-region relation equal only holds between a cell 
and itself. 
Political subdivisions are prime examples of partitions (taken at 
the granularity of smallest connected units) within which 
prototypical cases of surrounds relations are South Africa 
surrounding Lesotho, the mainland of Italy surrounding San 
Marino and the Vatican City, and the former German Democratic 
Republic surrounding West Berlin. In each case, the host object 
(the surrounding region) needs at least one hole, which in turn is 
filled by the surrounded object(s). While spatial relations related 
to containment have been studied extensively and have become a 
key ingredient of the formalized sets of topological relations 
[14,28], the spatial relations that rely on the concept of 
surrounding have received less attention [3,9,15,21,31]. 
Surrounding, however, differs from containment, as for 
containment, the two objects share a common interior, while for 
surrounding, the interiors are mutually exclusive (although the 
term full physical containment has been used as a superclass for 
both surrounds as well as completely contains [21]. 

While topological relations involving a holed region include 
specifications for surrounding configurations [14], the more 
involved cases of surrounds in multi-object spatial scenes, such as 
partitions, have not been studied. 

 
(a)  (b) (c) 

Fig. 1: Three types of surrounds (differentiated by boundary 
contacts) in political subdivisions: (a) the Italian regions of 

Emilia-Romagna and Marche jointly surrounding the 
Republic of San Marino (b) thirteen Swiss Cantons 

surrounding the Canton Nidwalden, and (c) the Eurozone 
surrounding Liechtenstein. 

Examples of such settings include the union of the Italian regions 
of Emilia-Romagna and Marche, jointly surrounding the Republic 
of San Marino (Fig. 1a), the union of the Swiss Cantons Jura, 
Neuchâtel, Vaud, Fribourg, Valais, Ticino, Graubünden, Glarus, 
St. Gallen, Zürich, Zug, Aargau, and Solothurn that surround the 
Canton Nidwalden (Fig. 1b), and the Eurozone (i.e., the countries 
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that have adopted the Euro as their currency as of 2014) that 
surround Liechtenstein or a naïve conceptual model of 
Switzerland, assigning Büsingen (a German territory) from the 
European map to Switzerland (Fig. 1c). 

The fundamental concepts of surrounds are identical, independent 
of whether there is a single object that surrounds something 
(Fig. 2a) or a set of objects that surrounds something else (Fig. 2b 
and 2c). The defining characteristic is that within the host region 
or set of host regions, a path exists that encircles the inner object. 
While surrounds may also apply to non-partitions (Fig. 2d), the 
detection of these paths is more involved and beyond the scope of 
this paper. Independent of whether the surrounding object is an 
individual or a collection, that object is labeled the surround.  

 
  (a)   (b) (c) (d) 
Fig. 2: Different scenarios of a surround given by (a) a single 
holed region, (b) a radial partition, (c) a sector partition, and 

(d) a scene with four overlapping regions. 
The goal of this paper is to identify path-connected collections of 
cells that surround other path-connected collections of cells in a 
purely topological sense, and conversely, those collections of cells 
which are surroundedBy other cells. While we may describe other 
configurations with that terminology reflecting distance and 
position, the use of distance creates significant problems when 
size constraints are not immediately available with groups of 
objects (as opposed to a single object). The paper also 
differentiates surrounds based on boundary intersections between 
the surround and the surrounded.  

The remainder of this paper continues with a review of the most 
closely related models for topological relations that may afford 
capturing surrounds in partitions (Section 2). Section 3 specifies 
surrounds relations, up to the development of an algebra for 
constructing complex scenes with surrounds relations. Section 4 
discusses an assessment of particular constraints placed on the 
process. Section 5 provides an implementable graph-theoretic 
approach to detecting surrounds. Section 6 provides an 
algorithmic sketch of the surrounds detection mechanism. Section 
7 provides conclusions and calls for future work in the field. 

2. FORMALIZATIONS RELATED TO 
SURROUNDS 
Partitions of space are a fundamental spatial abstraction, used as a 
model in many domains [18]. The formal foundation for spatial 
partitions [17] focuses on operations on entire partitions. A graph-
theoretic model of spatial partitions discretizes these 
operations [26]. Three fundamental concepts relate to surrounds 
in partitions: (1) the concept of a partition of space as a setting 
that puts specific constraints on the objects involved as well as the 
spatial relations it features, (2) the structural setting that affords a 
surrounds relation by having holes in a surrounding region 
(empty or not), and (3) the spatial-relation models that address 
topological relations. 

Without a hole—that is a separation of the exterior by some 
object—surrounds cannot occur. From an ontological perspective 
these kinds of holes are cavities [5]. Since the embedding space 
considered here is ℝ!, not ℝ!, other types of holes, such as 
hollows and tunnels, are not applicable. The semantics of physical 
containment relations focus on properties of the relations’ domain 

and codomain [21], which imposes constraints on the possible 
occurrences of surrounds.  

Considering essentially fiat, not bona fide objects [30] in 
partitions of ℝ!, a complementary perspective is pursued here. 
Some accounts of surrounds definitions resort to inclusion in an 
object’s convex hull [9]. While such semantics may be 
appropriate in specific ontologies (e.g., anatomy or other material 
physical settings [21]), it would lead to counter intuitive cases for 
partitions of fiat objects (e.g., it would specify that Switzerland 
surrounds Liechtenstein, ignoring that almost half of 
Liechtenstein’s border is shared with Austria).  

Since surrounds can be viewed as an encircling relation between 
objects in a space, that conception of surrounds carries no bearing 
of distance or shape inherent within it. In this restrictive form, it 
fits into the field of topological spatial relations, which remain 
invariant under topological transformations of the embedding 
space [8]. The two major models for binary topological 
relations—the 9-intersection [15] (and its predecessor the 4-
intersection [16]) and the region connection calculus (RCC) 
[28]—address surrounds relations differently. More extensive 
reviews of other related spatial-relation models can be found in 
survey articles [7,8,20] as well as a recent extension beyond 
binary topological relations [24]. RCC-8 allows for holed regions, 
but captures the resulting relations in holes like the relations 
outside a holed region. With the addition of more axioms, further 
distinctions are possible, however [4,6,19,34]. The 9-intersection, 
on the other hand, specifies the types of objects to which it applies 
and derives from the objects’ topological properties what relations 
are distinguishable. In its most basic form, the 9-intersection 
focuses on simple regions (i.e., regularized, closed sets that are 
homeomorphic to 2-discs), disallowing such 2-dimensional 
objects as holed regions, pierced regions, or separations of regions 
(Fig. 3.). 

 
Fig. 3. RCC-8 and 9-intersection equivalent region-region 

relations. 
Extending the relations’ domain and codomain [25,29] increases 
the number of realizable empty/non-empty 9-intersection 
matrices, giving rise to capturing some surrounds relations [29], 
yet none of these approaches can distinguish a disjoint in a 
region’s hole from a disjoint outside the region. Refinements of 
how non-empty intersections are recorded, including an 
incremental refinement for each separate intersection [23], go a 
step further, differentiating between the two types of disjoint, but 
since for a holed region the two exteriors are not explicitly 
identified as inner exterior and outer exterior, this approach falls 
short of assigning the actual disjoint relation. Such a distinction is 
only currently achieved with a compound-object model [10] that 
represents a single-holed region as the set difference of two 
regions, one inside the other, and records for each region the 
topological relation with respect to the target object [12,15]. 
With 9-intersection matrices [15] topological relations between 
entire partitions have been determined, without an expressive 
power to distinguish for two holed partitions whether one partition 
surrounds the other, or whether it is surrounded by the other 
partition. Bittner and Stell [5] developed a formal model of 



qualitative location, considering in a partition the topological 
relations between boundaries of cells. 

Scene topology applies to relations between groups of objects, not 
only two. MapTree [32]—a graph-based model—and hull+o 
[24]—a model based on detailed topological relations [13] and 
relations with respect to regions’ topological hulls [3]—allow for 
a complete, topologically correct reconstruction of scenes from 
their encoding. Both models have the power to capture surrounds 
relations, both between individual regions as well as in ensembles 
of regions. As such they come closest to providing a suitable 
foundation for specifying or implementing surrounds in partitions. 

3. AN ALGEBRAIC APPROACH TO 
SURROUNDS 
Before delving into surrounds, four terms are essential to creating 
the vocabulary used in this paper. These four terms are: scene, 
topological hull, regularized collection, and cell. 

Definition 3.1: Let T be a topological space and X1…Xn be sets 
within T. T combined with X1…Xn is called a scene. 

Simply put, a scene is a combination of objects in a space to be 
analyzed. In the case of this paper, a scene consists of the 
embedding space ℝ! and a collection of regions that subdivide the 
space. 

Definition 3.2: Let C be a connected region in space. C is called a 
cell. 

The theory of cells goes back to Alexandrov [2] and was furthered by 
Kovalevsky [22]. Cells partition space into bounded, connected 
regions. 

Definition 3.3: Let A be a connected collection of cells. The 
topological hull of A, denoted as [!], is the smallest closed disc 
such that [!] ⊇ ! [24]. 

The topological hull is an operation that fills holes in regions, 
employing the philosophy of the compound object model [10]. 
While some cells (or collections of cells) might have holes in 
them, constructing or detecting holes is an important task. The 
topological hull helps to determine the presence of such a hole. 

Definition 3.4: Let A be a collection of cells and let [A] be its 
topological hull. If A = [A], then A is called a regularized 
collection. 

Regularized collections are the basis for surrounds configurations 
from an algebraic perspective using the philosophy of the 
compound object model [10]. 

This paper builds on four distinct, elementary cases of surrounds 
relations involving two non-empty collections of partitioned cells 
(i.e., connected regions of space), A and B, with simply connected 
interiors. For B, it is further required that the union of all cells in 
B is equal to the topological hull of B [3,24], referred to here as a 
regularized collection (RC). Therefore, neither A nor B can be 
separated or touch in a finite number of points.  

• A surrounds open, unoccupied space, 
• A surrounds B, whose boundary lacks connection to A, 
• A surrounds B, whose boundary has a partial 

connection to A, without separating the open space into 
two or more disconnected parts, and 

• A surrounds only B, so that B’s boundary is completely 
connected to A. 

These four cases are called, respectively, surroundsEmpty (sE), 
surroundsDisjoint (sD), surroundsMeet (sM), and 

surroundsAttach (sA). Each of these four elementary cases has 
three components (Fig. 3): 

• the topological hull [3,24] of host A, essentially filling 
any hole in A, 

• the hole in the host A, and 
• the inner collection of cells B (such that the exhaustive 

union of the collection’s cell is equal to the collection’s 
hull) that is surroundedBy A. 

These three components are referred to as s*.hull, s*.hole, and 
s*.inner, respectively, where ∗∈ !,!,!,!  (Fig. 4). Only 
sE.inner is empty; the other eleven components of any of the 
surrounds configurations yield a simple region. Each hull 
contains its hole, while each non-empty inner collection of cells is 
either inside, coveredBy, or equal to the hole. This configuration 
implies, by composition of “inner {inside, coveredBy, equal} 
hole” with “hole inside hull” [11] that each non-empty inner 
region is also inside the hull. A less-strict specification could 
allow holes to sit on the boundary of the object (i.e., hole {inside, 
coveredBy} hull). The implications of such a relaxation on the 
hole’s position are discussed in Section 5.  

 
Fig. 4. The four cases of surroundsEmpty, surroundsDisjoint, 

surroundsMeet, and surroundsAttach, together with their hulls, 
holes, and inners. 

3.1 Properties of Basic Surrounds Relations 
The four surrounds relations have incompatible domains and 
codomains—while all four relations originate from a surround, 
none has a surround as its codomain as well. This property implies 
that none of these four relations is symmetric, reflexive, or 
transitive, and further, composition does not apply. The 
introduction of the converse relation to r, denoted by !—that is, 
surroundedByEmpty (!"), surroundedByDisjoint (!"), 
surroundedByMeet (!"), and, surroundedByAttach (!")—enables 
compositions over both collections.  

; sD sM sA 

!" !,!, !∗, !", !"∗, !∗, !"∗, !"∗ !,!, !∗!"∗, !∗ !∗ 
!" !,!, !∗!"∗, !"∗ !,!, !∗, !", !"∗, !"∗ !"∗ 
!" !"∗ !"∗ !" 

Fig. 4: The compositions of the converse relations with 
surroundsEmpty (sE), surroundsDisjoint (sD), surroundsMeet 

(sM), and surroundsAttach (sA), in a partition, yielding a 
disjunction of the relations disjoint (d), meet (m), equal (eq), 
and overlap (o*), coveredBy (cB*), inside (i*), covers (cv*), and 

contains (ct*) if at least one of the two objects is a collection of 
more than one object. 

Over the surround, the compositions !"!; !"|!!, ! ∈ {!,!,!} result 
either in simple region-region relations—disjoint (d), meet (m), or 
equal (eq), the latter only if the inferred relation is between the 



same partition cells—or also in the relations coveredBy (cB*), 
inside (i*), covers (cv*), and contains (ct*) if at least one object 
consists of more than a single cell, or overlap (o*) if both objects 
have more than a single cell (Fig. 4). Only compositions involving 
sA and its converse !" have unique results. Compositions 
involving sE and !" are meaningless, since they do not involve a 
non-empty region. 

3.2 Combinations of Surrounds Relations 
Recursive applications of hull, hole, and inner yield more 
complex spatial partition scenes for surrounds relations. For the 
purpose of combining surrounds configurations, we introduce 
three orthogonal operations: (1) add hole ⊚, (2) nest ⊛, and 
(3) add inner ⊗. Each of the three operations is specified by the 
intersection or union of two surrounds configurations, !,! ∈
{!", !", !", !"}, with constraints imposed on the existence of the 
inner regularized collections as well as the topological relations 
between the involved hulls, holes, and inner regularized 
collections (Eqs. 1-3). 
!⊚ ! = ! ∩ !!|!(!. ℎ!""!!"#$%!!. ℎ!"") ∧ !(!. ℎ!"#!!"#$%"&'!!. ℎ!"#)! (1) 

!⊛ ! = ! ∪ (!. !""#$ ∩ !) !. !""#$ ≠ ∅ ∧ (!. !""#$!!"#$%!!. ℎ!"")
! otherwise  (2) 

!⊗ ! =
! ∪ ! !. ℎ!""!!"#$%!!. ℎ!"" ∧ ! !. ℎ!"#!!"#$%!!. ℎ!"# ∧

!. !""#$!!"#$%"&'!!. !""#$
! ∪ ! !. ℎ!""!!"#$%!!. ℎ!"" ∧ ! !. ℎ!"#!!"#$%!!. ℎ!"# ∧

( !. !""#$ ≠ ∅ ∨ !. !""#$ ≠ ∅ )
! otherwise

 (3) 

Figs. 5a-c provide visual examples for the semantics of these 
operations for each binary combination of sE, sD, sM, and sA.  

As long as each hole, as well as each inner regularized collection, 
are considered a separate, distinct entity (i.e., they carry a 
different label), the sixteen combinations of adding a hole ⊚ are 
unique, while nest ⊛ has identical results for all combinations 
that start with surroundsEmpty, whereas adding an inner 
regularized collection ⊗ has identical results for all combinations 
that start with surroundsAttach, as well as for ! ∈ {!,!}, 
sI⊗ !" = !"⊗ !". Uniqueness of combinations is further 
compromised if holes are interchangeable, or inner regularized 
collections are interchangeable among each other. In such a 
setting, for !, ! ∈ {!,!,!,!} ∧ ! ≠ ! the combinations of !"⊚ !" 
and !"⊚ !" yield identical results. 

3.3 Algebra of surrounds Combinations 
The algebraic properties—commutative, associative, distributive, 
and the identity element—for the three operators ⊛, ⊚, and ⨂ 
show similarities, yet no two operators share exactly the same 
algebraic properties (Fig. 6). 

The idempotent operation addHole ⊚ fixes the outer boundary 
between two constructions and places another hole within the 
original object. Removing any labeling considerations, for any 
!, ! ∈ {!,!,!,!}, !. !⊚ !. ! = !. !⊚ !. !, as the topological nature 
of the structure produces identical scenes; therefore, addHole is 
commutative. Also, for any !, !,! ∈ {!,!,!,!}, !. !⊚ (!. !⊚
!.!) = (!. !⊚ !. !)⊚ !.!, as all relations in question have a fixed 
outer boundary and all holes are enforced to be disjoint; therefore, 
addHole is associative. The addHole operator is, however, not 
distributive over the other two operators, because nest requires a 
fixed object to replace, while addInner requires a specified 
hole, both conditions that addHole cannot accommodate. Since 
addHole adds a hole to a pre-existing relation, its identity element 
is a regularly closed region (RC). Yet, this configuration is outside 
of the domain of surrounds relations. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5: A visual display of the semantics of the operations (a) 
add hole, (b) nest, and (c) add inner into hole for the 
exhaustive binary combination of surroundsEmpty, 

surroundsDisjoint, surroundsMeet, and surroundsAttach. 
 

 commutative associative distributive identity 
element 

addHole ⊚ yes yes no RC 

nest ⊛ no yes no RC 

addInner ⊗ no yes no sE 

Fig. 6: Summary of the algebraic properties commutative, 
associative, distributive, as well as each operations’ identity 
element, for the operations add hole ⊚, nest region ⊛, and 

add inner region ⊗. 



Since nest ⊛ produces a copy of another topological construction 
in place of the surrounded object in the first operand, it is 
inherently not commutative, because the surrounded boundary 
within the first operand becomes the outer boundary in the second 
operand. These two boundaries have a size mismatch; therefore, 
they cannot be exchanged to produce the same result. The 
operation nest, however, is associative in that it considers the 
inner most connected unit and replaces it, so that arbitrary 
groupings will not impact the result of the operation as long as the 
order is maintained. The mismatched dimensions of the operation 
automatically determine that nest is also not distributive over any 
operator from either side, leading to issues of which side of the 
other operators it is intended to apply to. Finally, nest—like 
addHole—has a regularized collection as its identity element. 
The operation addInner ⨂ fixes the outer boundary between two 
constructions, but instead of generating a second hole within the 
original object, a copy of the internal structure of the second 
operand is placed within the first in a disjoint fashion. While 
addInner would appear to be commutative, it is not, because for 
constructions involving surroundsAttach it is impossible for a 
surrounded collection to be disjoint from the attached collection; 
therefore, !"⊗ !" ≠ !"⊗ !" and !"⊗ !" ≠ !"⊗ !". While 
⨂ is no commutative, it is inherently associative. The operation is 
not distributive over either of the other operator, since nest causes 
confusion as to which of the internal relations undergoes the nest 
operation, and similarly addInner produces the conflict as to 
which of the holes gets the appended piece. Finally, sE is a left 
and right identity for addInner, because 
∀! ∈ !,!,!,! : !"⨂!" = !" and ∀! ∈ !,!,!,! : !"⨂!" = !". 
The final piece of the algebra over the three operators is to 
consider which of the operations take precedence over other 
operations, forming an implicit order of operations. Since nest is a 
replacement operation, it must occur first to avoid confusion with 
the particular inner collection in question. Since addInner 
operates upon the innermost hole available, it must occur before 
addHole, avoiding confusion as to which hole is the innermost. 
Finally, addHole is the last operation, appending additional 
internal structures. Proof of this sequence as the order of 
operations is beyond the scope of this paper. Fig. 7 displays a 
complex surrounds scene that can be uniquely constructed with 
these three operators in the sequence: {() ⊛⨂⊚}. 

 
Fig. 7: A complex scene with multiple surroundings, created 

with the sequence !.!⊚ (!.!⨂(!.!⊛ !.!))⊚ ((!.!⊛
!.!)⨂!.!). 

4. RELAXATION OF SURROUNDS 
CONSTRAINTS 
In order to provide a focus on the most salient features of 
surrounds, the specifications (Section 3) intentionally restricted 
the flexibility of participating partitions in several specific 
properties (Fig. 8). The requirement of a surround to be simply 
connected, for instance, limits the configurations to have no 
separations, yet for such cases as political subdivisions 
separations are commonplace (Fig. 1b and 1c). This section 
examines the impact of relaxing these constraints in various ways. 

C1: To account for separations in the specifications implies that 
the operation addHole needs an additional parameter that captures 
to which separation the added hole applies. Lifting the constraint, 
however, would also yield situations in which two or more 
separations may have a 0-meet relation in lieu of being disjoint. 
Yet such 0-meet configurations have the potential to create 
emerging holes, either through a multiple 0-meet interactions by a 
single cell, or through a chain of cells connected by 0-meet. C2 
addresses the impact on the algebra of such an emerging hole.  

C2: Allowing fringed holes in the specifications has no impact as 
long as the hole has only one boundary interaction with the host. 
With multiple interactions, however, the interior of the collection 
A is separated, so that the operation addHole needs an additional 
parameter that captures into which to part of the surround the hole 
is inserted. 

Constraint Relaxed Constraint 
C1 interior of collection simply 

connected 
interior of collection 
potentially disconnected 

C2 hole inside hull hole inside v 0-coveredBy hull 
C3 hole inside hull hole inside v 0-coveredBy v 1-

coveredBy hull 
C4 hole \ [inner] is connected hull of inner disconnects inner 

void 
C5 disjoint inners disjoint v 0-meet of inners 
C6 disjoint inners disjoint v 0-meet v 1-meet of 

inners 

C7 disjoint holes disjoint v 0-meet of holes 
C8 disjoint holes disjoint v 0-meet v 1-meet of 

holes 

Fig. 8. Constraints imposed on surrounds specifications 
(Section 3) and their potential relaxations. 

C3: If the only hole of a collection were 1-coveredBy the 
collection, then the hole and the host’s exterior would be 
indistinguishable, and no surrounds configuration can be 
established. Therefore, C3 should not be relaxed. 

C4: A disconnected inner void requires that the operation 
addInner needs an additional parameter that captures to which 
hole the added inner collection applies.  

C5 and C6: Both result in scenarios that can split the hole into 
multiple connected components; therefore, creating another 
instance of C4. C6 also could produce surroundsAttach, if 
allowed. 

C7: Having a 0-meet of holes is not an issue until those holes 
would disconnect the collection A, which is already addressed 
under C1 and C2. 

C8: While two or more holes in a 1-meet relation could be 
conceived (e.g., the political subdivision of the Lake of Constance 
among Germany, Switzerland, and Austria), it could also be 
treated in analogy to C3 as three non-distinguishable voids. 

5. DETERMINING SURROUNDS IN 
PARTITIONS 
The algebraic formalization of the different types of surrounds 
relations does not lead immediately to a framework that could be 
run over arbitrary partitions by contemporary GISs given that 
these systems are based on geometric, rather than symbolic, 
representations of spatial scenes [33]. In order to determine 
computationally whether, in a partition, a set of cells has one or 



more surrounds relations with respect to some other cells, 
corresponding definitions are needed on some implementable data 
structure. For this purpose, the partition is modeled as an 
adjacency graph of the partition’s cells. Two fundamental graph 
concepts are used: (1) path connectedness [1] and (2) the cutset, 
usually defined for edges [1]. Here, however, a definition, 
centered on vertices, is the required conceptual model. A vertex 
cutset is any set of vertices whose removal would disconnect the 
graph, dissolving also any edges that start or end at the removed 
vertices (Fig. 8). This dissolved set of edges is a superset of at 
least one traditional cutset. 

To create the full partition of a space, a systematic procedure is 
employed. Each path-connected collection of cells in the scene is 
unioned. With this basis set created, the first tool employed is the 
topological hull (Definition 3.3). 

 
(a) (b) (c) 

Fig. 9: Illustration of the concept of a vertex cutset: (a) a 
connected graph G, (b) a vertex cutset (highlighted vertices) of 
G, and (c) the disconnected graph resulting from removing the 
vertex cutset, together with the edges that start or end at the 

removed vertices. 
With the computation of each topological hull of each connected 
collection, the next step is the definition of the holes within a 
collection of cells (Definition 5.1). 

Definition 5.1: Let A be a collection of cells with topological hull 
[!]. If [!]\! = ∅, A is an unholed cell. If [!]\! = ¬∅, A is a 
holed cell. The closure of each individual path-connected interior 
component of ! \! is a hole. A is defined to have type interior 
while ! \! has type exterior. 
While a collection of cells might have a hole by Definition 5.1, 
that hole may not be devoid of type interior cells. The next aim is 
to produce a partition of space where no point is in more than one 
cell. Definitions 5.2 and 5.3 produce holes that are separated 
exterior voids, that is, they have no intersection with any type 
interior cell. Subsequently, scene T refers to a collection of cells 
of types interior or exterior. 

Definition 5.2: Consider the collection of all cells and all holes 
within the scene T. Compute the set differences of all possible 
groupings. Any new sets created with the set difference are made 
available to the collection. The largest collection of these set 
differences that result in mutually exclusive cells are the bounded 
partitions of the scene T. Each cell of the bounded partition that 
does not have the relation equal with a cell of type interior is a 
separated exterior void and has type exterior. 

The final cell to be identified in the scene T is the outer void, the 
unbounded component of the embedding space ℝ! 
(Definition 5.3). 

Definition 5.3: The outer void of a scene T, denoted as VT, is the 
set ℝ!\B, where B is the collection of bounded partitions. VT is the 
portion of the exterior unbounded by any objects in the scene. 

With the creation of the outer void, the entire space ℝ! is 
partitioned such that all non-boundary points are assigned to 
exactly one cell. From this point forward, all cells from a scene 
will be the cells of the bounded partitions and the outer void. The 
relation strictly 1-meet (Definition 5.4) leads to adjacent partitions 
(Definition 5.5). 

Definition 5.4: Two collections of cells A and B have a 1-meet 
relation if their o-notation [24] is !!:!! ! 1,!,∅  and 
!!:!! ! 1,!,∅  and all interactions touch. 

Definition 5.5: Consider a topological scene T and its outer void 
VT. The adjacency graph G is constructed by linking all cells 
(represented by a vertex) that have the relation 1-meet. These cells 
are said to be adjacent. 

Definition 5.6: Let G be an adjacency graph and V a vertex cutset 
of G. All distinct connected parts of G\V are called separated 
components of G\V. 

Definitions 5.1-5.4 enable the definition of a class of relations that 
map a vertex cutset A and a set of vertices B onto a set of vertices 
C that forms the class of surrounds relations: ! !,!,! →
!|!!,! ⊂ ! ∧ ! ⊂ ! ∧ !⋂! = ∅. While this relation forms a 
viable surrounds class that is exhaustive of all strict surrounds 
relations, the relation can be subdivided based on the relationships 
within the graph between A, B, and the varying separated portions 
of the graph G.  

The simple algebra of surrounds combinations (Section 3.3) was 
limited to create operations that could be systematically and 
repeatedly applied, relying on four surrounds relations 
(surroundsEmpty, surroundsAttach, surroundsDisjoint, and 
surroundsMeet).  

The following set of relations provides distinctions for seven 
different types of surrounds relations: 

• surroundsEmpty (including that in Section 3) 
• surroundsAttach (including that in Section 3) 
• surroundsAttachHole 
• surroundsDisjoint (including that in Section 3) 
• surroundsDisjointHole 
• surroundsMeet (including that in Section 3) 
• surroundsSplitPocket 

This set of these seven surrounds relations contains the surrounds 
relations of Section 3, but ultimately can achieve recursion and 
provide a mechanism for allowing multiple boundary contacts 
within a hole. This formalization can provide the vehicle for 
lifting many of the constraints within Section 4. 

To display how the definitions in the section are applied, the same 
example partition of space is used (Fig. 10), comprising the 
general exterior A, fourteen type interior bounded partitions 
(B…O), and two type exterior bounded partitions (P and Q). 

 
 (a) (b) 

Fig. 10. (a) Example partition and (b) corresponding 
adjacency graph to display of surrounds* definitions. Gray 
cells and vertices are of type interior, while white cells and 

vertices are of type exterior. 



Definition 5.7: Let G be an adjacency graph and A be a vertex 
cutset of G, and further let B be mutually exclusive from A and a 
subset of [A]. A surroundsEmpty B if and only if B is of type 
exterior and B is an entire separated component of G\A. 

surroundsEmpty (Definition 5.7; Fig. 11) is found when holes 
exist in a sensor network. The surroundsEmpty relation is useful 
as a detector for full coverage by a sensor network, or similarly 
for detecting that a sensor in a sensor network has ceased to 
function. Similarly, it is helpful for recognizing unaffected 
pockets by something like a pollution plume or an epidemic. 

 
Fig. 11. surroundsEmpty displayed with the vertex cutset {O} 

(purple) and the surrounded cell P (cream). 
Definition 5.8: Let G be an adjacency graph and A be a vertex 
cutset of G, and further let B be mutually exclusive from A and a 
subset of [A]. A surroundsAttach B if and only if all cells !! ⊆ ! 
are of type interior and B is an entire separated component of 
G\A. 

surroundsAttach (Definition 5.8; Fig. 12.) is a very typical 
example in the political world and ultimately what we 
prototypically assume with the term surrounds in natural 
language: one object is completely up against another object with 
no way out. This happens politically with such countries as 
Lesotho, the Vatican City, and San Marino. It also happens 
between groups of countries toward another country (e.g., 
Switzerland as a landlocked country) and groups of countries to 
other countries (e.g., Switzerland and Liechtenstein being 
surrounded in this way by Eurozone countries). 

 
Fig. 12. surroundsAttach in the example partition. This 

instance would be recursive as there is still a separation of the 
graph ({A,B,E,F,G,H,I,J,N,Q} on one side; P on the other). 

Definition 5.9: Let G be an adjacency graph and A be a vertex 
cutset of G, and further let B be mutually exclusive from A and a 
subset of [A]. A surroundsAttachHole B if and only if B is an 
entire separated component of G\A and at least one cell !! ⊂ ! is 
of type exterior, and all such cells of type exterior are not adjacent 
to A within G, or B is a proper subset of a separated component 

such that no remaining vertices within the separated component 
are adjacent to A. 

surroundsAttach (Definition 5.8; Fig. 12) and 
surroundsAttachHole (Definition 5.9; Fig. 13) differ in that, while 
the outer boundary of the separated component is covered, there 
remains an inner boundary. In some cases, that inner region may 
be another object of interest, while in other cases it may be of type 
exterior. 

 
Fig. 13. surroundsAttachHole, in this case with an isolated 

component of type exterior. 
Definition 5.10: Let G be an adjacency graph and A be a vertex 
cutset of G, and further let B be mutually exclusive from A and a 
subset of [A]. A surroundsDisjoint B if and only if B is a proper 
subset of a separated component of G\A, all cells Ci⊆ ! are of 
type interior, and no such cell has adjacency to A within G. 

surroundsDisjoint (Definition 5.10; Fig. 14.) represents a layer 
around a cell. This layer serves as a buffer between the host 
collection and the surrounded collection. For instance, one could 
view Kansas, Missouri, Nebraska, and Iowa as the center of the 
United States, separated from any point of egress by at least two 
other states. 

 
Fig. 14. surroundsDisjoint in the example partition. The green 
cells C, D, E, K, O represent the buffer between cells L and M 
(the surrounded cells) and B (the host cell). No path from L or 

M to B is free of this set of vertices. 
Definition 5.11: Let G be an adjacency graph and A be a vertex 
cutset of G, and further let B be mutually exclusive from A and a 
subset of [A]. A surroundsDisjointHole B if and only if B is a 
proper subset of a separated component of G\A, no cell !! ⊆ ! has 
adjacency to A within G, and G\A\B has more separated 
components than G\A. 

surroundsDisjoint (Definition 5.10; Fig. 14.) and 
surroundsDisjointHole (Definition 5.11; Fig. 15.) differ similarly 
to surroundsAttach and surroundsAttachHole. They present a 



guaranteed opportunity for recursion as cell B in this case serves 
as a buffer to the new separated component itself. 

Definition 5.12: Let G be an adjacency graph and A be a vertex 
cutset of G, and further let B be mutually exclusive from A and a 
subset of [A]. A surroundsMeet B if and only if B is a proper 
subset of a separated component of G\A, at least one cell !! ⊆ ! 
has adjacency to A within G, all cells in B are of type interior, B 
induces no more separated components of G\A, and at least one 
remaining vertex from the separated component is adjacent to A. 

 
Fig. 15. surroundsDisjointHole in the example partition. In this 

case, the isolated component is of type exterior. 
surroundsMeet (Definition 5.12; Fig. 16.) is similar to 
surroundsDisjoint (Definition 5.10; Fig. 14.) in that the separated 
component is not exhausted, but the fundamental difference 
between the two is that surroundsMeet requires boundary contact, 
whereas surroundsDisjoint excludes it. For instance, the world’s 
oceans surround the Mediterranean Sea in this way. 

 
Fig. 16. surroundsMeet in the example partition. The blue 

vertices L, O, and P represent cells that vertex N can access 
without passing through the host collection. Some of these 
vertices (L and O) have adjacency to the host collection. 

Definition 5.13: Let G be an adjacency graph and A be a vertex 
cutset of G, and further let B be mutually exclusive from A and a 
subset of [A]. A surroundsSplitPocket B if and only if B is a 
proper subset of a separated component of G\A, at least one cell 
!! ⊆ ! has adjacency to A within G, all cells in B are of type 
interior, and B induces at least one additional separation of G\A. 

surroundsSplitPocket (Definition 5.13; Fig. 17.) and 
surroundsMeet (Definition 5.12; Fig. 16.) differ in that 
surroundsSplitPocket creates at least one additional separated 
component in the resulting vertex cutset. Either of these relations 
guarantees the result to be recursive; however, 
surroundsSplitPocket guarantees multiple opportunities for 
recursion. 

Given that the domain of the class of surrounds relations is all 
vertex cutsets and its codomain is all components separated by the 
vertex cutset, surrounds as a relation is recursive so long as 
additional separated components remain after the application of a 
surrounds relation. Once all holes in a collection of cells A are 
filled, the relation is at its final level. 

 
Fig. 17. surroundsSplitPocket in the example partition. In this 
case, the addition of O to the vertex cutset (C,D,E,G,I,J,K,M) 
would induce two extra separated components in the graph G. 
Some relaxations impact the graph formalization as well. 
Whenever a relaxation would allow a 0-meet or a 0-coveredBy, 
the graph formalization loses its ability to detect a fringed 
surround as a surrounds relation through the vertex cutset. The 
recursive nature of the graph formalization and its construction 
based solely on a vertex cutset makes it more flexible in 
accounting for separations and multiple hole scenarios. What it 
allows for has the added drawback that it takes away the ability to 
carve out features. Definition 5.14 adds this carving ability. 

Definition 5.14: Let A be a vertex cutset of a graph G. Consider 
the induced subgraph of A from G. If any set of this induced 
subgraph with no edge connection to a separated component of 
G\A in G is a vertex cutset of the induced subgraph, then this 
vertex cutset and the separated components contained in its 
topological hull can be removed to form A*, imposing an 
additional separated component of G\A. 

This additional definition satisfies that the refined version A* is 
still a vertex cutset, still creates additional separated components, 
and further maintains the prior separated components from the 
regular version of A. 

6. AN ALGORITHM FOR SURROUNDS 
Using the rules from Sections 5, an algorithmic design for 
surrounds can be constructed for adjacency-aware spatial 
information systems such as ESRI’s ArcGIS suite and 
OracleSpatial, amongst others. 

For an algorithm to decide on whether or not a collection of cells 
surrounds another collection of cells, information about the 
structure of the space, the types of the potentially surrounded 
vertices, the number of separated components after removal of the 
host, and the adjacency of both the remaining separation and the 
surround to the host (Fig. 18). 



 
Fig. 18. surrounds* decision tree. 

Under this decision tree structure, surrounds can be codified as a 
queryable relation within spatial information systems. Algorithm 
6.1 displays the pseudocode of such an algorithm. 

Algorithm 6.1: Pseudocode for Surrounds Classification 

Given: adjacencyGraph [n x n matrix], vertexType [n list] 

Input: host [m list], surrounded [k list] 

Compute: # of connected components of adjacencyGraph (a) 

Remove host from adjacencyGraph ! hostGraph 

Compute: # of connected components of hostGraph (b) 

If b > a: 

  If vertexType[surrounded] = “exterior” 

    Output “surroundsEmpty” 

  Else: 

    Select connected component containing surrounded ! comp 

    Remove surrounded from hostGraph ! surroundGraph 

    Compute: # of connected components of surroundGraph (c) 

      If c < b: 

        Output “surroundsAttach” 

      If c = b: 

        If surrounded adjacent to host in adjacencyGraph: 

          Select connected component of surroundGraph within comp ! inner 

          If inner adjacent to host: 

            Output “surroundsMeet” 

          Else: Output “surroundsAttachHole” 

        Else: Output “surroundsDisjoint” 

      If c > b: 

        If surrounded adjacent to host in adjacencyGraph: 

          Output “surroundsSplitPocket” 

        Else: Output “surroundsDisjointHole” 

Else: Output “no” 

7. CONCLUSIONS AND FUTURE WORK 
This paper produced an algebraic form of surrounds in partitions 
based on the premises of two scene topology tools [24]: the 
topological hull and the o-notation. With four basic types of 
surrounds and three operations to combine such surrounds types, 
an algebra was created for constructing complex surrounds 
configurations. Furthermore, a graph version of surrounds was 

created based on an adjacency paradigm of 1-meet, allowing for 
non-separating fringed holes to be considered and for surrounds 
to actively be computed within existing adjacency frameworks 
based solely on the concept of vertex cutset. This version of 
surrounds serves as a detection mechanism underneath the current 
standards of geometric storage within contemporary GISs. 
While surrounds, as tackled in this paper, is very flexible, there 
are alternative versions of surrounds that can be explored. While 
this paper focused on cells in partitions (effectively representing 
regions or collections thereof), lines and points can also be 
surrounded (e.g., Four Corner is a point surrounded by the States 
of Arizona, Colorado, New Mexico, and Utah). Since these ideas 
do not integrate well with partitions of space, new definitions and 
paradigms would be required to accommodate an integrated 
framework covering holistically regions, lines, and points. 

Another such surrounds scenario can be found in separated 
objects that together surround another object. For instance, 
consider two donuts, one inside the other’s hole, and a third donut 
between the two (Fig. 19a). Since the algebra for constructing 
scenes with surrounds relations (Section 3) does not yet include 
objects made up of multiple separated collections of cells, this 
nested donut scenario is not yet constructable. In future work, the 
algebra needs to be extended to account for such self-nested 
scenarios. On the other hand, the detection mechanism of 
surrounds relations is generic enough to determine that such a 
combination of donuts surrounds the third donut, specifically 
surroundsDisjoint (Fig. 19b). 

 
Fig. 19. The union of C and G surroundsdisjoint E, much like 

C surroundsDisjoint C. 
Preparata and Shamos [27] proposed methods for geometric 
searching through files. In their work, they proposed different 
types of queries: single-shot and repetitive-mode. While 
surrounds can be a single-shot query, the stackability of 
surrounds forms a need for a repetitive-mode query. Integrating 
the surrounds query into a geometric search via these methods 
could be a fruitful endeavor in settings such as emergency 
planning with ArcMap using the Polygon Neighbors Analysis 
tool. 
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