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ABSTRACT
We propose a new measure to capture similarity between
polygonal curves, called the minimum backward Fréchet dis-
tance. It is a natural optimization on the weak Fréchet dis-
tance, a variant of the well-known Fréchet distance. More
specifically, for a given threshold ε, we are searching for a
pair of walks for two entities on the two input curves, T1

and T2, such that the union of the portions of backward
movements is minimized and the distance between the two
entities, at any time during the walk, is less than or equal to
ε. Our algorithm detects if no such pair of walks exists. This
natural optimization problem appears in many applications
in Geographical Information Systems, mobile networks and
robotics. We provide an exact algorithm with time complex-
ity of O(n2 logn) and space complexity of O(n2), where n
is the maximum number of segments in the input polygonal
curves.
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1. INTRODUCTION
Measuring the similarity between two polygonal curves is
among the fundamental problems of computational geom-
etry. It poses challenges and is of high interest both from
a practical and theoretical point of view. In the context
of Geographical Information Systems (GIS) the similarity
of movement patterns, modeled by polygonal curves, has a
variety of applications. These include animal behaviour, hu-
man movement, traffic management, sports scene analysis,
and movement in abstract spaces [9, 10, 11]. In [13, p. 352]
it is stated that for curve matching, a global approach (e.g.
via the Fréchet distance) achieves a better accuracy than a
local approach (e.g., via the Hausdorff distance or the dis-
tance proposed in [8]). The reason is, a global matching
takes continuous and global parametrization of the consid-
ered curves into account. For this reason, the Fréchet dis-
tance is a widely used and established tool to measure and
formalize the similarity between polygonal curves [10, 11].
Its global character makes it a more “suitable” [2;, 13, p.
859] measure for continuous curves.

In the well-known dog-leash metaphor, the Fréchet distance
can be described informally as follows: suppose a man walks
his dog, while both have to move on their own curves from
the starting point to the ending point on their respective
curves. The Fréchet distance is the minimum needed length
for the dog’s leash, if the person and the dog are not al-
lowed to move backwards on the pair of curves. An often
used variant of the standard Fréchet distance is the weak
Fréchet distance (or non-monotone Fréchet distance) [1]. In
this version, the objective is to minimize the required leash
length while backward movements of arbitrary length are
allowed at each point during the walk. In GIS, the weak
Fréchet distance has e.g., been used in the context of map
matching [2, 13].

In robotics, the weak Fréchet distance is related to a measure
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Figure 1: Moving backward from a to b allows to
walk on T1 and T2 and keeping the distance between
moving objects less than ε during the walk.

known as ring-width, e.g., studied in [1, 12]. In the ring-
width problem, the input is a closed polygon, P , and two
half-lines, h1 and h2. The starting point of h1 and h2 is on
the boundary of P and they do not intersect each other or
P at any other point. The objective is to find the minimum
width ring such that it is possible to move P through the
ring, starting from h1 and ending at h2. This problem was
solved for the first time by Goodman et al. [12] and an
alternative easier solution was provided by Alt and Godau
[1], based on the weak Fréchet distance.

It is known that the standard Fréchet distance is sensitive
to outliers. To address this, new measures together with
their algorithmic solutions have been introduced that are
less sensitive to outliers and obtain a better curve-matching
(see e.g., [3, 5]). For two input polygonal curves, Buchin et
al. [3] studied maximizing the length of matched subcurves
which are in ε Fréchet distance of each other. They solved
the problem exactly when the Fréchet distance is calculated
under the L1 or L∞ norms. For the standard L2 norm,
Carufel et al. [5] studied how to minimize the length of
subcurves of two polygonal curves that need to be removed
to achieve a given Fréchet distance. Recently, Buchin et al.
[4] studied a variant of the problem that shortcuts replace
the removed subcurves. These shortcuts are considered for
matching during the computation of Fréchet distance. They
showed that this problem is NP-hard.

Brakatsoulas et al. [2] pointed out that the choice between
the weak Fréchet distance and the standard Fréchet distance
depends on the application. Figure 1 illustrates an exam-
ple of two polygonal curves that appear similar and, with a
small amount of backward movement, the curves are indeed
in weak ε Fréchet distance (note that their standard Fréchet
distance is large and thus they would not be considered to be
similar under that measure). While in the standard Fréchet
distance no backtracking is allowed, in the weak Fréchet dis-
tance, the moving entities are allowed to backtrack on the
curves. A natural question arises: what is the minimum
length required for such backward movements to achieve a
particular Fréchet distance? This optimization problem is
solved here. Note that a simultaneous minimization of the
length of backward movements and the Fréchet distance,
are conflicting objectives. Increasing (resp., decreasing) the
maximum leash length decreases (resp., increases) the min-
imum required length of all backward movement portions.
Hence, we search for an optimal solution, i.e., walks that
minimizes the backward movements, with a fixed input up-
per bound on the leash length.

In the language of the dog-leash metaphor, the considered
variant of the Fréchet distance of this paper is motivated as

follows: imagine that an upper bound for the allowed leash
length is given as an input parameter. This could be a max-
imum allowed distance between the two moving entities so
that they can quickly reunite, in case of an emergency. Now,
we are searching for walks on the given curves, such that
the entire distances traveled are minimized. If the Fréchet
distance between the input curves is not larger than the in-
put threshold, then the optimal solution is clearly equal to
the sum of the lengths of the both input curves (since no
backward movement is necessary). In this situation, a cor-
responding optimal pair of walks can be computed via the
approach from [1], i.e., a pair of walks, which realizes the
Fréchet distance. If this is not the case, an optimal solution,
or more precisely any valid solution, forces the man and/or
his dog to move backwards, such that the sum of the traveled
distances is larger than the lengths of the two input curves.
Our objective is to minimize the length of the portions that
are traveled backwards, while guaranteeing that the leash
length stays below the input threshold.

The structure of the paper is as follows. In Section 2, we
discuss the preliminaries and define the problem formally.
Then, in Section 3, we explain a polynomial time algorithm
to solve the problem exactly. Afterward, in Section 4, we
improve the time and space complexity of the algorithm to
O(n2 logn) and O(n2) respectively. At the end, we conclude
the paper and pose some open questions.

2. PROBLEM DEFINITION
In this section, we first state some preliminary concepts.
Then, we will define the minimum backward Fréchet dis-
tance problem formally. A geometric path in R2 is a se-
quence of points in the Euclidean space, R2. A discrete
geometric path, or a polygonal curve, is a geometric path,
sampled by a finite sequence of points (i.e., vertices), which
are connected by line segments (i.e., edges) in order. Let
T1 : [0, n] → R2 and T2 : [0,m] → R2 be two polygonal
curves of complexity (number of segments) n and m respec-
tively. W.l.o.g., assume that m ≤ n. A parameterization
of [0, n] is a continuous function f : [0, 1] → [0, n], where
f(0) = 0 and f(1) = n hold ([0, 1] is a time interval). If f
is non-decreasing, then the parameterization is monotone.
The weak Fréchet distance, δw(T1, T2), is defined as For-
mula 1, where d(., .) is the Euclidean distance and f and
g are two parameterization of [0, n] and [0,m] respectively,
which are not necessarily monotone. However, for the stan-
dard Fréchet distance, the two parameterization must be
monotone.

δw(T1, T2) = inf
f,g

max
t∈[0,1]

d(T1(f(t)), T2(g(t))) (1)

For a parameterization f , let Bf ⊆ [0, 1] be the closure of the
set of times in which f(t) is decreasing (i.e., the movement
is backward). For a pair of parameterizations we define its
quality by Formula 2, where ‖.‖ is the Euclidean length.

Qf,g(T1, T2) :=

∫
t∈Bf

||T1 (f (t)) ||dt+

∫
t∈Bg

||T2 (g (t)) ||dt

(2)
We formally define the minimum backward Fréchet distance
as follows. For a pair of polygonal curves, T1 and T2, and a



given leash length, ε, we are looking for a pair of optimal pa-
rameterization, (f, g), as defined in Formula 3. We consider
only matchings that induce matched pairs of points within
distance less than or equal ε.

Qε(T1, T2) = inf
f,g

Qf,g(T1, T2) (3)

The basic structure to decide whether the Fréchet distance
between two polygonal curves is upper bounded by a given
ε, is the free-space diagram [1]. For two polygonal curves,
T1 with n vertices and T2 with m vertices, and two corre-
sponding parameterizations, f and g, the free-space is de-
fined formally by Formula 4.

Fε = {(t1, t2) ∈ [0, 1]× [0, 1] | d(T1(f(t1)), T2(g(t2))) ≤ ε}
(4)

The free-space diagram is the rectangle [0, 1]× [0, 1], parti-
tioned into n columns and m rows. It consists of nm pa-
rameter cells Ci,j , for i = 1, ..., n and j = 1, ...,m, whose
interiors do not intersect with each other. The cell Ci,j rep-
resents the multiplication of two subranges of [0, 1] that are
mapped to the edge between vertices T1(i − 1) and T1(i)
and the edge between vertices T2(j− 1) and T2(j). For each
parameter cell Ci,j , there exists an ellipse such that the in-
tersection of the area bounded by this ellipse with Ci,j is
equal to the free-space region of that cell. The union of all
cells’ free-space builds the free-space (or white-space) of the
diagram and is denoted by W . The complement of W is
the forbidden-space (or black-space) of the diagram and is
denoted by B.

Since we will measure the lengths of the subcurves of T1

and T2 directly in the free-space diagram, we stretch and
compress the columns and rows of the diagram, such that
their widths and heights are equal to the lengths of the cor-
responding segments. The resulting diagram is called the
deformed free-space diagram and is denoted by F . In Figure
2a, two polygonal curves, a leash length, ε, and the corre-
sponding deformed free-space diagram are shown. As the
deformed free-space diagram illustrates, to be able to walk
on T1 and T2 with a leash length less than ε, there must be
a backward movement on the polygonal curves. However,
the possible walk is not unique. We are looking for a walk
that has the minimum backward movement. In this exam-
ple, the value for the optimal walk is δ(t11, t12) + δ(t21, t22)
where δ is the walking distance between the two points on
the corresponding curve.

3. ALGORITHM
In order to solve the minimum backward Fréchet distance
problem, we transform it to a shortest path problem on a
graph, Gv = 〈V,E〉. Consider the forbidden-space, B, as
obstacle. We define the visibility inside the free-space, W ,
with respect to the obstacle. If it is possible to link two
points inside W by a line segment such that it does not
intersect B, then we say they are visible. The set of vertices,
V , of Gv is the set of all vertices of W (the free-space). The
vertices are the intersection points of the ellipses with the
boundary of the configuration space cells, in addition to two
points, S and T . The bottom-left corner of the free-space
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Figure 2: (a) Two polygonal curves, T1 and T2, and
the leash length, ε, are shown. Also the correspond-
ing deformed free-space diagram is drawn. (b) Two
paths in the free-space are drawn: an arbitrary path
Π′ (black dashed line) and an optimal path Π ⊂ Gv
(red solid line).



diagram S, called the source, corresponds to the starting
points of the polygonal curves. Also, the top-right corner
of the free-space diagram T , called the target, corresponds
to the ending points of the polygonal curves. Each vertex,
v ∈ V , has two coordinates, vx and vy. Every two visible
vertices of W , v1 and v2, are linked by two directed edges
in E, from v1 to v2, 〈v1, v2〉, and vice versa, 〈v2, v1〉. If a
directed edge e = 〈v1, v2〉 ∈ E is xy-increasing (i.e., it is non-
decreasing from v1 to v2 in both x and y axes), its weight is
zero. If e is only x-increasing (resp. y-increasing), its weight
is |v1y − v2y| (resp. |v1x − v2x|). Otherwise, the weight of e
is |v1x− v2x|+ |v1y − v2y|, which is equal to the L1-distance
between two vertices. If either S or T are not in W , then
there is no solution for the given leash length. Otherwise,
both S and T are in Gv as vertices and we prove that a
shortest path from S to T gives an optimal walk. Note that
in this paper the vertices of the graph are also presented by
a point in W . Therefore, a path in the visibility graph could
be converted identically to a path in W by connecting its
consecutive vertices by a line segment.

Observation 1. Let Π : [0, 1] → [0, n] × [0,m] be a path
in the free-space diagram, from S to T . Π is equivalent
to a pair of parameterization of the two polygonal curves,
(f : [0, 1]→ [0 : n], g : [0, 1]→ [0 : m]).

In this paper, a path from S to T is denoted by its vertices,
Π : 〈S = p1, p2, . . . , pk = T 〉. All line segments in Π are
directed, −−−−→pipi+1, i = 1, . . . , k − 1. The length (i.e., cost)
of a segment is a function of its direction and is denoted
by |−−−−→pipi+1| and defined as follows. If it is xy-increasing, its
length is zero. If it is only x-increasing (resp. y-increasing),
its length is |piy − pi+1y| (resp. |pix − pi+1x|). Otherwise,
its length is |pix − pi+1x| + |piy − pi+1y|, which is equal to
the L1-distance between pi and pi+1. The length of a path,
|Π|, is the sum of the length of its segments. In addition,
the notation Πi is used to denote the sub-path of Π from p1
to pi.

In this paper, we use norms in two spaces: (1) the Euclidean
space of the input polygonal curves, called the input space,
(2) the deformed free-space diagram, called the configura-
tion space. In the input space, we use the Euclidean length
of a polygonal curve T and denote it by ||T ||. In config-
uration space, we use two norms to measure the length of
a path Π: the length of a path in the L1 metric, denoted
by |Π|1 , and the direction-based norm, defined in the last
paragraph, denoted by |Π|.

Lemma 1 is the main lemma in this paper. The corollary
of this lemma and Observation 1 is that the corresponding
path of an optimal pair of parameterization, called optimal
path, is subset of Gv.

Lemma 1. For any path Π : 〈S = p1, p2, . . . , pk1 = T 〉 in
W , there is a path Π′ : 〈S = p′1, p

′
2, . . . , p

′
k2

= T 〉 in W such
that Π′ ⊂ Gv = 〈V,E〉 and |Π′| ≤ |Π|.

Proof. We describe an algorithm which takes as input
the path Π and transform it to a path Π′ such that Π′ is a

path in Gv between S and T . The algorithm for constructing
Π′ is stated in Algorithm 1. At the beginning, Π′ contains
only S = p′1 = p1. Then, Π′ is constructed by inserting p′j ,
j = 2 to k2, to the tail of Π′.

We prove the correctness of this algorithm by induction.
The induction is on i, which is the index of the vertices of
Π, i ∈ I = {1, . . . , k1}.

Algorithm 1 Constructing Π′

Input: The free-space W , A path Π : 〈S = p1, p2, . . . , pk1 =
T 〉
Output: A path Π′ : 〈S = p′1, p

′
2, . . . , p

′
k2

= T 〉

1: Π′ : 〈S〉;
2: p′z = S;
3: for i=2 : k1 − 1 do

4: if
−−−−→
p′zpi+1 ∈W then

5: Continue the loop;
6: else
7: Compute the convex chain from p′z to pi+1,
CCi+1

z : 〈p′z, q1, . . . , qc, pi+1〉;
8: Insert qj , j = 1, ..., c, to the tail of Π′;
9: p′z = qc;

10: Insert T to tail of Π′;
11: return Π′;

The algorithm maintains the following invariants (before the
i-th iteration of the for loop in Algorithm 1):

1.
−−→
p′zpi ∈W where p′z is the latest inserted vertex to the
tail of Π′.

2. Π′
z ⊂ Gv.

3. |Π′
z|+ |

−−→
p′zpi| ≤ |Πi|.

We show this by induction on i, the index of the vertices of Π
(and the index of the for loop in Algorithm 1). The base case
of the induction is i = 2. For this case, p′z is equal to p′1 = S.

Obviously,
−−→
p′1p2 ∈W , Π′

1 ⊂ Gv and |Π′
1|+|
−−→
p′1p2| ≤ |Π2| since

−−→
p′1p2 = −−→p1p2. The induction hypothesis is that the invariants
hold up to the step i (before the i-th iteration of the for loop
in Algorithm 1). We will prove that they also hold for step
i + 1 (after finishing the i-th iteration of the for loop in
Algorithm 1).

The main for loop in Algorithm 1 has two cases: a)
−−−−→
p′zpi+1 ∈

W , b)
−−−−→
p′zpi+1 6∈ W . In case a, pi is ignored and Π′ remains

unchanged. In case b, first, a convex chain from p′z to pi+1

is constructed. This convex chain is the Euclidean short-
est path, directed from p′z to pi+1 (see Figure 3). It is de-
noted by CCi+1

z : 〈p′z, q1, . . . , qc, pi+1〉 ∈ W , where qj ∈ V ,
j = 1, . . . , c and 1 ≤ c ≤ n2. After computing CCi+1

z , the
algorithm inserts qj , from j = 1 to j = c, to the tail of Π′.
In the remaining, we will prove that for any of the cases the
invariants hold.

Each segment in a path could be one of the following types:
1. xy-increasing 2. x-increasing 3. y-increasing 4. neither 1,
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Figure 3: The convex chain from p′z to pi+1 (inside
the free-space), CCi+1

z : 〈p′z, q1, q2, pi+1〉.
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Figure 4: There are 16 cases for the combination of
two directed segments.

nor 2, nor 3. Therefore, there are 16 cases for the combi-

nation of two segments,
−−→
p′zpi and −−−−→pipi+1 (Figure 4). For

case a of the for loop, when
−−−−→
p′zpi+1 ∈ W , invariants 1

and 2 hold, due to the induction hypothesis. To show that
the invariant 3 still holds after step i, we go through the

16 cases. For cases 1, 6, 11 and 16, the length of
−−−−→
p′zpi+1

is equal to |
−−→
p′zpi| + |−−−−→pipi+1|. By induction hypothesis, we

had |Π′
z| + |

−−→
p′zpi| ≤ |Πi|. Now add |−−−−→pipi+1| to both sides

of the inequality. Therefore, |Π′
z| + |

−−−−→
p′zpi+1| ≤ |Πi+1|. For

other 12 cases, |
−−−−→
p′zpi+1| < |

−−→
p′zpi|+ |−−−−→pipi+1|. Therefore, |Π′

z|+
|
−−−−→
p′zpi+1| < |Π′

z|+ |
−−→
p′zpi|+ |−−−−→pipi+1| ≤ |Πi+1|.

To prove the correctness for case b of the for loop, we need
some notation. Take every directed segment of a path as a
vector from the origin. The angle of a vector, θ, is defined
as the angle between that vector (in Cartesian coordinate
system) and the positive direction of x-axis. The angles
of segments of CCi+1

z : 〈p′z, q1, . . . , qc, pi+1〉 are denoted by
θµ, µ = 1, .., c + 1. Based on the convexity of CCi+1

z , the
following three properties are easy to prove:

1. CCi+1
z is inside the triangle p′zpipi+1.

2. Assume α is the angle of
−−→
p′zpi and β is the angle of

−−−−→pipi+1. Then, α ≤ θµ ≤ β.

3. The sequence of θµ, µ from 1 to c + 1, is in a sorted
order (either increasing or decreasing).

Since CCi+1
z is a convex chain from p′z to pi+1, invariants 1

and 2 hold. In order to check if the invariant 3 holds for case
b, we analogously consider the 16 cases (Figure 4). Here we
only show the proofs for two cases of Figure 4 and the proves
for the other cases are analogous.

Consider the case when both
−−→
p′zpi and −−−−→pipi+1 are only y-

increasing (see case 6 in Figure 4). In this case, we have π
2
≤

α < β < π. Therefore, π
2
≤ θµ < π, µ = 1, . . . , c + 1. Since

the sequence of θµ is increasing, CCi+1
z is a x-monotone

polygonal chain (i.e., any vertical line intersect it in at most

one point). Hence, |CCi+1
z | = |

−−→
p′zpi|+ |−−−−→pipi+1|. By inductive

hypothesis we had |Π′
z| + |

−−→
p′zpi| ≤ |Πi|. Add |−−−−→pipi+1| to

both sides of the inequality. We obtain |Π′
z| + |CCi+1

z | ≤
|Πi| + |−−−−→pipi+1|. It follows that |Π′

z+c| + |−−−−→qcpi+1| ≤ |Πi+1|,
where qc is the latest inserted vertex to the tail of Π′ and
Π′
z+c is the sub-path of Π′ from index 1 to index z + c. The

proof for cases 1,11 and 16 is similar.

Consider Case 9, when
−−→
p′zpi is xy-increasing and −−−−→pipi+1 de-

creases in both x and y axes (described in Figure 5). The
vertical line that passes through pi+1 is denoted by L⊥

x . The
horizontal line that passes through pi+1 is denoted by L⊥

y .
In addition to the three properties mentioned with respect
to the convexity of CCi+1

z , the following two properties hold:

4. Any directed segment of CCi+1
z that lies on the left of

L⊥
x is xy-increasing. Therefore, they have a cost zero.

5. Any directed segment of CCi+1
z that lies below L⊥

y is
y-increasing. Therefore, they have a cost zero in the
y-dimension.

By Property 4, the cost of CCi+1
z in x-dimension is less

than or equal to |pix − pi+1x |. Analogously, by Property
5, the cost of CCi+1

z in y-dimension is less than or equal to

|piy−pi+1y |. In this case, since
−−→
p′zpi is xy-increasing, its cost

is zero. Therefore, |CCi+1
z | ≤ |pix − pi+1x |+ |piy − pi+1y | =

|−−−−→pipi+1| = |
−−→
p′zpi|+ |−−−−→pipi+1|. By inductive hypothesis, |Π′

z|+
|
−−→
p′zpi| ≤ |Πi|. Add |−−−−→pipi+1| to both sides of the inequality.

Thus, we obtain |Π′
z|+ |CCi+1

z | ≤ |Π′
z|+ |

−−→
p′zpi|+ |−−−−→pipi+1| ≤

|Πi| + |−−−−→pipi+1|. It follows that |Π′
z+c| + |−−−−→qcpi+1| ≤ |Πi+1|.

Therefore, invariant 3 also holds for this case. The proof for
the other remaining cases is similar.

Corollary 1. There is an optimal path which is a subset
of the visibility graph of the free-space diagram, Gv.

Proof. Assume Π is an optimal path in the free-space
W . If Π is not a subset of Gv, then, by Lemma 1 there is a
path, Π′ in W such that Π′ ⊂ Gv and |Π′| ≤ |Π|. Since Π is
an optimal path, |Π′| = |Π|.
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Figure 5: Proof for case 9. If the convex chain
(shown by red color) does not go above the hori-
zontal line, L⊥

y , which is passing through pi+1, then
all of the segments in the chain are y-increasing.

Corollary 2. An optimal pair of parameterization is achiev-
able via a shortest path in the visibility graph, Gv.

Proof. Follows directly from Observation 1 and Corol-
lary 1.

Theorem 1. Assume that T1 and T2 are two polygonal
curves and a leash length, ε, is given. A parameterization
of T1 and T2 that minimizes the backward movement during
the walk can be found in polynomial time and space.

Proof. The correctness follows directly from Corollary
2. For the space complexity, observe that the free-space di-
agram has a complexity of O(n2). Therefore, the number
of edges of Gv (and the total space complexity) is upper-
bounded by O(n4). To find an edge of the visibility graph, a
brute force algorithm checks the intersection with all O(n2)
ellipses. Therefore, the construction of Gv takes O(n6) time.
It is possible to find a shortest path in the graph in O(|E|+
|V | log |V |) = O(n4). Therefore, the total time complexity is
O(n6). Note that if the representing nodes for S and T in Gv
are not in a connected component of Gv, then there is no fea-
sible walk with the leash length of at most ε. Therefore, the
algorithm halts with the answer of no feasible solution.

4. IMPROVEMENT
In Corollary 1 of the previous section, we proved that the
visibility graph of the free-space, Gv, contains an optimal
solution to our problem. As we will show next, it is not
necessary to compute the complete visibility graph. In order
to find an optimal path, we transform W to a polygonal
domain, D. Then, we use the recent algorithm of Chen
and Wang [6] to compute an L1 shortest path in D. More
precisely, a polygonal domain, D, with k vertices and h holes
is a connected and closed subset of R2 having h holes whose
boundaries consist of h + 1 simple closed polygonal chains
with a total of k vertices.

The process of building D from the free-space W is as fol-

lows. For each cell Ci,j , find the intersection of the boundary
of Ci,j with its corresponding ellipse φi,j . Assume that the
intersection points are sorted CCW on the boundary of φi,j ,
〈v1, v2, ..., vρ〉. If the part of the boundary of φi,j from vi to
vi+1, i = 1, ..., ρ − 1, is inside Ci,j , connect vi to vi+1 by a
line segment (Figure 6), otherwise, ignore it. To complete
the process of building D from W , add the line segments of
the bounding polygon around the free-space diagram.

A known property of the free-space diagram states that ev-
ery two adjacent cells in the free-space diagram, Ci,j and
Ci+1,j , have the same set of intersection points on the edge
shared between them. Therefore, the mentioned process cre-
ates conforming polygonal chains. In addition, since φi,j is
a convex object and the process of building D from W does
not remove any of the vertices of W , the visibility graph of
D is identical to Gv. By Corollary 1, there is an optimal
path in Gv. Therefore, there exists an optimal path in D.

Lemma 2. Let T1 and T2 be two polygonal curves, ε be
the leash length, and W be the free-space of the deformed
free-space diagram, F . Suppose Π1 and Π2 are two paths in
W from S to T . If, in the L1 norm, |Π1|1 ≤ |Π2|1 , then
|Π1| ≤ |Π2|.

Proof. Suppose (f1, g1) and (f2, g2) are the correspond-
ing parameterization pairs of Π1 and Π2, respectively. We
know that the length of any path in W from S to T is
at least ||T1|| + ||T2||, where ‖.‖ is the Euclidean length of
a polygonal curve. Therefore, |Π1|1 = ||T1|| + ||T2|| + 2 ∗∫
t∈Bf1

||T1 (f1 (t)) ||dt+ 2 ∗
∫
t∈Bg1

||T2 (g1 (t)) ||dt. Thus:

|Π1|1 ≤ |Π2|1

⇒ ||T1||+ ||T2||

+2 ∗
∫
t∈Bf1

||T1 (f1 (t)) ||dt+ 2 ∗
∫
t∈Bg1

||T2 (g1 (t)) ||dt

≤ ||T1||+ ||T2||

+2 ∗
∫
t∈Bf2

||T1 (f2 (t)) ||dt+ 2 ∗
∫
t∈Bg2

||T2 (g2 (t)) ||dt

⇒
∫
t∈Bf1

||T1 (f1 (t)) ||dt+

∫
t∈Bg1

||T2 (g1 (t)) ||dt

≤
∫
t∈Bf2

||T1 (f2 (t)) ||dt+

∫
t∈Bg2

||T2 (g2 (t)) ||dt

⇒ |Π1| ≤ |Π2|

Theorem 2. Assume we are given two polygonal curves,
T1 and T2, and a leash length, ε. A non-monotone parame-
terization of T1 and T2 that minimizes the backward move-
ment during the walk can be found in O(n2 logn) time and
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Figure 6: A polygonal domain is constructed by re-
placing elliptic curves of the boundary of W by line
segments.

ε
T2

T1

Figure 7: Two polygonal curves T1 and T2 and
the corresponding deformed free-space diagram are
shown. The problem setting allows only backward
movement on T1 (the dashed line).

O(n2) space, where n is the number of segments in the input
polygonal curves.

Proof. As we discussed at the beginning of this section,
the free-space W is transformed to a polygonal domain D
(Figure 6). Based on Lemma 1, there is an optimal path
in D. By Lemma 2, we know that a L1 shortest path in D
is also an optimal path for the minimum backward Fréchet
distance problem. The algorithm by Chen and Wang [6]
computes the L1 shortest path in a polygonal domain, in
O(k+h log h) time and O(k) space, where k is the number of
vertices of the input polygonal domain and h is the number
of holes. In our problem, the size of the polygonal domain
D and also the number of holes is O(n2). Therefore, the
total time complexity is O(n2 logn) and space complexity is
O(n2).

The implementation of our proposed algorithm is fairly straight-
forward. The followings are the main steps of the implemen-
tation of this algorithm:

1. The first step is to compute the free-space diagram.
This diagram is explained in detail in [1]. Different
implementations exist for this purpose. For example,
we used the iplete from [7] to produce the figures of
this paper. This implementation is open source.

2. The second step is converting the free-space diagram
to a polygonal domain. At the beginning of Section
4 we explained how this conversion can be done by
processing cells of free-space diagram one by one. The
output of this step is a polygonal domain D.

3. The last step is the implementation of the L1 short-
est path algorithm. Chen and Wang’s algorithm [6] is
theoretically optimal. However, at this time we know
of no implementation. There are alternatives for find-
ing the L1 shortest path in a polygonal domain (e.g.,
[14]). The easiest one to implement is the visibility
graph based algorithm as explained in Section 3.

5. CONCLUSION
We studied a natural optimization problem for the weak
Fréchet distance. In this measure, the union of backward
movements on the two input curves T1 and T2 is minimized,
to maintain a weak Fréchet distance of ε. We observed that
this problem setting is dual to a weighted shortest path prob-
lem in a deformed free-space diagram, F , of T1 and T2 in
which only the portions of a path from F are measured if
they are not xy-increasing. As a first approach, we showed
that a corresponding optimal path in F is part of the visibil-
ity graph between the intersection points of the free-space
ellipses with the boundary of the corresponding parameter
cells and w.r.t. to the forbidden space of F . This directly
led to an algorithm which computes the minimum backward
Fréchet distance in polynomial time. Then, as an improve-
ment, we showed that it is not necessary to construct the en-
tire visibility graph and by applying the very recent shortest
path algorithm of [6] we obtained an improved running time
of O(n2 logn) time to solve the minimum backward weak
Fréchet problem exactly.



For future work, other versions of the problem could be stud-
ied. 1) The backward movement could be restricted to only
one of the input curves (Figure 7). 2) The cost of back-
ward movement on the input curves could be weighted (it
could e.g., be more costly to backtrack on one curve than on
the other one.) In this setting, one would want to minimize
the weighted sum of all backward movements on the input
curves.
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