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ABSTRACT
This work is motivated by a real-life application that ex-
ploits sensor data available from traffic light control systems
currently deployed in many cities around the world. Each
sensor consists of an induction loop that generates a stream
of events triggered whenever a metallic object e.g. car, bus,
or a bicycle, is detected above the sensor. Because of the red
phase of traffic lights objects are usually divided into groups
that move together. Detecting these groups of objects as
long as they pass through the sensor is useful for estimating
the status of the toad networks such as car queue length
or detecting traffic anomalies. In this work, given a data
stream that contains observations of an event, e.g. detection
of a moving object, together with the timestamps indicating
when the events happen, we study the problem that clusters
the events together in real-time based on the proximity of the
event’s occurrence time. We propose an efficient real-time
algorithm that scales up to the large data streams extracted
from thousands of sensors in the city of London. Moreover,
our algorithm is better than the baseline algorithms in terms
of clustering accuracy. We demonstrate motivations of the
work by showing a real-life use-case in which clustering re-
sults are used for estimating the car queue lengths on the
road and detecting traffic anomalies.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Data Stream, real-time monitoring, sensor network, cluster-
ing algorithms, transportation, SCOOT data, social good

1. INTRODUCTION AND MOTIVATIONS

1.1 Motivations
Our work is motivated by the SCOOT system1 which is
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Figure 1: A SCOOT sensor (marked with a bold red
line) is located hundreds of metres before a traf-
fic light. An event is triggered when a car passes
through the sensor.

currently used for coordinating traffic lights in many cities.
It is important to notice that although we use the SCOOT
data as a motivation example the approach proposed in this
paper can work well for any event stream data in general.
The SCOOT system consists of thousands of SCOOT sen-
sors. Figure 1 shows an example of a SCOOT sensor located
a few hundreds metres from a traffic light. SCOOT sensors
are designed for detecting moving objects in the nearby loca-
tion. Whenever a moving object passes through the location
of the sensor, an event is triggered and sent to a centralized
computing system.

Figure 2 shows a time series of binary bits received from
a SCOOT sensor, where bit “1” indicates that a moving ob-
ject is passing through the sensor and bit “0” means nothing
is detected. An interesting pattern we can observe on this
figure is that objects tend to move together in groups. An
explanation for this pattern is due to the effects of the red
phase of traffic lights which cuts down the long line of mov-
ing objects into smaller chunks.

Detection of groups of moving objects as long as they pass
through the sensor is useful for monitoring the status of the
road. For instance, the number of moving objects in each
group can be used as an estimate of the car queue length on
the road. Alternatively, when we have two sensors located
at the downstream and the up stream location of a street,
the clustering results can be used to simultaneously detect
traffic anomalies in the corridor connecting two sensors.

1.2 The problem and our solutions
In general, finding groups of moving objects can be con-

sidered as an unsupervised classification problem in which
the difference or the gap between observations of two consec-
utive moving objects can be classified either as a separator
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Figure 2: Data from a SCOOT sensor. Bit “1” indicates that a moving object is passing through the sensor
and bit “0” means nothing is detected. Cars tend to move together in groups due to the effect of traffic
lights. Gaps between groups are labelled as separators, while gaps between elements of a group are labelled
as connectors. Separators seem to have larger value than connectors.

or a connector. Separators separate different groups while
connectors connect objects in the same group.

For example, in Figure 2 we can see that there are three
groups of moving objects. The gaps between groups marked
with the label separators seem to be larger than the gaps
between objects in the same groups. Based on that observa-
tion, a simple approach is to use one of the change detection
techniques such as the CUSUM chart [3] to label the set of
gaps. For instance, we can keep track of the mean value
of the gaps seen so far, if a new gap value is much larger
than the mean value, a change is detected and the gap is la-
belled as a separator otherwise it is labelled as a connector.
This approach typically requires pre-set threshold parame-
ters, e.g. significant levels. However, under the context of
the SCOOT data, depending on the current traffic on the
road (busy or not), periods of day (night versus rush hours)
etc, the distribution of the gaps dynamically changes. In ex-
periments, we show that simple algorithms relying on pre-set
threshold parameters do not work well.

In this work, we approach the problem as an online clus-
tering problem in the sliding windows model. We keep the
most recent gaps in a sliding window and do clustering them
in real-time using the k-mean algorithm, where k is set to
2. The cluster which has larger mean value than the other
is labelled as a separator while the other is labelled as a
connector. In order to tackle data distribution change, the
gaps are labelled using accumulated votes from a set of the
most recent windows. In doing so, our algorithm becomes
less sensitive to initial parameter settings while being able
to quickly adapt to distribution change.

An important observation is that the problem we are try-
ing to solve is equivalent to the 2-mean clustering problem
in one dimensional space. Using the straightforward imple-
mentation of the k-mean algorithm is a naive solution. In
fact, we show that a much better clustering algorithm can
be proposed to solve the problem exactly while being much

more efficient than the straightforward implementation of
the k-mean algorithm.

We validated our approach with a synthetic and a real-
world dataset with known ground-truths. Experimental re-
sults showed that our algorithm outperformed the baseline
algorithms including an algorithm based on mean value change
detection and the state of the art algorithms CluStream [1]
and ClusTree [11] in terms of clustering accuracy. Moreover,
our method scaled up to a large dataset at the city-scale
with fast updates from thousands of sensors simultaneously.
Finally, we showed the motivation of the work with a real-
world use-case with the SCOOT data in which we used clus-
tering results to detect interesting anomalies, or to estimate
car queue length.

This paper is organized as follows. Related work is dis-
cussed in section 2. Section 3 shows the problem formula-
tion. Different algorithms are proposed in section 4. Exper-
iment results are discussed in section 5. Finally, in section
6, we discuss some conclusions and potential future work.

2. RELATED WORK
Clustering multi-dimensional data in a data stream is a

well studied problem. Most work in the literature [7, 13,
4, 6] assumes that only a single pass through the data is
allowed and the dimension of the data is high. Therefore,
approximation algorithms are preferred in this case because
of the efficiency issue. However, in the context of the online
event clustering problem, the dimensionality of the data is
not a problem because the data only concerns the temporal
dimension. Besides, in this work we show that the prob-
lem we are trying to solve can be solved exactly with a very
efficient method. Therefore, the approaches based on ap-
proximation are inappropriate because trading accuracy for
efficiency is not necessary in our context.

Recently, there are many approaches proposed in the liter-
ature such as the BIRCH algorithm [14], the SWClustering
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Figure 3: The gaps between 9 events A, B, C, D, E, F, G, H, I are G = {1, 2, 7, 2, 3, 9, 1, 3}. Using the 2-mean
algorithm we can obtain two clusters Gs = {7, 9} and Gc = {1, 2, 2, 3, 1, 3} with the centroids at ḡs = 8 and ḡc = 2.
Gs is labelled as separator while Gc is labelled as connector. As a result, the set of events can be divided into
three groups (A,B,C), (D,E, F ) and (G,H, I).

algorithm [15], the CluStream algorithm [1] or the ClusTree
algorithm [11] that put more efforts on tackling data dis-
tribution changes and modelling the evolution of clusters.
These approaches typically require two different phases. In
the first phase, the data stream is summarized using a light-
weight set of micro-clusters. Micro-clusters have the additive
property so the summary of the stream can be incremen-
tally updated or queried in the latter phase. In the second
phase, macro-clustering techniques such as the k-mean al-
gorithm can be used to cluster the micro-clusters together
to produce the final clustering results. To deal with dis-
tribution change some techniques using decaying factors or
keeping micro-clusters at the time horizons with preference
on the most recent data were proposed. These approaches
were shown to be very effective in clustering evolving data
streams where change happened frequently.

However, since these algorithms were designed to deal
with very high-dimensional data, they need to trade accu-
racy for efficiency. Moreover, in the context of the online
event clustering problem, we need to determine the label of
the event as long as it arrives in the data stream. How to
label arrival events is not fully described in the implemen-
tation of the BIRCH, CluStream or ClusTree algorithms.
Simply assigning the label based on the clustering results of
the most recent window does not work well. On the other
hand, our labelling method using votes from a set recent
windows works well even under quick distribution changes.

In the field of transportation research, many works used
SCOOT data [2] together with the other kinds data such
as cameras or GPS data [9, 8] or mobile sensor data [10] to
estimate the status of the road networks. In practice, not all
kind of data available for different companies. For instance,
mobile data is only available for mobile network provider
companies while GPS data is the property of GPS device
providers.

Using SCOOT data alone to estimate the car queue length
is a challenging problem because the SCOOT data provides
very little information except the flow and the presence of
the cars. Our work provides a solution to this problem using
SCOOT data alone. The difference between our method and
queue length estimate methods in the literature [12] is that

our solution does not require information across different
sensors, every sensor can estimate queue length based on its
own data. Therefore, this property enables to accomplish
this task with less communication between sensors, thus it
cuts of expensive energy consumption due to communication
between sensors.

3. PROBLEM FORMULATION
Let S = {e1, e2, · · · , en} be a stream of events. Every

event ei is associated with a pair of timestamps (si, fi) in-
dicating the time when the event starts and finishes. We
only consider non-overlapping events, i.e. fi ≤ si+1 for
i = 1, 2, · · · , n.

Let gi = si+1−fi denote the gap between two consecutive
events ei and ei+1. Every stream of events S corresponds
to a sequence of gaps denoted by G = {g1, g2, · · · , gn−1}.
Because the sequence of gaps uniquely determines the corre-
sponding stream of events, from now on we use the sequence
of gaps as a representation of the stream of events.

A sliding window W with length w is the window con-
taining w most recent elements of the stream, i.e. W =
{gn−w+1, gn−w+2, · · · , gn}.

We are interested in the event clustering problem that
groups events happening close to each other into the same
group while events in different groups must happen furthest
away from each other. Under the gap representation, the
event clustering problem is equivalent to classification of
the set of gaps with two class labels: group separator that
separates two consecutive groups and group connector that
connects two consecutive events in the same group.

Example 1. Figure 3 shows 9 events with start and fin-
ish times as follows: A(1, 2), B(3, 5), C(7, 8), D(15, 16),
E(18, 20), F (23, 24), G(33, 34), H(35, 36), I(39, 40). The
gaps sequence is 1, 2, 7, 2, 3, 9, 1, 3. The events can be grouped
into three groups: (A,B,C), (D,E, F ) and (G,H, I). Gaps
between (C,D) and (F,G) are group separators while the
other gaps are connectors. Separators have larger mean value
than the mean value of connectors.

Our intuition is that separators and connectors are gener-
ated by two different distributions such that the mean value



of separators is greater than the mean value of connectors.
Therefore, we can find event groups by solving a 2-mean
clustering problem. Let Gs and Gc be the subsets of the set
of gaps G such that Gs∪Gc = G and Gs∩Gc = ∅. Denote ḡs
and ḡc as the mean value of gaps in Gs and Gc respectively,

i.e. ḡs =

∑
g∈Gs

g

|Gs| and ḡc =

∑
g∈Gc

g

|Gc| , where |Gs| and |Gc| stand

for cardinalities of Gs and Gc. The event clustering can be
formulated as follows:

Definition 1 (Event Clustering). Find the partition

of G into Gs and Gc such that D(Gs, Gc) =
∑
g∈Gs

(g − ḡs)2+∑
g∈Gc

(g − ḡc)2 is minimized.

Assume that ḡs > ḡc, the set of gaps in the cluster Gs is
classified as a separator while the gaps in the clusters Gc are
considered as connectors. For instance, the sequence of gaps
in Figure 3 are G = {1, 2, 7, 2, 3, 9, 1, 3}. Using the k-mean
algorithm with k = 2 se can find two clusters Gs = {7, 9}
(separators) and Gc = {1, 2, 2, 3, 1, 3} (connectors) where
the centroids of each cluster are ḡs = 8 and ḡc = 2.

Definition 1 is for static data, under the streaming context,
we define the online event clustering problem as follows:

Definition 2 (Online Event Clustering). Let W be
a sliding window and G be a sequence of gaps extracted from
the window. At any time point find a partition of G into Gs

and Gc such that it minimizes D(Gs, Gc) =
∑
g∈Gs

(g − ḡs)2 +∑
g∈Gc

(g − ḡc)2.

Unlike the static case when the label of each gap is deter-
mined based on the results of the clustering algorithm, under
the streaming context, since the clustering structure may
change when the sliding window is updated inconsistency of
gap labelling at different moments may happen. Choosing
which label to assign to a new gap is discussed in the next
section.

4. ALGORITHMS
Simple solution using the standard implementation of the

k-mean algorithm is time demanding because the complexity
of each update is O(w.s), where w is the window size and s
is the number of iterations needed for the k-mean algorithm
to terminate. Moreover, the results of the k-mean algorithm
are sensitive to the choice of the initial centroids which might
lead to unpredicted results.

In subsection 4.1, we propose an algorithm called OTEC
as the acronym for Online Temporal Event Clustering. OTEC
solves problem 2 exactly while it requires only O(w+ logw)
operations per update. Subsequently, in subsection 4.2 we
introduce labelling methods to tackle the inconsistency issue
of gap labels when change happens. Finally, in subsection
4.3 we discuss how to make use of domain knowledge for
improving the clustering algorithm.

4.1 Online event clustering
Assume that the set of gaps G = {g1, g2, · · · , gn} is sorted

according to the ascending order of the gap value. A split
of G at an index 1 ≤ m < n is a partition of G into

Algorithm 1 OTEC(G, g)

1: Input: a sequence of gaps G sorted according to the
ascending order and a new gap g

2: Output: two clusters Gs and Gc

3: Remove the expired element from G
4: Insert g to G such that it preserves the ascending order
5: Assume that G = {g1, g2, · · · , gw} is in the ascending

order
6: x = 0
7: y =

∑w
j=1 gj

8: max = 0
9: for i=1 to w do

10: x = x+ gi

11: F = x2

i
+ (y−x)2

w−i
12: if max < F then
13: max=F
14: Gc = {gj |0 ≤ j ≤ i}
15: Gs = {gj |i < j ≤ w}
16: end if
17: end for

Gm
c and Gm

s such that Gm
c = {g1, g2, · · · , gm} and Gs =

{gm+1, gm+2, · · · , gn}. We prove the following important
lemma showing that the online event clustering problem is
equivalent to finding the best split in a sorted sequence of
gaps:

Lemma 1. The split (Gm
s , G

m
c ) at the index m maximiz-

ing

(
m∑
i=1

gi

)2

m
+

(
n∑

i=m+1

gi

)2

n−m is the solution to the online

event clustering problem.

Proof. First we rewrite the objective function of the
event clustering problem as follows:

D(Gs, Gc) =
∑
g∈Gs

(g − ḡs)2 +
∑
g∈Gc

(g − ḡc)2 (1)

=
∑
g∈G

g2 −

(∑
g∈Gs

g

)2

|Gs|
−

(∑
g∈Gc

g

)2

|Gc|
(2)

Since
∑
g∈G

g2 is a constant, minimum value of D(Gs, Gc) is

achieved when F (Gs, Gc) =

∑
g∈Gs

g


2

|Gs| +

∑
g∈Gc

g


2

|Gc| is maxi-

mized. Denote (G∗s , G
∗
c) as the partition ofG that maximizes

F .
We will prove that (G∗s , G

∗
c) corresponds to a split of G

sorted according to the ascending order. We prove by con-
tradiction, assume that (G∗s , G

∗
c) is not a split.

LetX =
∑
g∈G∗

s

g and Y =
∑
g∈G∗

c

g, without loss of generality,

assume that Y
|G∗

c |
≤ X
|G∗

s |
. Let gc = Maxg∈G∗

c
{g} and gs =

Ming∈G∗
s
{g}.

Since (G∗s , G
∗
c) is not a split, we must have gc > gs. We

create a new partition (G+
s , G

+
c ) of G such that G+

s is ob-
tained from G∗s by removing gs and adding gc and G+

s is
obtained from G∗c by removing gc and adding gs.



We will show that (G+
s , G

+
c ) will result in a larger value

of the objective function F . In fact, we have:

F (G+
s , G

+
c )− F (G∗s , G

∗
c) =

(X − gs + gc)
2

|G∗s |
+

(Y − gc + gs)2

|G∗c |

− X2

|G∗s |
− Y 2

|G∗c |
= (gc − gs) ∗(

2X − gs + gc
|G∗s |

− 2Y − gc + gs
|G∗c |

)
> 0

Therefore, F (G+
s , G

+
c ) > F (G∗s , G

∗
c) which leads to contra-

diction.

A direct consequence of lemma 1 is that problem 2 can be
solved exactly by keeping the set of gaps in the ascending
order and then finding the split that maximizes the value of
the function F .

Algorithm 1 describes the main steps of the OTEC algo-
rithm. It gets at the input a set of gaps G sorted in the
ascending order and a new gap value g. First, it removes
the expired element from G and inserts g to G (lines 3-4).
If a balance binary tree is used as a data structure to store
G the cost of this step is equal to O(logw), where w is the
size of the sliding window. Subsequently, OTEC does a lin-
ear scan through G and incrementally calculates the value
of the objective function F at each split (lines 9-17). The
split that results in the maximum value of F is tracked to
update the clusters Gs and Gc (lines 12-15). The complexity
of this step is O(w). In summary, the complexity of OTEC
is O(w + logw) per update.

4.2 Gap labelling strategy
As long as we get the clusters structure from the window,

gaps labelling is the next step. If the data does not change
over time, labelling is simply done by assigning gap with the
label, either as separator or connector depending on the clus-
ter it belongs to. Nevertheless, under the streaming context,
the labelling task is more complicated as the label of a given
gap may change unpredictably from one to another moment.
This section discusses different approaches for determining
the right label of gaps in real-time.

4.2.1 A simple labelling strategy
The simplest labelling algorithm is to assign the new gap

g with the label it gets from the from the window where it
is the latest element. The following example shows how this
approach work in every step of streaming updates.

Example 2 (Simple labelling). Figure 4 shows an ex-
ample with a sequence of gaps and a sliding window with size
w = 8. The new gaps are assigned a label immediately as
long as they are appended to the data stream:

• At time point t = 19, G = {1, 1, 1, 8, 1, 1, 1, 4} is the
gap sequence, the results of the OTEC algorithm are
Gc = {1, 1, 1, 1, 1, 1, 4} and Gs = {8} and the labelled
sequence is CCCSCCCC where C and S are the acronyms
for Connector and Separator. Therefore the final label
assigned to the new gap g = 4 is C.

• At time point t = 22, G = {1, 1, 1, 4, 1, 1, 1, 1} is the
gap sequence, the clusters are Gc = {1, 1, 1, 1, 1, 1, 1}

and Gs = {4} and the label sequence is CCCSCCCC.
Therefore the label assigned to the new gap g = 1 is C.

The simple labelling algorithm only works well when the
distribution of the gaps does not change over time. When
change happens it may assign a wrong label to the gap value.
For instance, in Figure 4, we assume that at time point
t = 12 the mean value of separators reduces from 8 to 4.
We can see that the label for the gap g = 4 is determined
at t = 19 as a connector , while it should have been labelled
as a separator. If the label of g = 4 is assigned at time
point t = 22, its label is correct. This situation incurs when
change in the distribution of gaps happens and the sliding
window is in the middle of the transition state. The next
subsection discusses a solution for this issue.

4.2.2 Labelling by voting
Instead of getting the label by considering clustering re-

sults only from the current sliding window, the labelling by
voting algorithm considers votes accumulated from a set of
recent windows. In particular, let w be the window size. All
the votes from all the windows containing w

2k
most recent

events for any 0 ≤ k < log2 w are counted. The final label
of the new gap is determined by the label got the most votes
from the set of windows. In doing so, the labelling algorithm
put more preference on the most recent windows which help
it quickly adapt to change. Moreover, the amortized com-
plexity of the voting algorithm remains cheap O(w+ logw).

Example 3 (Labelling by voting). In Figure 4 at time
point t = 19, the label of the new gap g = 4 is determined
by counting the votes from three windows A,B and C with
length 8, 4 and 2 respectively. It is labelled as a separator
twice, in the windows C(1, 4) and B(1, 1, 1, 4) and once as
a connector in the window A(1, 1, 1, 8, 1, 1, 1, 4). Therefore,
the label separator gets most votes which is the final label for
g = 4.

4.3 Make use of domain knowledge
In the context of the event clustering problem domain

knowledge can be used to improve the clustering results fur-
ther. Domain knowledge can be given in many forms. In
this work, we consider one of the forms of domain knowl-
edge which is given as a constraint on the gap value. For
example, in the SCOOT data, we know that if a gap value
is greater than half of one minute long, it is definitely a
separator. This type of knowledge can be easily integrated
into the clustering algorithm by simply filtering out gaps
matching the constraint. Using this type of knowledge can
improve the clustering results in the case that the window
size is initialized with a value which is not large enough to
have both separators and connectors in a window. In the
SCOOT data, this case happens at night when all the gaps
in the window are separators.

5. EXPERIMENTS

5.1 Experiment set-up
We implemented our algorithm in Java and run the pro-

grams in a Linux 64 bits machine with four Intel Xeon 2.59
GHz cores and 16 GB of RAM. The datasets used for ex-
periments are described as follows:
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Figure 4: Change point happens at t = 12 when the mean value of separators is reduced from 8 to 4. The
gap g = 4 at time point t = 19 is labelled as a connector in the sliding window A, and as a separator in the
windows B and C. Counting votes from the windows A,B and C the gap g = 4 is considered as a separator.

Figure 5: Synthetic data with 30000 gap values. In
the first 10000 events and the last 10000 events,
connectors are drawn from a normal distribution
N(µ = 10, σ = 2) and separators are drawn from
N(µ = 20, σ = 2). The connectors between 10000 and
20000 events are drawn from N(µ = 15, σ = 2), while
the separators are drawn from N(µ = 25, σ = 2).

• Synthetic data: consists of 30000 events. Events are
organized in groups consisting of 10 events. In the
first 10000 events and the last 10000 events, connec-
tors are drawn from a normal distribution with mean
µ = 10 and standard deviation σ = 2 and separa-
tors are drawn from a normal distribution with mean
µ = 20 and standard deviation σ = 2. The events from
the number 20000 to 30000 are generated such that the
connectors are drawn from a normal distribution with
mean µ = 15 and standard deviation σ = 2 and sepa-
rators are drawn from a normal distribution with mean
µ = 25 and standard deviation σ = 2. Figure shows
a plot of the gaps in the synthetic data. We can see

Figure 6: Gap distribution in the one day ground-
truth set extracted from the SCOOT data. Distri-
bution of gaps changes very quickly during different
periods of the day and abruptly changes at night.

too change points happening at the events numbered
10000 and 20000. This dataset is created to see how
the algorithms work under mean value changes.

• SCOOT data: contains about three weeks of the
SCOOT data from the city of London. The dataset
consists of 35 billions reads from 5049 SCOOT sen-
sors. We use the whole dataset to measure the scal-
ability of the proposed algorithm and pick one sensor
from the set of sensors for validating clustering accu-
racy. In order to get the ground-truths, we label one
day of data from that sensor. Totally 12305 gaps are
labelled manually. The manual labelling task was per-
formed by first visualizing every window of length 250
seconds and manually picking the separators based on
our observation. The gaps which were not picked in the
labelling process were considered as connectors. The
ground-truth set contains 2076 separators and 10229



connectors. Figure 6 shows the distribution of the gaps
in the ground-truth set with an abrupt change happen-
ing at night.

We compare our approach (OTEC with labelling by voting)
to the following baseline algorithms:

• CluStream [1]: is considered as a benchmark algo-
rithm for evolving data stream clustering. We used the
MOA implementation of CluStream [5] which is cur-
rently available in the R stream package2. There are
three parameters including the horizon window size
(h), the number of micro-clusters (k) and the kernel
radius factor (t) in the implementation of CluStream.
We vary the window size to see how the algorithm per-
form with different horizons while keeping the other
parameters unchanged with their default values (k =
100 and t = 2). CluStream is used to summarized
the stream with a set of micro-clusters. For each data
stream update, an offline macro-clustering algorithm
based on the standard 2-mean algorithm is used to re-
cluster the micro-clusters. The label of the recently
arrival gap is assigned based on results of the macro-
clustering algorithm. If the gap is assigned to the clus-
ter with larger mean value, its label is determined as a
separator, otherwise, its label is chosen as a connector.

• ClusTree [11]: is proposed recently and considered as
the state of the art algorithm for evolving data stream
clustering. The algorithm is very efficient and was
shown to be very effective in handling change. We
used the implementation of ClusTree available in the
R stream package. There are three parameters includ-
ing the horizon window size (h), the maximum height
of the tree (k) and the decaying factor (t) in the imple-
mentation of ClusTree. We vary the window size to see
how algorithm performs with different horizons while
keeping the other parameters unchanged with their de-
fault values (k = 8 and t is automatically defined by
the algorithm). ClusTree is used to summarized the
stream with a set of micro-clusters. For each data
stream update, a macro-clustering algorithm based on
the standard 2-mean algorithm is used to re-cluster the
micro-clusters. The label of the recently arrival gap is
assigned based on results of the macro-clustering algo-
rithm. If the gap is assigned to the cluster with larger
mean value, its label is determined as a separator, oth-
erwise, its label is chosen as a connector.

• Mean value change detection (MVCD): the al-
gorithm keeps track of the mean value in the sliding
window. It compares the gap to the mean value, and
calculates the empirical p-value of observing the gap
in the positive direction. If the p-value is less than
a given threshold α (a pre-set parameter) the gap is
considered as a separator, otherwise it is considered as
a connector.

5.2 Accuracy
We performed an experiment with the synthetic and the

SCOOT dataset to evaluate the clustering accuracy of dif-
ferent algorithms. Clustering accuracy was calculated as
the fraction between the number of gaps that were labelled

2http://cran.r-project.org/web/packages/stream/index.html

correctly and the total number of gaps in the ground-truth
sets.For the synthetic dataset, no domain knowledge is given,
while for the SCOOT dataset, gaps having value greater
than 30 seconds long are considered as separators. These
gaps are filtered out during the clustering process.

The baseline algorithms we considered in the comparison
are the CluStream algorithm, the ClusTree algorithm and
the mean value change detection algorithm (MVCD). The
significance parameter α in the MVCD algorithm was set
to 0.1, 0.01 and 0.001 to see the behaviour of the MVCD
algorithm with different parameter settings.

In Figure 7, we plot the accuracy of the algorithms in the
synthetic and the SCOOT dataset when the window length
is varied. The first impression is that the performance of the
MVCD algorithm is very sensitive to the value of the param-
eter α. Moreover, the accuracy of the MVCD algorithm is
very low. It is even less accurate than the guess that always
assign all the gaps with the connector label which results in
the accuracy of 0.9 and 0.83 in the synthetic and SCOOT
datasets. This empirical result shows that the methods re-
lying on parameter pre-settings do not work well because of
the sensitivity of the accuracy when change happens.

In contrast to the MVCD algorithm, the OTEC, the CluS-
tream and the ClusTree algorithm worked quite well. How-
ever, the OTEC algorithm outperformed the CluStream and
the ClusTree algorithms. On the other hand, the accuracy
of the OTEC algorithm results remain stable while the per-
formance of the CluStream and the ClusTree algorithms vi-
brated when the window length is varied . A more careful
analysis on the clustering results showed that CluStream and
ClusTree started dropping the accuracy when the length of
the gaps changes abruptly at night as shown in Figure 6. In
contrast to these algorithms, the OTEC algorithm was able
to quickly adapt to the change by getting votes from the
recent windows.

5.3 Scalability
We run our algorithm on the whole SCOOT data to show

the scalability of our algorithm when the window size is var-
ied. The average time per one sensor update is reported in
Figure 8. We can see that the OTEC algorithm scaled lin-
early with the length of the sliding windows. Moreover, it is
very efficient. For example, when the window size is set to
10000, the OTEC algorithm can handle at least 20000 up-
dates per second. While one sensor in the SCOOT system
generates 4 updates per second, by using a commodity com-
puter, our algorithm can work well with a SCOOT system
at the city-scale containing at least 5000 sensors.

5.4 A use-case
In this subsection we discuss an application of our algo-

rithm for estimating the car queue length and anomaly de-
tection. We pick two sensors located at the upstream and
downstream locations of a street as shown in Figure 9. The
direction of car movement is from sensor A to B. Between
A and B there is junction with a traffic light so not all the
cars passing through A will move to B and not all the cars
passing B move from A. However, since the junction be-
tween A and B is not crowded with one-way flow toward A,
most of the flow from A will go to B.

5.4.1 Car queue length estimates
Estimating the length of a queue of cars waiting at a traffic
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Figure 7: Accuracy of the algorithms in the synthetic and SCOOT dataset. Our algorithm (OTEC with
votes) is significantly better than the baseline algorithms. The performance of the algorithm OTEC with
votes is very stable even when the window length is varied.
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Figure 11: Group moving time derived from two sensors A and B. An anomaly was detected simultaneously
in both sensors when a small moving group of cars need more than 5 hours to pass through each sensor.

light is an important problem for monitoring the road net-
work status. In this subsection, we discuss how to estimate
this measure using the clustering results. Our assumption
is that groups of cars usually move and stop at the traffic
light together with a small variation in the number of cars
in a group. With that assumption in mind we can use the
number of cars in a group as an estimate for the car queue
length.

This estimate is not a hundred percent accurate but it
reasonably reflects the status of the road network. For in-
stance, in Figure 10, we plot the number of cars in clusters
and its variation during different period of the day. The
plot shows data of one week with mean value equal to 7 cars
per queue. We can see an interesting pattern that repeats
everyday. During the week day (from Monday to Friday),
there are always two peak times at the beginning and the
end of the day. During weekend, the peak time happens
only once in the morning. During peak times the number of
cars in a queue can reach up to 150 cars and it lasts for 10
minutes long for the whole queue to pass through the sensor

completely. This may happen when there are traffic jams at
the location.

5.4.2 Anomalies detection
Besides the car queue length, from each cluster we can eas-

ily derive information about the total time a group of cars
needs to pass through the sensor completely. We call this
measure as group moving time. By monitoring group mov-
ing time we can detect if a group of cars get too much delay
when they are passing through a location where a sensor is
located. In Figure 11 we plot group moving time derived
from two sensors at the location A and B as shown in figure
9. We can see that there is an abnormal point (marked with
big rectangles) detected in both sensors simultaneously. Fur-
ther investigation shows that there is a small moving group
with only 3 and 4 cars detected by each sensor at the same
time. The total moving time is about 5 hours. This result
suggests that either the sensors were malfunctioning at that
moment or a serious congestion was happened during that
period along the corridor connecting two sensors.
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Figure 8: Average time per update in SCOOT data.
Our algorithms are highly efficient and scaled lin-
early with the window size. When the window
size is set to 10000, the algorithms can handle at
least 20000 updates per second. One sensor in the
SCOOT system generates 4 updates per second.
Therefore, with a commodity computer our algo-
rithm works well for a SCOOT system containing at
least 5000 sensors.

6. CONCLUSIONS AND FUTURE WORK
In this work, we formulated the online event clustering

problem in an event stream. This problem can be solved by
using a k-mean algorithm on one dimensional space, where
k = 2. However, straightforward adoption of the k-mean
algorithm produces inefficient and inaccurate results due to
data distribution change. We showed that the problem can
be solved exactly using a linear algorithm in the length of
the sliding window.

Besides, to tackle data distribution change, we proposed a
ensemble based approach that labels events using votes from
a set of recent windows. Our approach was shown to be
more accurate than the state-of-the-art algorithms in terms
of clustering accuracy in an experiment with one synthetic

A 

B 

Traffic 
Light 

Traffic 
Light 

Figure 9: Locations of the upstream sensor A and
the downstream sensor B. Cars move from A to B.
Between A and B there is a junction. Most of the
flow from A moves further to B.

Figure 10: One week data shows the queue length
during different periods of the day. There are two
peak hours every week day (from Monday till Fri-
day) and only one peak time during weekend. In av-
erage the queue length is equal to 7 cars per queue.
During peak time the number of cars can reach up
to 150 cars per queue. This may happen when there
is traffic jam along the corridor.

and a real-life dataset.
Moreover, our approach scaled up to the size of a large

dataset extracted from the SCOOT system in the city of
London. We motivate the problem by showing an applica-
tion of the algorithm in estimating the car queue length and
detecting anomalies on the roads. As a future work, we plan
to use the algorithm to estimate different measures of the
road networks such as the journey time between two sensors
located at the downstream and the upstream locations when
a group of cars is tracked across the sensor data. These mea-
sures can be further used as predictors in a flow prediction
model and or can be used for monitoring the status of the
road networks.
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