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ABSTRACT 

With the proliferation of global positioning systems (GPS) 

enabled devices, a growing number of database systems are 

capable of storing and querying different spatial objects including 

points, polylines and polygons. In this paper, we present our 

experience with supporting one important class of spatial queries 

in these database systems: distance queries. For example, a 

traveler may want to find hotels within 500 meters of a nearby 

beach. In addition, this paper presents new techniques 

implemented in Oracle Spatial for some distance-related 

problems, such as the maximum distance between complex spatial 

objects, and the diameter, the convex hull and the minimum 

bounding circle of complex spatial objects. We conduct our 

experiments by utilizing real-world data sets and demonstrate that 

these distance and distance-related queries can be significantly 

improved. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – spatial 

databases and GIS.  

Keywords 
Distance query, within-distance query, convex hull, maximum 

distance, diameter, minimum bounding circle. 

1. INTRODUCTION 
With the proliferation of global positioning systems (GPS) 

enabled devices such as mobile devices, a wide range of location-

based applications require that backend database systems are 

capable of storing and querying different spatial objects including 

points, polylines and polygons. Not only commercial database 

systems including Oracle [28], IBM DB2 [18] and Microsoft SQL 

Server [23], but also open source database systems including 

PostgreSQL [29], MySQL [25] and MongoDB [24], provide 

support for spatial query processing. One important class of 

spatial queries in these database systems is distance queries, 

which include nearest-neighbor queries, and within-distance 

queries. For a large number of spatial objects, some of which can 

be very complex, supporting high-performance distance queries 

can be challenging. As nearest-neighbor queries have been well 

studied in the research community, we focus on within-distance 

queries in this paper, especially when the given spatial objects (or 

query spatial objects) are complex geometries, including complex 

polylines (such as coastlines), complex polygons (such as 

congressional districts) and complex heterogeneous collections 

(such as composite hydrography features that consist of complex 

polylines for narrow portions of rivers and complex polygons for 

wide portions of rivers and lakes), and briefly discuss nearest-

neighbor queries. Within-distance queries are used to find all 

spatial objects within a given distance of a given spatial object. As 

within-distance queries can be translated to topological 

relationship INTERSECTS queries [27] with a new spatial object, 

BUFFER(given spatial object, given distance), within-distance 

queries are also called buffer queries [7]. For example, a traveler 

may want to find hotels within 500 meters of a nearby beach. 

Other examples include determination of the set of houses within 

5 miles of U.S. Highway 101, the set of hydrography features 

within 1 mile of the region of the recent Yosemite fire, and so on. 

We discuss in-memory R-tree based optimization techniques 

implemented in Oracle Spatial to speed up these distance queries. 

We also discuss in-memory R-tree based implementations for 

some distance-related problems, such as computing the maximum 

distance between complex spatial objects, and the diameter, the 

convex hull and the minimum bounding circle of a complex 

spatial object. We make the following contributions to support 

these distance and distance-related queries in Oracle Spatial:  

• We discuss in-memory R-tree based optimization techniques 

that are used in the distance queries. These in-memory R-tree 

techniques are extended from our previous works on 

topological relationship queries [16, 17]. 

• We present in-memory R-tree based implementations for some 

distance-related problems such as computing the maximum 

distance between complex spatial objects, and the diameter, the 

convex hull and the minimum bounding circle of a complex 

spatial object. To the best of our knowledge, this paper is the 

first work to show that hierarchical tree structures, such as the 

in-memory R-tree structure, can help optimize the above 

mentioned problems by speeding up the computation of angle-

related minima/maxima.   

• We utilize real-world data sets to conduct an experimental 

study. The experimental results demonstrate that the in-memory 

R-tree techniques are effective for distance and distance-related 

queries. 

The rest of this paper is organized as follows: Section 2 reviews 

related work. Section 3 presents an overview of within-distance 

query processing. Sections 4 and 5 describe in-memory R-tree 

based optimization techniques used in distance query processing 

for minimal bounding rectangles (MBRs) and actual spatial 

objects, respectively. In section 6, we extend the in-memory R-

tree techniques to some distance-related problems. Section 7 

presents results of an experimental study using real-world data 

sets. Section 8 concludes the paper. 
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2. RELATED WORK 
Nearest neighbor queries are widely used in many location-based 

applications, and have been well studied for two decades [33, 13, 

14, 5, 6, 22]. Spatial indexes such as R-tree indexes [12, 22] can 

be built to speed up nearest neighbor queries against a large 

number of spatial objects. Two basic approaches, Depth-First 

Search (DFS) and Best-First Search (BFS), can be used in these 

spatial indexes to find nearest neighbors. In addition, several 

spatial pruning rules have been proposed to further speed up 

nearest neighbor queries. For example, minimax distance 

(MINMAXDIST), which was introduced to specify the minimum 

of the maximum possible distances, can be used in these pruning 

rules [33]. Recently, Emrich et al. [8] gave an optimal pruning 

criterion for minimal bounding rectangles (MBRs).  

Although within-distance query processing [7, 6] is not studied as 

much as nearest neighbor query processing in the research 

community, within-distance queries are also widely used in many 

location-based applications. For instance, one of geo-fencing test 

cases in the ACM SIGSPATIAL GIS Cup 2013 programming 

contest [31] required evaluations of the within-distance query 

performance for qualified point and polygon pairs. Note that in 

some complex cases of within-distance queries, both given spatial 

objects and test spatial objects can be complex geometries 

including polylines, polygons and even heterogeneous collections. 

Spatial indexes such as R-tree indexes are normally built on the 

MBRs for test spatial objects. The two-step query processing 

mechanism is as follows: First, the filter step utilizes the spatial 

index to determine a candidate set. Next, the refinement step 

examines test spatial objects in the candidate set using 

computational geometry algorithms [3, 11, 22]. 

For complex spatial objects, brute-force computational geometry 

operations, such as distance operations, can be expensive. For 

example, the distance between two complex spatial objects is 

defined as the minimum distance between the two spatial objects. 

The brute-force distance computation has O(m*n) time 

complexity, where m and n are the number of line segments (or 

points) in each of the two spatial objects. To avoid these 

expensive operations, 0-Object filtering and 1-Object filtering 

techniques was proposed [7]. The 0-Object filtering technique is 

used for two MBRs, and similar to the MINMAXDIST technique 

used in the nearest neighbor query processing. The 1-Object 

filtering technique is extended from the 0-Object technique, and 

instead of two MBRs, one actual spatial object and the MBR of 

the other spatial object are used. In addition, there are several 

techniques that were introduced to approximate complex spatial 

objects [34]. For example, the strip tree [1] is a hieratical structure 

that can represent both open curves and closed curves. The 

bounding boxes in a strip tree do not require that the sides are 

parallel to the coordinate axes. The strip tree was shown to be 

useful in some operations such as point-in-polygon operations, 

intersection operations, and so on [1]. The sphere tree [30] that is 

built with hierarchical bounding spheres can be used to efficiently 

compute distance between complex spatial objects. The TR*-tree 

[4] is a representation of polygonal objects. A polygon is 

decomposed into trapezoids and an R*-tree is built on top of these 

trapezoids to speed up the INTERSECTS operation.  

Like the hierarchical tree structures described above, our previous 

works [16, 17] also use a hierarchy structure (more specifically an 

in-memory R-tree) in which leaf entries can be made up of points, 

and line segments, including boundary line segments of a polygon 

element and line segments of a polyline element. With 

experiments on real-world data sets, we have demonstrated that 

the performance of topological relationship queries for different 

complex spatial objects can be significantly improved by using 

the in-memory R-tree techniques not only in the refinement step 

but also in the filter step. In PostGIS [29] and JTS [19], a similar 

concept of “prepared geometry” can be used in INTERSECTS and 

CONTAINS operations. Furthermore, in-memory R-tree structures 

on line segments of complex polygons were used by two of the 

top three ranked competitors in ACM SIGSPATIAL GIS Cup 

2013 programming contest [40, 21, 31].  

As Earth is not flat, Euclidean distance is not an adequate measure 

over a large area, such as North America or the whole world. 

Several techniques used in geodetic distance queries for points 

[35] have been discussed. In Oracle Spatial, both great-circle 

distance and more accurate Vincenty's formulae [37] are 

supported. In addition, 2D geodetic coordinates (longitude, 

latitude) are internally converted to 3D Earth-centered coordinates 

in Oracle Spatial. Consequently, any in-memory and on-disk R-

tree structures built on them are also 3D. However, to simplify our 

description, we will mainly use 2D non-geodetic or projected 

examples in this paper. 

Besides the distance (or the minimum distance) between complex 

spatial objects, some of other distances have been used in spatial 

applications. For example, the Hausdorff distance was introduced  

to measure the similarity between trajectories with the help of R-

tree structure based techniques [26]. In addition, the maximum 

distance between complex spatial objects can be used in some 

complex spatial analysis applications, such as complete-linkage 

clustering or farthest neighbor clustering [9]. One approach to the 

maximum distance problem is to obtain a convex hull [10, 2] for 

each of complex spatial objects and then use a rotating caliper 

algorithm [36] to find the maximum distance between these 

convex hulls. Similarly, the diameter that is the maximum 

distance between two points in a complex spatial object can also 

be computed by a rotating caliper algorithm [36]. Finally, another 

distance-related problem -- the minimum bounding circle (MBC) 

of a complex spatial object has been solved by different 

algorithms [38, 32, 2]. The MBC can also be used in some 

complex spatial analysis applications. For example, in a facility 

location planning application, a new hospital may be located in 

the center of the MBC of a region to better serve all households in 

the region.     

3. OVERVIEW OF WITHIN-DISTANCE 
QUERY PROCESSING 
Because within-distance queries can be translated to topological 

relationship INTERSECTS queries with a new spatial object, 

BUFFER(given spatial object, given distance), a straightforward 

solution is to create a buffer spatial object from the given spatial 

object, and use the new buffer spatial object to execute the 

INTERSECTS query. As topological relationship queries including 

INTERSECTS queries have been studied in our previous works 

[16, 17], we focus on an alternative approach in this section, in 

which an expensive buffer operation on the given spatial object is 

not needed. We assume that an R-tree index has been built on a 

large number of test spatial objects [20]. An in-memory R-tree is 

built on a given spatial object, and for example, an in-memory R-

tree is shown in Figure 1. Note that the in-memory R-tree 

structure for a given spatial object is different from the R-tree 

index for test spatial objects, as the former is built on top of line 

segments or points in the given spatial object and resides only in 

memory while the latter is built on top of MBRs of test spatial 

objects and resides on disk and in memory. An overview of the 



within-distance query processing is given by using a pseudo code 

description, as follows. 

 

Algorithm: Within-Distance Query Processing 

 

   input : given spatial object (Q), test spatial 

           objects (TS), R-tree index on test 

           spatial objects (RI), distance (D) 

   output: set of test spatial objects within 

           distance (D) of Q 

 1 build in-memory R-tree (IMR-tree) for Q; 

 2 push the root of RI into stack; 

 3 while (stack is not empty)  

 4  pop one R-tree index entry (RIE) from stack; 

 5  if (RIE is a non-leaf entry in RI)  

 6   if (RIE’s inclusion flag is set to TRUE)  

 7    for (each child entry of RIE)  

 8     set its inclusion flag to TRUE; 

 9     push it into stack; 

10   else  

11    determine if non-leaf RIE’s MBR is within 

      distance (D) of Q using IMR-tree;   

12    if (RIE can be discarded)  

13     continue; /* go back to line 3 */ 

14    else if (RIE can be included)  

15     for (each child entry of RIE) 

16      set its inclusion flag to TRUE; 

17      push it into stack; 

18    else 

19     for (each child entry of RIE) 

20      push it into stack;  

21  else  /* a leaf entry in RI */ 

22   if (RIE’s inclusion flag is set to TRUE) 

23    put this TS into result set; 

24   else 

25    determine if leaf RIE’s MBR is within 

      distance (D) of Q using IMR-tree;  

26    if (RIE can be discarded) 

27     continue; /* go back to line 3 */ 

28    else if (RIE can be included)  

29     put this TS into result set; 

30    else 

31     determine if TS is within distance (D) of 

       Q using IMR-tree;   

32     if (TS can be included) 

33      put this TS into result set; 

As shown in the above pseudo code, the R-tree index component 

and the computational geometry component are tightly integrated 

in Oracle Spatial. Lines 2-30 outline the filter step where both the 

R-tree index for test spatial objects and the in-memory R-tree for 

the given spatial object are used. Lines 31-33 describe the 

refinement step where exact test spatial objects and the in-

memory R-tree for the given spatial object are used. In Sections 4 

and 5, we will discuss the usage of in-memory R-tree in the filter 

step (for MBRs) and in the refinement step (for actual test spatial 

objects), respectively.  

Note that in some spatial database systems, the filter step uses 

MBRs only, because their R-tree index component for the filter 

step and their computational geometry component for the 

refinement step are loosely coupled. The loose-coupling approach 

is easy to implement, because the filter step or the R-tree index 

component only deals with MBRs and does not take complex 

spatial objects into account. However, the loose-coupling 

approach can be inefficient to process within-distance queries, 

especially when given spatial objects are large and complex, like 

state regions, interstate highways and long rivers. This is because 

a large number of false-positives can be filtered out if the given 

spatial object or its in-memory R-tree structure can be used in the 

filter step, as shown in our experiments in Section 7.1. 

 

 

 

 

 

 

 

 

Figure 1. MBR optimizations for within-distance queries, with 

an in-memory R-tree built on a given polygon (Q). 

4. MBR OPTIMIZATIONS 
This section discusses the optimization techniques in the filter 

step. We use the term “non-leaf MBR” to denote a MBR from a 

non-leaf entry in an R-tree index, and the term “leaf MBR” to 

denote a MBR from a leaf entry in an R-tree index. We discuss 

non-leaf MBR optimizations in Section 4.1 and leaf MBR 

optimizations in Section 4.2, and then briefly discuss how these 

MBR optimization techniques can also be used in nearest 

neighbor queries in Section 4.3. 

4.1 Non-Leaf MBR Optimizations 
Lines 6-20 of the pseudo code description in Section 3 are used 

for non-leaf MBR optimizations. The basic idea is to apply the 

following three steps.  

• Step 1. If the distance between the given spatial object and a 

non-leaf MBR is larger than the given distance, the non-leaf 

MBR and its descendants can be discarded.  

• Step 2. If the non-leaf MBR is fully within the given distance of 

the given spatial object, all its descendant test spatial objects 

can be included in the final result.  

• Step 3. Otherwise, the child MBRs of the non-leaf MBR are 

fetched from disk or buffer cache for further processing. 

Step 1 for non-leaf MBR optimizations can be achieved by using 

the non-leaf MBR to search the in-memory R-tree of the given 

spatial object. Assume that MBR (A) is a non-leaf MBR in Figure 

1. We can increase MBR (A) by the given distance to obtain 

another MBR (B), and use MBR(B) as a query window to search 

the in-memory R-tree of the given spatial object (Q).  

Ideally, step 2 for non-leaf MBR optimizations is equivalent to 

determining if the Hausdorff distance from the non-leaf MBR (A) 
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to the given spatial object (Q) or max{min{distance(a, q) : q ∈ Q} 

:  a ∈ A} is less than the given distance. However, to the best of 

our knowledge, it is still an open research problem to design an 

efficient R-tree based Hausdorff distance algorithm for any non-

discrete spatial objects (such as lines or polygons), although 

several R-tree based Hausdorff distance algorithms for discrete 

points have been proposed [26]. To approximate step 2 for non-

leaf MBR optimizations, we use the center point (C) of the non-

leaf MBR (A) to find its closest point in spatial object (Q) (i.e. 

point D in Figure 1) by searching the in-memory R-tree of spatial 

object (Q). We further determine if all points in MBR (A) are 

within the given distance of point D. If so, all the descendant test 

spatial objects of non-leaf MBR (A) can be included in the final 

result. Note that the above approximation is based on the 

following inequations. 

max{distance(a, D) : a ∈ A}  ≥   

min{max{distance(a, q) : a ∈ A} : q ∈ Q}  ≥ 

max{min{distance(a, q) : q ∈ Q} : a ∈ A}.  

We can obtain max{distance(a, D) : a ∈ A}  ≥  

min{max{distance(a, q) : a ∈ A} : q ∈ Q}, simply by using the 

definition of min{max{distance(a, q) : a ∈ A} : q ∈ Q}. Note that 

point D is on spatial object (Q). The rest is based on the following 

theorem.   

Theorem 1: If there are two spatial objects A and Q,  

min{max{distance(a, q) : a ∈ A} : q ∈ Q}  ≥ 

max{min{distance(a, q) : q ∈ Q} : a ∈ A}. 

Proof Sketch: To prove the above theorem, we can assume that 

point a’ in A and point q’ in Q are two points having 

min{max{distance(a, q) : a ∈ A} : q ∈ Q}, and point a” in A and 

point q” in Q are two points having max{min{distance(a, q) : q ∈ 

Q} : a ∈ A}. It is not difficult to prove that distance(a’, q’) ≥ 

distance(a”, q’) ≥ distance(a”, q”). Thus, min{max{distance(a, q) : 

a ∈ A} : q ∈ Q}  ≥  max{min{distance(a, q) : q ∈ Q} : a ∈ A}. 

When the above two steps are completed, a non-leaf MBR may be 

left undecided if the non-leaf MBR is partially within the given 

distance of the given spatial object. Child MBRs of the non-leaf 

MBR will have to be fetched in step 3 for further processing. 

4.2 Leaf MBR Optimizations 
Lines 22-30 of the pseudo code description in Section 3 are used 

for leaf MBR optimizations, which are similar to the non-leaf 

MBR optimizations described in Section 4.1. 

• Step 1. If the distance between the given spatial object and a 

leaf MBR is larger than the given distance, the test spatial 

object enclosed by the leaf MBR can be discarded. 

• Step 2. If any one of the four edges in the leaf MBR is fully 

within the given distance of the given spatial object, the test 

spatial object enclosed by the leaf MBR can be included in the 

final result. 

• Step 3. Otherwise, the test spatial object enclosed by the leaf 

MBR will be fetched from disk or buffer cache for further 

processing, which will be discussed in detail in Section 5.  

Step 1 for leaf MBR optimization is similar to step 1 for non-leaf 

MBR optimizations. For example, assume that MBR (A*) in 

Figure 1 is a leaf MBR. MBR (A*) is increased by the given 

distance to obtain another MBR (B*), and then MBR (B*) is used 

as a query window to search the in-memory R-tree of the given 

spatial object (Q).   

Since a leaf MBR encloses only a single test spatial object, there 

must be a point in each of four edges of the leaf MBR that is 

common to the test spatial object. Therefore in step 2 for leaf 

MBR optimizations, if any one of four edges in the leaf MBR is 

fully within the given distance of the given spatial object, the test 

spatial object enclosed by the leaf MBR can be returned in the 

final result. For example, if the bottom edge (E*) of the leaf MBR 

(A*) (shown in Figure 1) is fully within the given distance of the 

given spatial object (Q), the test spatial object enclosed by the leaf 

MBR (A*) can be returned in the final result. This is the same as 

determining if the Hausdorff distance from the bottom edge (E*) 

of the leaf MBR (A*) to the given spatial object (Q) or 

max{min{distance(e, q) : q ∈ Q} :  e ∈ E*} is less than the given 

distance. As described in Section 4.1, an efficient R-tree based 

Hausdorff distance algorithm for any non-discrete spatial objects 

(such as lines or polygons) is still an open research problem. Thus 

to approximate step 2 for leaf MBR optimizations, we use the 

center point (C*) of the bottom edge (E*) to find its closest point 

in spatial object (Q) (i.e. point D* in Figure 1) by searching the 

in-memory R-tree of spatial object (Q), and then determine if all 

points in the bottom edge (E*) are within the given distance of 

point D*. If so, the test spatial object enclosed by the leaf MBR 

(A*) can be included in the final result. According to Theorem 1 

in Section 4.1, max{distance(e, D*) : e ∈ E*} ≥ 

max{min{distance(e, q) : q ∈ Q} :  e ∈ E*}.  

Note that in the 2D non-geodetic case shown in Figure 1, the four 

boundary edges can be checked in step 2 for leaf MBR 

optimizations. In the 2D geodetic case where 3D minimum 

bounding boxes (MBBs) are used to accommodate 3D Earth-

centered coordinates, the six boundary faces can be checked in 

step 2 for leaf MBB optimizations. 

4.3 Usage in Nearest Neighbor Queries 
The techniques in Sections 4.1 and 4.2 can also be adopted in 

nearest neighbor queries, especially when the given spatial object 

is complex. For example, MINDIST, or simply the distance 

between the given spatial object and an MBR can be computed by 

using the MBR to search the in-memory R-tree of the given 

spatial object, find the nearest neighbor point to the MBR, and 

calculate the minimum distance. To get MINMAXDIST between 

the given spatial object (Q) and an MBR, which corresponds to 

min{max{min{distance(a, q) : q ∈ Q} : a ∈ Ei} : Ei ∈ four 

boundary edges (E1 –E4) of MBR} for 2D non-geodetic cases, we 

reapply the technique that is based on Theorem 1 in Section 4.1. 

In other words, for each edge Ei in the MBR, we can compute 

max{distance(a, Di) : a ∈ Ei}, where Di
 is the point on the spatial 

object (Q) that is closest to the center of boundary edge Ei. This is 

done in a similar manner to step 2 for non-leaf MBR 

optimizations described in Section 4.2. When max{distance(a, Di) 

: a ∈ Ei} is computed for each of four boundary edges in the 

MBR, their minimum, or min{max{distance(a, Di) : a ∈ Ei} :  Ei 

∈ four boundary edges (E1 –E4) of the MBR} can be used to 

approximate MINMAXDIST between the given spatial object (Q) 

and the MBR. Then, both MINDIST and MINMAXDIST between 

the given spatial object and the MBR can be used in nearest 

neighbor query’s different pruning rules, which have been well 

studied [33, 5, 22]. 

5. DISTANCE BETWEEN COMPLEX 
SPATIAL OBJECTS 
As described in Section 2, the brute-force distance computation 

between two spatial objects has O(m*n) time complexity, where m 

and n are the number of line segments or points in each of the two 



spatial objects. In other words, each pair of line segments or 

points in the two spatial objects is checked. Obviously, the brute-

force approach can be expensive when m and n are large. Because 

the in-memory R-tree for the given spatial object is already built, 

we can use the following two approaches to determine if a test 

spatial object is within the given distance of a given spatial object.  

The first approach, which does not build an in-memory R-tree for 

the test spatial object, can be described as follows.     

 

Algorithm: Within-Distance Approach 1 

 

   input : given spatial object (Q), in-memory R- 

           tree (IMR-tree) for Q, test spatial 

           object (TS), distance (D) 

   output: TS, if TS is within distance (D) of Q 

 1 for (each line segment or point (E) in TS)  

 2  determine the minimum distance between E and 

    Q using IMR-tree; 

 3  if (E is within distance (D) of Q)  

 4   return TS; 

 5 if (TS has polygons)  

 6  check if any point of Q is in polygons of TS;   

 7  if (one point of Q is in polygons of TS)  

 8   return TS; /* distance = 0 */ 

The first approach is used if the test spatial object is not as 

complex as the given spatial object, e.g., if the number of vertices 

in the test spatial object is much less than that in the given spatial 

object. The second approach can be used if the test object is as 

complex as the given spatial object. The second approach builds 

an in-memory R-tree for the test spatial object, and it can be 

described as follows.    

 

Algorithm: Within-Distance Approach 2 

 

   input : given spatial object (Q), in-memory R- 

           tree for Q, test spatial object (TS), 

           distance (D) 

   output: TS, if TS is within distance (D) of Q 

 1 build in-memory R-tree for TS; 

 2 use two in-memory R-trees to find the nearest  

   neighbor pair (NNP), and get min_distance; 

 3 if (min_distance <= D)  

 4  return TS; 

Note that in line 2 of the second approach, a priority queue can be 

used in the Best-First Search (BFS) manner to find the nearest 

neighbor pair from the two in-memory R-trees [13]. Furthermore, 

when one polygon geometry object can fully contain the other 

geometry, the distance between the two spatial objects will be 

zero. This case can be quickly determined by using one point from 

the second spatial object to run in-memory R-tree based point-in-

polygon methods that have been described [15]. Since there could 

be many test spatial objects in the refinement step, the cost of 

building in-memory R-trees for them in the second approach 

cannot be neglected. In practice, several neighbor line segments or 

points can be grouped into a single leaf entry in order to limit the 

number of leaf entries in an in-memory R-tree. As the number of 

leaf entries in an in-memory R-tree is limited, the cost of building 

an in-memory R-tree is also limited. In addition, lower memory 

usage makes the whole system more scalable.  

The above two approaches can also be adopted to compute the 

distance between two spatial objects. For example, in Approach 1, 

lines 3-4 are replaced with checking if the minimum distance is 

found, and finally the minimum distance is returned. In Approach 

2, lines 3-4 are simply replaced with returning the distance 

between the nearest neighbor pair.  

6. EXTENSIONS 
Section 6 discusses extensions of the proposed in-memory R-tree 

techniques to other distance-related problems such as convex hull, 

maximum distance, diameter, and minimum bounding circle. 

6.1 Convex Hull 
As the convex hull of a spatial object has many practical 

applications, such as the rotating caliper algorithms for maximum 

distance and diameter described in the next two subsections, this 

subsection discusses the usage of an in-memory R-tree for a 

spatial object when computing the convex hull of the spatial 

object. Note that several convex hull algorithms have been 

proposed [2]. For example, the Graham scan algorithm is one of 

the well-known algorithms with O(n*log n) time complexity [10].  

To simplify our description of the in-memory R-tree based convex 

hull algorithm, we assume that a spatial object comprises discrete 

points as shown in Figure 2. Note that the algorithm can be 

extended to other spatial objects such as polylines and polygons. 

In Figure 2, there are four leaf nodes (I, J, K, and L) and each leaf 

node has two entries. The eight leaf entries are points A, B, C, D, 

E, F, G, and H. Node M is the parent of nodes I and J, node N is 

the parent of nodes K and L, and nodes M and N are also two 

children in the root node.    

 

 

 

 

 

 

   

Figure 2. An in-memory R-tree is used to find the convex hull.  

Since either of the x-axis or y-axis extreme points must be on the 

convex hull, we can take the y-axis minimum point (i.e. point F in 

Figure 2) as the starting point in the convex hull. Point F can be 

easily found from the in-memory R-tree. We also assume that the 

convex hull is counter-clockwise. To find the next point that is on 

the convex hull from point F, we take a horizontal line from point 

F, i.e. line ZF in Figure 2. Then we use the in-memory R-tree to 

find point (*) that will have the maximum angle ∠ZF(*). We start 

with the root node. There are two entries in the root node: node M 

and node N. The maximum angle from node N is angle ∠ZFX 

that is 180°. The maximum angle from node M is angle ∠ZFY. 

We push them into a priority queue based on a descending order 

of the angle values. Then we dequeue to get node N, and for the 

two entries (i.e. node K, node L) in node N, compute their 

maximum angle. The maximum angle from node K is 90° and the 

maximal angle from node L is angle ∠ZFH. We push them into 

the priority queue, and dequeue to get node L. For node L, we 

compute the maximum angles from point H and point G and push 
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them into the priority queue. Finally, we obtain point H as the 

point where the maximum angle ∠ZFH occurs. The usage of the 

priority queue here is similar to that for the incremental nearest 

neighbor (NN) algorithm [13]. However, the angle, instead of the 

distance, is used in the priority queue. Note that the maximum 

angle can only be found at one of the four corner points of an 

MBR, and any other angles constructed from other points in the 

MBR are not larger than the maximum angle. 

Once point H is found, line segment FH will be on the convex 

hull. Then from point H, we can proceed to use the in-memory R-

tree to determine that the next point is point G, where the 

maximum angle ∠FHG occurs. The algorithm completes once 

point F is found to be on the convex hull again.  

The following pseudo code describes the complete algorithm. 

 

Algorithm: RTREE_CONVEX_HULL  

 

   input : in-memory R-tree (IMR-tree) 

   output: point list (L) of convex hull 

 1 find the y-axis minimum point (F) using 

   IMR-tree, and build a horizontal line (ZF); 

 2 Q = F;  /* the y-axis minimum point */  

 3 P = Z;  /* PQ is the horizontal line now */ 

 4 R = NULL; /* for next point on convex hull */ 

 5 add Q into L;  

 6 while (R != F)  /* if point F found again */ 

 7  R = FIND_CONVEX_HULL_NEXT_POINT(IMR-tree, P, 

    Q); 

 8  P = Q; /* prepare for the next one */  

 9  Q = R; 

10  add R into L; 

11 return L; 

 

Algorithm: FIND_CONVEX_HULL_NEXT_POINT  

 

   input : in-memory R-tree (IMR-tree), point P, 

           point Q 

   output: point R /* next point on convex hull */ 

 1 initialize a descending priority queue (DPRIQ); 

 2 for (each entry in root node of IMR-tree)  

 3  compute the maximum angle constructed by any 

one of 4 corner points in this entry, and P 

and Q;  

 4  put this entry with its maximum angle into 

    DPRIQ;   

 5 while (DPRIQ is not empty)  

 6  dequeue from DPRIQ into entry (EN); 

 7  if (EN is a leaf entry)  

 8   return EN; /* this is the point */ 

 9  else  /* EN is a non-leaf entry */ 

10   for (each child entry in EN)  

11    compute the maximum angle constructed by any 

      one of 4 corner points in this entry, and P 

      and Q;  

12    put this entry with its maximum angle into 

      DPRIQ; 

The above algorithms can also be extended to 2D geodetic spatial 

objects, where 2D geodetic coordinates are converted to 3D Earth-

centered coordinates. We assume the geodetic convex hull is fully 

inside a hemisphere. Two modifications are needed. The first 

modification is that an angle on a sphere or more accurately a 

spheroid (approximating Earth) is used. The angle is constructed 

by two geodetic lines. Thus, in line 1 of Algorithm 

RTREE_CONVEX_HULL, a horizontal line (ZF) will be replaced 

with a geodetic line, which has bearing = 90° to the true north at 

point F, if the geodetic convex hull is inside the Northern 

Hemisphere. The second modification is in lines 3 and 11 of 

Algorithm FIND_CONVEX_HULL_NEXT_POINT. The maximum 

angle in a 3D MBB can occur on the 12 boundary edges of the 3D 

MBB. Furthermore, we need to consider only points that are on 

the surface of Earth. Note that not all points in the 3D MBB are 

on the surface of Earth. Some points are under the surface of 

Earth, some points are above the surface of Earth, and the rest 

points are on the surface of Earth. When the 12 boundary edges 

are examined, the maximum angle is found. Any other feasible 

angles from the 3D MBB are not larger than the maximum angle.  

6.2 Maximum Distance and Diameter 
The maximum distance between two spatial objects can be 

computed by a rotating caliper algorithm when two convex hulls 

(one for each of the two spatial objects) are obtained [36]. With 

the in-memory R-tree being built and used in the queries such as 

distance computation in previous sections, we can extend the in-

memory R-tree techniques to compute the maximum distance 

between two spatial objects. One approach is to use the in-

memory R-trees to build convex hulls as described in Section 6.1 

and then use the rotating caliper algorithm. Another approach is to 

modify the algorithms in Section 5 for the maximum distance. For 

example, in Approach 1 of Section 5, the steps performed in lines 

5-8 are not required, lines 2-4 can be replaced with determining 

the maximum distance between each line segment or point in the 

test spatial object and the given spatial object using the in-

memory R-tree for the latter, and finally the maximum distance 

can be returned. In Approach 2 of Section 5, nearest neighbor pair 

in line 2 can be replaced with farthest neighbor pair, and finally 

the distance between the farthest neighbor pair is returned.    

Like the maximum distance, the diameter of a spatial object can 

also be computed by a rotating caliper algorithm when the convex 

hull of the spatial object is obtained [36]. Thus, the in-memory R-

tree based convex hull algorithm described in Section 6.1 can be 

used. Similarly, Approach 2 described in Section 5 can also be 

adopted to compute the diameter that is the maximum distance 

between two points in a complex spatial object.     

6.3 Minimum Bounding Circle  
The minimum bounding circle (MBC) computation has been 

shown to be related to the problem of locating a third point (R) in 

order to minimize the angle ∠PRQ, given that points P and Q are 

on the MBC [32].  

Before we proceed with the complete algorithm for the MBC 

problem, we explain how to use the in-memory R-tree to quickly 

find the third point, given two points on the bounding circle. In 

Figure 3, we assume that point F and point H are on a bounding 

circle. We also assume that the third point is on the left of line 



segment FH. Note that three non-collinear points can define a 

circle. To find the third point on the bounding circle, we need to 

find the point (*) such that the angle ∠F(*)H is minimum. There 

are two cases, where the angle ∠F(*)H can be minimum in an 

MBR.  

Case 1: Point (*) is one of the four corner points. For example in 

Figure 3, angle ∠FAH is minimum for all points in node M, and 

point A is the top-left corner point of the MBR (node M).  

Case 2: Point (*) is the intersection point between line FH and the 

MBR, and the intersection point is outside line segment FH. In 

this case angle ∠F(*)H is 0°. Figure 4 shows that case 2 (where 

the minimum angle = 0°) occurs in (c), but not in (a) and (b). 

 

 

 

 

 

 

 

 

 

Figure 3. How to find the third point, given that point F and 

point H are on a bounding circle. 

 

 

 

  

          (a)                                (b)                              (c) 

Figure 4: The minimum angle = 0° case occurs in (c), not in (a) 

and (b). 

The angle ∠FWH is the minimum for points in node N. For the 

two entries of the root node in Figure 3, both angle ∠FAH and 

angle ∠FWH are pushed into an ascending order priority queue. 

As angle ∠FWH is less than angle ∠FAH, the top entry in the 

priority queue is node N. When the top entry (node N) is 

dequeued, node L and node K will be used to compute their 

minimum angle, and they will be pushed into the priority queue. 

For node L, it is still the angle ∠FWH. For node K, it is the angle 

∠FVH. Because the angle ∠FWH is the minimum in the priority 

queue, the top entry that is node L is dequeued. Points G and H 

are entries in node L. As point H has been used as one of two 

points (F and H) on the bounding circle, we only need to push the 

angle ∠FGH into the priority queue. Now the angle ∠FAH is the 

top entry in the priority queue. Similarly, the search will continue 

from node M, to node I, and finally to point A, where the MBC is 

found.  The following pseudo code shows the above algorithm to 

find the third point. 

 

Algorithm: FIND_MBC_THIRD_POINT  

 

   input : in-memory R-tree (IMR-tree), point P, 

           point Q 

   output: point R /* the third point */ 

 1 initialize an ascending priority queue (APRIQ); 

 2 for (each entry in root node of IMR-tree)  

 3  compute the minimum angle constructed by any 

one of 4 corner points, or the intersection 

point (the minimum angle = 0° case) in this 

entry, and P and Q;  

 4  put this entry with its minimum angle into 

    APRIQ;   

 5 while (APRIQ is not empty)  

 6  dequeue from APRIQ into entry EN; 

 7  if (EN is a leaf entry)  

 8   return EN; /* this is the point */ 

 9  else  /* EN is a non-leaf entry */ 

10   for (each child entry in EN)  

11    compute the minimum angle constructed by any 

      one of 4 corner points, or the intersection 

      point (the minimum angle = 0° case) in this 

      entry, and P and Q;   

12    put this entry with its minimum angle into 

      APRIQ; 

A line segment on the convex hull can be used to get the first two 

points [32]. Thus, the complete algorithm to compute the MBC is 

described as follows. 

 

Algorithm: RTREE_MBC  

 

   input : in-memory R-tree (IMR-tree) 

   output: MBC 

 1 find the y-axis minimum point (F) using 

   IMR-tree, and build a horizontal line (ZF); 

 2 P = F;  /* the y-axis minimum point */  

 3 S = Z;  /* the horizontal line */ 

 4 Q = FIND_CONVEX_HULL_NEXT_POINT(IMR-tree, S, 

   P);  

 5 while (1)   

 6  R = FIND_MBC_THIRD_POINT(IMR-tree, P, Q);  

 7  if (∠PRQ >= 90°)  

 8   return the circle constructed by P and Q;  

     /* the case of two points: PQ is the diameter 

     of this circle */ 

 9  else if ((∠PQR <= 90°) && (∠RPQ <= 90°))  

10   return the circle constructed by P, Q and R; 

     /* the case of three points */ 

11  else if (∠PQR > 90°)  

12   Q = R;  /* move on, use Q side */   

13  else  

14   P = R; /* move on, use P side */ 

Note that the logic in lines 7-14 of Algorithm RTREE_MBC was 

also described in the previous work [32]. The above algorithms 

can also be extended to 2D geodetic spatial objects, where 2D 

geodetic coordinates are converted to 3D Earth-centered 

coordinates. First, we assume that Earth’s surface can be 

approximated to a sphere, so that three points on Earth’s surface 
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can also construct a circle. We also assume the geodetic MBC is 

fully inside a hemisphere.  In line 2 and line 11 of Algorithm 

FIND_MBC_NEXT_POINT, we need to figure out where the 

minimum angle occurs in a 3D MBB. Note that those points are in 

3D Cartesian space, and an angle is also a 3D angle constructed 

by two 3D straight lines. It can be shown that the minimum angle 

can occur at one of the 8 corner points of the 3D MBB, or at the 

intersection point, which is similar to the minimum angle = 0° 

case in Figure 4 (c). Thus, once these points are examined, the 

minimum 3D angle is found in the MBB and any other 3D angles 

in the 3D MBB must be not less than the minimum 3D angle. 

Note that the logic in lines 7-14 of Algorithm RTREE_MBC also 

applies to the geodetic MBC.  

7. EXPERIMENTS 
In this section, we discuss experiments conducted using real-

world data sets. We are mainly concerned with complex spatial 

objects as they are present frequently in expensive distance 

queries. We use three complex spatial object data sets including 

polygons, polylines, and heterogeneous collections. For complex 

polygons, we have 50 US states and 1061 local regions including 

Manhattan, NY and Long Island, NY. The areas of the 1061 local 

regions range from 5.83 km2 to 78,200 km2 with an average area 

of 4,330 km2. The average number of vertices in the 50 US states 

and the 1061 local regions is 1,755 and 520, respectively. For 

complex polylines, we take 239 US interstate highways. The 239 

US interstate highways have an average length of 296.5 km, and 

the longest one I-90 is 4,290.6 km. The average number of 

vertices in the 239 US highways is 1,075. For complex 

heterogeneous collections, we consider the 38 longest rivers of the 

United States [39], the longest of which is the Missouri River. The 

average number of vertices in the 38 US rivers is 31,952. Note 

that the wide portions of these rivers are represented as polygons 

while the narrow portions are represented as polylines. We also 

take two large spatial data sets, and use the above three complex 

spatial object data sets to run queries against them. For a large 

point data set, we use the US Business Area (ABI) data set 

consisting of over 10 million locations. For a large polygon data 

set, we use the BLOCKS data set consisting of around 11 million 

US census blocks. The BLOCKS data set (about 9 GB) is the 

largest of the above data sets. All experiments were conducted on 

an Intel Xeon server with 6GB of RAM. All these data sets have 

geodetic coordinates (longitude, latitude) in the World Geodetic 

System (WGS 84). 

7.1 Compare Different MBR Optimizations 
In this subsection, we conduct experiments to measure the 

following within-distance query performances. 

  SELECT COUNT(*)  

  FROM BLOCKS a 

  WHERE SDO_WITHIN_DISTANCE(a.geometry, 

   :given_spatial_object, 'distance=4 unit=km') = 'TRUE'; 

All three complex spatial object data sets are used as given spatial 

objects, or query spatial objects. Five different configurations, 

where different MBR optimizations described in Section 4 can be 

enabled individually, are used.  

• In Configuration A, the filter step only uses MBRs (or more 

specifically MBBs for geodetic spatial objects) and the 

refinement step uses the techniques discussed in Section 5. 

• In Configuration B, the filter step uses step 1 and step 3 for 

non-leaf MBR optimizations, which are discussed in Section 

4.1. The refinement step is the same as that in Configuration A.   

• In Configuration C, the filter step uses all three steps for non-

leaf MBR optimizations discussed in Sections 4.1. The 

refinement step is the same as that in Configuration A.   

• In Configuration D, the filter step use not only the three steps 

for non-leaf MBR optimizations discussed in Section 4.1, but 

also step 1 and step 3 for leaf MBR optimizations discussed in 

Section 4.2. The refinement step is the same as that in 

Configuration A.   

• In Configuration E, the filter step uses the three steps for non-

leaf optimizations in Sections 4.1 as well as the three steps for 

leaf optimizations in Sections 4.2. The refinement step is also 

the same as that in Configuration A. This is the default 

configuration in Oracle Spatial. 

Note that Configuration A can be used to simulate a spatial 

database system, where the R-tree index component and the 

computational geometry component are loosely coupled, so that 

the R-tree index component only uses the MBR of a given spatial 

object to examine the MBRs from the R-tree index on test spatial 

objects. In Figure 5, we report the total execution time for each of 

three complex spatial object data sets under the above five 

configurations. Note that because the query execution for the 

heterogeneous collections (i.e. US longest rivers) under 

Configuration A takes longer than 10 hours or 36,000s, it was 

terminated. It is clear that Configuration A is the most inefficient, 

as many false-positives have to be examined in the refinement 

step. The experimental results suggest that the spatial index 

component and the computational geometry component should be 

tightly integrated in spatial database systems. Although some 

approximations are used to obtain Hausdorff distances in both 

step 2 for non-leaf MBR optimizations and step 2 for leaf MBR 

optimizations, these approximations are relatively efficient.  

 

Figure 5. Execution time (in seconds) of within-distance 

queries under different configurations. 

7.2 Comparison of Within-Distance Queries 
and Intersects-Buffer Queries 
As we have described, within-distance queries can be translated to 

topological relationship INTERSECTS queries with a new spatial 

object, BUFFER(given spatial object, given distance). In Oracle 

Spatial, SDO_ANYINTERACT is the operator that is equivalent to 

Open Geospatial Consortium (OGC)’s INTERSECTS operation 

[27]. For example, the within-distance query in Section 7.1 can be 

rewritten as the following query with a buffer operation on the 

given spatial object. 

  SELECT COUNT(*)  

  FROM BLOCKS a 

  WHERE SDO_ANYINTERACT(a.geometry, 

   SDO_GEOM.SDO_BUFFER(:given_spatial_object, 4,  

   :tolerance, ‘unit=km')) = 'TRUE'; 

In Section 7.2, we compare the within-distance queries with their 

equivalent intersects-buffer queries. We use all three complex 
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spatial object data sets to run both within-distance queries and 

intersects-buffer queries against the ABI point data set, with 

distance values ranging from 0.125km to 128km. We also pre-

compute these buffer objects, and use them directly as given 

spatial objects to run intersects queries, so that expensive 

BUFFER operations are not taken into account. 

Figures 6, 7 and 8 show experimental results for complex 

polygons, polylines and collections, respectively. Note that the 

“intersects” line in the figures is for intersects queries with pre-

computed buffer objects. The results show that because the buffer 

operations can be expensive, within-distance queries can be faster 

than their equivalent intersects-buffer queries. However, if buffer 

objects have been pre-computed, the equivalent intersects queries 

can be slightly faster than within-distance queries. In some cases, 

it is possible that the equivalent intersects queries are much faster 

than within-distance queries as visible for the given distance = 

128km in Figure 8. This occurs due to two reasons. Firstly, when 

the given distance is large, the buffer objects can be simpler than 

the original complex objects, so that distance computations 

described in Section 5 can be relatively more expensive than 

operations used in corresponding intersects queries. For example, 

when the given distance = 128km, the average number of vertices 

in 38 buffer objects for US rivers is only 5044. Secondly, since 

the Hausdorff distance calculations described in Section 4 use 

approximations, some MBRs cannot be determined fully within 

the given distance of given spatial objects early in the filter step. 

For example, the height of the R-tree index on the ABI point data 

set is 5. None of non-leaf MBRs at level = 4 can be determined to 

lie completely within 128km of the 38 longest rivers using 

Hausdorff distance approximations, but some non-leaf MBRs at 

level = 4 are actually completely within 128km of the 38 longest 

rivers.   

 

Figure 6. Execution time (in seconds) of within-distance 

queries vs. intersects-buffer and intersects queries with 

distances from 0.125km to 128km, given polygons. 

 

Figure 7. Execution time (in seconds) of within-distance 

queries vs. intersects-buffer and intersect queries with 

distances from 0.125km to 128km, given polylines. 

 

Figure 8. Execution time (in seconds) of within-distance 

queries vs. intersects-buffer and intersects queries with 

distances from 0.125km to 128km, given collections. 

7.3 Convex Hull 
In Section 7.3, we conduct experiments to compare the in-

memory R-tree based convex hull algorithm described in Section 

6.1 with the Graham scan algorithm [10, 2]. We use 38 longest 

rivers of the United States, because they are more complex than 

50 US states, 1061 local regions and 239 US interstate highways 

so that it takes longer to complete the same query on average. For 

example, the average number of vertices in the 38 rivers is much 

higher than other spatial objects. In order to easily compare the 

original 2D Graham scan algorithm [10, 2], we also transform the 

geodetic spatial objects to projected spatial objects, which are flat 

in 2D Cartesian space. For the 38 US longest rivers, the total 

execution time of the Graham scan algorithm is 0.952s, while the 

total execution time of the in-memory R-tree based convex hull 

algorithm is 0.16s, which includes 0.083s for building in-memory 

R-trees. Note that as described in Section 5, several neighbor line 

segments are grouped into a single leaf entry, and the cost of 

building in-memory R-trees can be limited.  

7.4 Maximum Distance and Diameter 
In Section 7.4, the same projected data set of 38 US longest rivers 

in Section 7.3 is also used to compare two algorithms that 

compute maximum distance and diameter. The first algorithm 

uses the in-memory R-tree based convex hull algorithm before 

running the rotating caliper algorithm. The second algorithm is 

obtained by modifying Approach 2 of Section 5. For maximum 

distance computation, the total execution time of the first 

algorithm is 1.83s, which includes 0.16s for building convex 

hulls, while the total execution time of the second algorithm is 

38.72s. For diameter calculation, the total execution time of the 

first algorithm is 0.23s, which also includes 0.16s for building 

convex hulls, while the total execution time of the second 

algorithm is 2.80s. This means that to determine the farthest 

neighbor pairs, the second algorithm is not as efficient as the first 

algorithm that applies the rotating caliper technique on convex 

hulls.    

7.5 Minimum Bounding Circle  
In Section 7.5, the same projected data set of 38 US longest rivers 

is used to compare the in-memory R-tree based MBC algorithm 

described in Section 6.3 with the randomized MBC algorithm [38, 

2]. For the 38 US longest rivers, the total execution time of the 

randomized MBC algorithm is 0.132s on average. Note that 

because this is a randomized algorithm, there could be some rare 

runs in which it takes significantly longer.  In contrast, the in-

memory R-tree based MBC algorithm is deterministic, and it takes 

0.098s, which also includes 0.083s for building in-memory R-

trees. If the time of building in-memory R-trees is not taken into 

account, the total execution time of the in-memory R-tree based 
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MBC algorithm is 0.015s. Thus, when the in-memory R-trees are 

already built, the in-memory R-tree based MBC algorithm can be 

much faster than the randomized MBC algorithm.  

8. CONCLUSIONS 
In this paper, we discussed some in-memory R-tree based 

optimization techniques in Oracle Spatial to speed up distance 

queries for complex spatial objects. We also discussed distance-

related problems, such as the maximum distance between 

complex spatial objects, and the diameter computation, the convex 

hull and the minimum bounding circle computation for a complex 

spatial object, can also be solved by using the in-memory R-tree 

structure. Finally, we have conducted experiments by utilizing 

real-world data sets to demonstrate that the performance of these 

distance and distance-related queries can be significantly 

improved by using the in-memory R-tree techniques. 
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