
Distance Queries for Complex Spatial Objects in Oracle

Spatial
Ying Hu, Siva Ravada, Richard Anderson, Bhuvan Bamba

Oracle Spatial and Graph

{ying.hu, siva.ravada, richard.anderson}@oracle.com, bhuvanbamba@gmail.com

ABSTRACT

With the proliferation of global positioning systems (GPS)

enabled devices, a growing number of database systems are

capable of storing and querying different spatial objects including

points, polylines and polygons. In this paper, we present our

experience with supporting one important class of spatial queries

in these database systems: distance queries. For example, a

traveler may want to find hotels within 500 meters of a nearby

beach. In addition, this paper presents new techniques

implemented in Oracle Spatial for some distance-related

problems, such as the maximum distance between complex spatial

objects, and the diameter, the convex hull and the minimum

bounding circle of complex spatial objects. We conduct our

experiments by utilizing real-world data sets and demonstrate that

these distance and distance-related queries can be significantly

improved.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – spatial

databases and GIS.

Keywords
Distance query, within-distance query, convex hull, maximum

distance, diameter, minimum bounding circle.

1. INTRODUCTION
With the proliferation of global positioning systems (GPS)

enabled devices such as mobile devices, a wide range of location-

based applications require that backend database systems are

capable of storing and querying different spatial objects including

points, polylines and polygons. Not only commercial database

systems including Oracle [28], IBM DB2 [18] and Microsoft SQL

Server [23], but also open source database systems including

PostgreSQL [29], MySQL [25] and MongoDB [24], provide

support for spatial query processing. One important class of

spatial queries in these database systems is distance queries,

which include nearest-neighbor queries, and within-distance

queries. For a large number of spatial objects, some of which can

be very complex, supporting high-performance distance queries

can be challenging. As nearest-neighbor queries have been well

studied in the research community, we focus on within-distance

queries in this paper, especially when the given spatial objects (or

query spatial objects) are complex geometries, including complex

polylines (such as coastlines), complex polygons (such as

congressional districts) and complex heterogeneous collections

(such as composite hydrography features that consist of complex

polylines for narrow portions of rivers and complex polygons for

wide portions of rivers and lakes), and briefly discuss nearest-

neighbor queries. Within-distance queries are used to find all

spatial objects within a given distance of a given spatial object. As

within-distance queries can be translated to topological

relationship INTERSECTS queries [27] with a new spatial object,

BUFFER(given spatial object, given distance), within-distance

queries are also called buffer queries [7]. For example, a traveler

may want to find hotels within 500 meters of a nearby beach.

Other examples include determination of the set of houses within

5 miles of U.S. Highway 101, the set of hydrography features

within 1 mile of the region of the recent Yosemite fire, and so on.

We discuss in-memory R-tree based optimization techniques

implemented in Oracle Spatial to speed up these distance queries.

We also discuss in-memory R-tree based implementations for

some distance-related problems, such as computing the maximum

distance between complex spatial objects, and the diameter, the

convex hull and the minimum bounding circle of a complex

spatial object. We make the following contributions to support

these distance and distance-related queries in Oracle Spatial:

• We discuss in-memory R-tree based optimization techniques

that are used in the distance queries. These in-memory R-tree

techniques are extended from our previous works on

topological relationship queries [16, 17].

• We present in-memory R-tree based implementations for some

distance-related problems such as computing the maximum

distance between complex spatial objects, and the diameter, the

convex hull and the minimum bounding circle of a complex

spatial object. To the best of our knowledge, this paper is the

first work to show that hierarchical tree structures, such as the

in-memory R-tree structure, can help optimize the above

mentioned problems by speeding up the computation of angle-

related minima/maxima.

• We utilize real-world data sets to conduct an experimental

study. The experimental results demonstrate that the in-memory

R-tree techniques are effective for distance and distance-related

queries.

The rest of this paper is organized as follows: Section 2 reviews

related work. Section 3 presents an overview of within-distance

query processing. Sections 4 and 5 describe in-memory R-tree

based optimization techniques used in distance query processing

for minimal bounding rectangles (MBRs) and actual spatial

objects, respectively. In section 6, we extend the in-memory R-

tree techniques to some distance-related problems. Section 7

presents results of an experimental study using real-world data

sets. Section 8 concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

SIGSPATIAL '14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright 2014 ACM 978-1-4503-3131-9/14/11…$15.00

http://dx.doi.org/10.1145/2666310.2666385

2. RELATED WORK
Nearest neighbor queries are widely used in many location-based

applications, and have been well studied for two decades [33, 13,

14, 5, 6, 22]. Spatial indexes such as R-tree indexes [12, 22] can

be built to speed up nearest neighbor queries against a large

number of spatial objects. Two basic approaches, Depth-First

Search (DFS) and Best-First Search (BFS), can be used in these

spatial indexes to find nearest neighbors. In addition, several

spatial pruning rules have been proposed to further speed up

nearest neighbor queries. For example, minimax distance

(MINMAXDIST), which was introduced to specify the minimum

of the maximum possible distances, can be used in these pruning

rules [33]. Recently, Emrich et al. [8] gave an optimal pruning

criterion for minimal bounding rectangles (MBRs).

Although within-distance query processing [7, 6] is not studied as

much as nearest neighbor query processing in the research

community, within-distance queries are also widely used in many

location-based applications. For instance, one of geo-fencing test

cases in the ACM SIGSPATIAL GIS Cup 2013 programming

contest [31] required evaluations of the within-distance query

performance for qualified point and polygon pairs. Note that in

some complex cases of within-distance queries, both given spatial

objects and test spatial objects can be complex geometries

including polylines, polygons and even heterogeneous collections.

Spatial indexes such as R-tree indexes are normally built on the

MBRs for test spatial objects. The two-step query processing

mechanism is as follows: First, the filter step utilizes the spatial

index to determine a candidate set. Next, the refinement step

examines test spatial objects in the candidate set using

computational geometry algorithms [3, 11, 22].

For complex spatial objects, brute-force computational geometry

operations, such as distance operations, can be expensive. For

example, the distance between two complex spatial objects is

defined as the minimum distance between the two spatial objects.

The brute-force distance computation has O(m*n) time

complexity, where m and n are the number of line segments (or

points) in each of the two spatial objects. To avoid these

expensive operations, 0-Object filtering and 1-Object filtering

techniques was proposed [7]. The 0-Object filtering technique is

used for two MBRs, and similar to the MINMAXDIST technique

used in the nearest neighbor query processing. The 1-Object

filtering technique is extended from the 0-Object technique, and

instead of two MBRs, one actual spatial object and the MBR of

the other spatial object are used. In addition, there are several

techniques that were introduced to approximate complex spatial

objects [34]. For example, the strip tree [1] is a hieratical structure

that can represent both open curves and closed curves. The

bounding boxes in a strip tree do not require that the sides are

parallel to the coordinate axes. The strip tree was shown to be

useful in some operations such as point-in-polygon operations,

intersection operations, and so on [1]. The sphere tree [30] that is

built with hierarchical bounding spheres can be used to efficiently

compute distance between complex spatial objects. The TR*-tree

[4] is a representation of polygonal objects. A polygon is

decomposed into trapezoids and an R*-tree is built on top of these

trapezoids to speed up the INTERSECTS operation.

Like the hierarchical tree structures described above, our previous

works [16, 17] also use a hierarchy structure (more specifically an

in-memory R-tree) in which leaf entries can be made up of points,

and line segments, including boundary line segments of a polygon

element and line segments of a polyline element. With

experiments on real-world data sets, we have demonstrated that

the performance of topological relationship queries for different

complex spatial objects can be significantly improved by using

the in-memory R-tree techniques not only in the refinement step

but also in the filter step. In PostGIS [29] and JTS [19], a similar

concept of “prepared geometry” can be used in INTERSECTS and

CONTAINS operations. Furthermore, in-memory R-tree structures

on line segments of complex polygons were used by two of the

top three ranked competitors in ACM SIGSPATIAL GIS Cup

2013 programming contest [40, 21, 31].

As Earth is not flat, Euclidean distance is not an adequate measure

over a large area, such as North America or the whole world.

Several techniques used in geodetic distance queries for points

[35] have been discussed. In Oracle Spatial, both great-circle

distance and more accurate Vincenty's formulae [37] are

supported. In addition, 2D geodetic coordinates (longitude,

latitude) are internally converted to 3D Earth-centered coordinates

in Oracle Spatial. Consequently, any in-memory and on-disk R-

tree structures built on them are also 3D. However, to simplify our

description, we will mainly use 2D non-geodetic or projected

examples in this paper.

Besides the distance (or the minimum distance) between complex

spatial objects, some of other distances have been used in spatial

applications. For example, the Hausdorff distance was introduced

to measure the similarity between trajectories with the help of R-

tree structure based techniques [26]. In addition, the maximum

distance between complex spatial objects can be used in some

complex spatial analysis applications, such as complete-linkage

clustering or farthest neighbor clustering [9]. One approach to the

maximum distance problem is to obtain a convex hull [10, 2] for

each of complex spatial objects and then use a rotating caliper

algorithm [36] to find the maximum distance between these

convex hulls. Similarly, the diameter that is the maximum

distance between two points in a complex spatial object can also

be computed by a rotating caliper algorithm [36]. Finally, another

distance-related problem -- the minimum bounding circle (MBC)

of a complex spatial object has been solved by different

algorithms [38, 32, 2]. The MBC can also be used in some

complex spatial analysis applications. For example, in a facility

location planning application, a new hospital may be located in

the center of the MBC of a region to better serve all households in

the region.

3. OVERVIEW OF WITHIN-DISTANCE
QUERY PROCESSING
Because within-distance queries can be translated to topological

relationship INTERSECTS queries with a new spatial object,

BUFFER(given spatial object, given distance), a straightforward

solution is to create a buffer spatial object from the given spatial

object, and use the new buffer spatial object to execute the

INTERSECTS query. As topological relationship queries including

INTERSECTS queries have been studied in our previous works

[16, 17], we focus on an alternative approach in this section, in

which an expensive buffer operation on the given spatial object is

not needed. We assume that an R-tree index has been built on a

large number of test spatial objects [20]. An in-memory R-tree is

built on a given spatial object, and for example, an in-memory R-

tree is shown in Figure 1. Note that the in-memory R-tree

structure for a given spatial object is different from the R-tree

index for test spatial objects, as the former is built on top of line

segments or points in the given spatial object and resides only in

memory while the latter is built on top of MBRs of test spatial

objects and resides on disk and in memory. An overview of the

within-distance query processing is given by using a pseudo code

description, as follows.

Algorithm: Within-Distance Query Processing

 input : given spatial object (Q), test spatial

 objects (TS), R-tree index on test

 spatial objects (RI), distance (D)

 output: set of test spatial objects within

 distance (D) of Q

 1 build in-memory R-tree (IMR-tree) for Q;

 2 push the root of RI into stack;

 3 while (stack is not empty)

 4 pop one R-tree index entry (RIE) from stack;

 5 if (RIE is a non-leaf entry in RI)

 6 if (RIE’s inclusion flag is set to TRUE)

 7 for (each child entry of RIE)

 8 set its inclusion flag to TRUE;

 9 push it into stack;

10 else

11 determine if non-leaf RIE’s MBR is within

 distance (D) of Q using IMR-tree;

12 if (RIE can be discarded)

13 continue; /* go back to line 3 */

14 else if (RIE can be included)

15 for (each child entry of RIE)

16 set its inclusion flag to TRUE;

17 push it into stack;

18 else

19 for (each child entry of RIE)

20 push it into stack;

21 else /* a leaf entry in RI */

22 if (RIE’s inclusion flag is set to TRUE)

23 put this TS into result set;

24 else

25 determine if leaf RIE’s MBR is within

 distance (D) of Q using IMR-tree;

26 if (RIE can be discarded)

27 continue; /* go back to line 3 */

28 else if (RIE can be included)

29 put this TS into result set;

30 else

31 determine if TS is within distance (D) of

 Q using IMR-tree;

32 if (TS can be included)

33 put this TS into result set;

As shown in the above pseudo code, the R-tree index component

and the computational geometry component are tightly integrated

in Oracle Spatial. Lines 2-30 outline the filter step where both the

R-tree index for test spatial objects and the in-memory R-tree for

the given spatial object are used. Lines 31-33 describe the

refinement step where exact test spatial objects and the in-

memory R-tree for the given spatial object are used. In Sections 4

and 5, we will discuss the usage of in-memory R-tree in the filter

step (for MBRs) and in the refinement step (for actual test spatial

objects), respectively.

Note that in some spatial database systems, the filter step uses

MBRs only, because their R-tree index component for the filter

step and their computational geometry component for the

refinement step are loosely coupled. The loose-coupling approach

is easy to implement, because the filter step or the R-tree index

component only deals with MBRs and does not take complex

spatial objects into account. However, the loose-coupling

approach can be inefficient to process within-distance queries,

especially when given spatial objects are large and complex, like

state regions, interstate highways and long rivers. This is because

a large number of false-positives can be filtered out if the given

spatial object or its in-memory R-tree structure can be used in the

filter step, as shown in our experiments in Section 7.1.

Figure 1. MBR optimizations for within-distance queries, with

an in-memory R-tree built on a given polygon (Q).

4. MBR OPTIMIZATIONS
This section discusses the optimization techniques in the filter

step. We use the term “non-leaf MBR” to denote a MBR from a

non-leaf entry in an R-tree index, and the term “leaf MBR” to

denote a MBR from a leaf entry in an R-tree index. We discuss

non-leaf MBR optimizations in Section 4.1 and leaf MBR

optimizations in Section 4.2, and then briefly discuss how these

MBR optimization techniques can also be used in nearest

neighbor queries in Section 4.3.

4.1 Non-Leaf MBR Optimizations
Lines 6-20 of the pseudo code description in Section 3 are used

for non-leaf MBR optimizations. The basic idea is to apply the

following three steps.

• Step 1. If the distance between the given spatial object and a

non-leaf MBR is larger than the given distance, the non-leaf

MBR and its descendants can be discarded.

• Step 2. If the non-leaf MBR is fully within the given distance of

the given spatial object, all its descendant test spatial objects

can be included in the final result.

• Step 3. Otherwise, the child MBRs of the non-leaf MBR are

fetched from disk or buffer cache for further processing.

Step 1 for non-leaf MBR optimizations can be achieved by using

the non-leaf MBR to search the in-memory R-tree of the given

spatial object. Assume that MBR (A) is a non-leaf MBR in Figure

1. We can increase MBR (A) by the given distance to obtain

another MBR (B), and use MBR(B) as a query window to search

the in-memory R-tree of the given spatial object (Q).

Ideally, step 2 for non-leaf MBR optimizations is equivalent to

determining if the Hausdorff distance from the non-leaf MBR (A)

E*

B

C

D* C*

A

Q

C

D

A*

B*

to the given spatial object (Q) or max{min{distance(a, q) : q ∈ Q}

: a ∈ A} is less than the given distance. However, to the best of

our knowledge, it is still an open research problem to design an

efficient R-tree based Hausdorff distance algorithm for any non-

discrete spatial objects (such as lines or polygons), although

several R-tree based Hausdorff distance algorithms for discrete

points have been proposed [26]. To approximate step 2 for non-

leaf MBR optimizations, we use the center point (C) of the non-

leaf MBR (A) to find its closest point in spatial object (Q) (i.e.

point D in Figure 1) by searching the in-memory R-tree of spatial

object (Q). We further determine if all points in MBR (A) are

within the given distance of point D. If so, all the descendant test

spatial objects of non-leaf MBR (A) can be included in the final

result. Note that the above approximation is based on the

following inequations.

max{distance(a, D) : a ∈ A} ≥

min{max{distance(a, q) : a ∈ A} : q ∈ Q} ≥

max{min{distance(a, q) : q ∈ Q} : a ∈ A}.

We can obtain max{distance(a, D) : a ∈ A} ≥

min{max{distance(a, q) : a ∈ A} : q ∈ Q}, simply by using the

definition of min{max{distance(a, q) : a ∈ A} : q ∈ Q}. Note that

point D is on spatial object (Q). The rest is based on the following

theorem.

Theorem 1: If there are two spatial objects A and Q,

min{max{distance(a, q) : a ∈ A} : q ∈ Q} ≥

max{min{distance(a, q) : q ∈ Q} : a ∈ A}.

Proof Sketch: To prove the above theorem, we can assume that

point a’ in A and point q’ in Q are two points having

min{max{distance(a, q) : a ∈ A} : q ∈ Q}, and point a” in A and

point q” in Q are two points having max{min{distance(a, q) : q ∈

Q} : a ∈ A}. It is not difficult to prove that distance(a’, q’) ≥

distance(a”, q’) ≥ distance(a”, q”). Thus, min{max{distance(a, q) :

a ∈ A} : q ∈ Q} ≥ max{min{distance(a, q) : q ∈ Q} : a ∈ A}.

When the above two steps are completed, a non-leaf MBR may be

left undecided if the non-leaf MBR is partially within the given

distance of the given spatial object. Child MBRs of the non-leaf

MBR will have to be fetched in step 3 for further processing.

4.2 Leaf MBR Optimizations
Lines 22-30 of the pseudo code description in Section 3 are used

for leaf MBR optimizations, which are similar to the non-leaf

MBR optimizations described in Section 4.1.

• Step 1. If the distance between the given spatial object and a

leaf MBR is larger than the given distance, the test spatial

object enclosed by the leaf MBR can be discarded.

• Step 2. If any one of the four edges in the leaf MBR is fully

within the given distance of the given spatial object, the test

spatial object enclosed by the leaf MBR can be included in the

final result.

• Step 3. Otherwise, the test spatial object enclosed by the leaf

MBR will be fetched from disk or buffer cache for further

processing, which will be discussed in detail in Section 5.

Step 1 for leaf MBR optimization is similar to step 1 for non-leaf

MBR optimizations. For example, assume that MBR (A*) in

Figure 1 is a leaf MBR. MBR (A*) is increased by the given

distance to obtain another MBR (B*), and then MBR (B*) is used

as a query window to search the in-memory R-tree of the given

spatial object (Q).

Since a leaf MBR encloses only a single test spatial object, there

must be a point in each of four edges of the leaf MBR that is

common to the test spatial object. Therefore in step 2 for leaf

MBR optimizations, if any one of four edges in the leaf MBR is

fully within the given distance of the given spatial object, the test

spatial object enclosed by the leaf MBR can be returned in the

final result. For example, if the bottom edge (E*) of the leaf MBR

(A*) (shown in Figure 1) is fully within the given distance of the

given spatial object (Q), the test spatial object enclosed by the leaf

MBR (A*) can be returned in the final result. This is the same as

determining if the Hausdorff distance from the bottom edge (E*)

of the leaf MBR (A*) to the given spatial object (Q) or

max{min{distance(e, q) : q ∈ Q} : e ∈ E*} is less than the given

distance. As described in Section 4.1, an efficient R-tree based

Hausdorff distance algorithm for any non-discrete spatial objects

(such as lines or polygons) is still an open research problem. Thus

to approximate step 2 for leaf MBR optimizations, we use the

center point (C*) of the bottom edge (E*) to find its closest point

in spatial object (Q) (i.e. point D* in Figure 1) by searching the

in-memory R-tree of spatial object (Q), and then determine if all

points in the bottom edge (E*) are within the given distance of

point D*. If so, the test spatial object enclosed by the leaf MBR

(A*) can be included in the final result. According to Theorem 1

in Section 4.1, max{distance(e, D*) : e ∈ E*} ≥

max{min{distance(e, q) : q ∈ Q} : e ∈ E*}.

Note that in the 2D non-geodetic case shown in Figure 1, the four

boundary edges can be checked in step 2 for leaf MBR

optimizations. In the 2D geodetic case where 3D minimum

bounding boxes (MBBs) are used to accommodate 3D Earth-

centered coordinates, the six boundary faces can be checked in

step 2 for leaf MBB optimizations.

4.3 Usage in Nearest Neighbor Queries
The techniques in Sections 4.1 and 4.2 can also be adopted in

nearest neighbor queries, especially when the given spatial object

is complex. For example, MINDIST, or simply the distance

between the given spatial object and an MBR can be computed by

using the MBR to search the in-memory R-tree of the given

spatial object, find the nearest neighbor point to the MBR, and

calculate the minimum distance. To get MINMAXDIST between

the given spatial object (Q) and an MBR, which corresponds to

min{max{min{distance(a, q) : q ∈ Q} : a ∈ Ei} : Ei ∈ four

boundary edges (E1 –E4) of MBR} for 2D non-geodetic cases, we

reapply the technique that is based on Theorem 1 in Section 4.1.

In other words, for each edge Ei in the MBR, we can compute

max{distance(a, Di) : a ∈ Ei}, where Di
 is the point on the spatial

object (Q) that is closest to the center of boundary edge Ei. This is

done in a similar manner to step 2 for non-leaf MBR

optimizations described in Section 4.2. When max{distance(a, Di)

: a ∈ Ei} is computed for each of four boundary edges in the

MBR, their minimum, or min{max{distance(a, Di) : a ∈ Ei} : Ei

∈ four boundary edges (E1 –E4) of the MBR} can be used to

approximate MINMAXDIST between the given spatial object (Q)

and the MBR. Then, both MINDIST and MINMAXDIST between

the given spatial object and the MBR can be used in nearest

neighbor query’s different pruning rules, which have been well

studied [33, 5, 22].

5. DISTANCE BETWEEN COMPLEX
SPATIAL OBJECTS
As described in Section 2, the brute-force distance computation

between two spatial objects has O(m*n) time complexity, where m

and n are the number of line segments or points in each of the two

spatial objects. In other words, each pair of line segments or

points in the two spatial objects is checked. Obviously, the brute-

force approach can be expensive when m and n are large. Because

the in-memory R-tree for the given spatial object is already built,

we can use the following two approaches to determine if a test

spatial object is within the given distance of a given spatial object.

The first approach, which does not build an in-memory R-tree for

the test spatial object, can be described as follows.

Algorithm: Within-Distance Approach 1

 input : given spatial object (Q), in-memory R-

 tree (IMR-tree) for Q, test spatial

 object (TS), distance (D)

 output: TS, if TS is within distance (D) of Q

 1 for (each line segment or point (E) in TS)

 2 determine the minimum distance between E and

 Q using IMR-tree;

 3 if (E is within distance (D) of Q)

 4 return TS;

 5 if (TS has polygons)

 6 check if any point of Q is in polygons of TS;

 7 if (one point of Q is in polygons of TS)

 8 return TS; /* distance = 0 */

The first approach is used if the test spatial object is not as

complex as the given spatial object, e.g., if the number of vertices

in the test spatial object is much less than that in the given spatial

object. The second approach can be used if the test object is as

complex as the given spatial object. The second approach builds

an in-memory R-tree for the test spatial object, and it can be

described as follows.

Algorithm: Within-Distance Approach 2

 input : given spatial object (Q), in-memory R-

 tree for Q, test spatial object (TS),

 distance (D)

 output: TS, if TS is within distance (D) of Q

 1 build in-memory R-tree for TS;

 2 use two in-memory R-trees to find the nearest

 neighbor pair (NNP), and get min_distance;

 3 if (min_distance <= D)

 4 return TS;

Note that in line 2 of the second approach, a priority queue can be

used in the Best-First Search (BFS) manner to find the nearest

neighbor pair from the two in-memory R-trees [13]. Furthermore,

when one polygon geometry object can fully contain the other

geometry, the distance between the two spatial objects will be

zero. This case can be quickly determined by using one point from

the second spatial object to run in-memory R-tree based point-in-

polygon methods that have been described [15]. Since there could

be many test spatial objects in the refinement step, the cost of

building in-memory R-trees for them in the second approach

cannot be neglected. In practice, several neighbor line segments or

points can be grouped into a single leaf entry in order to limit the

number of leaf entries in an in-memory R-tree. As the number of

leaf entries in an in-memory R-tree is limited, the cost of building

an in-memory R-tree is also limited. In addition, lower memory

usage makes the whole system more scalable.

The above two approaches can also be adopted to compute the

distance between two spatial objects. For example, in Approach 1,

lines 3-4 are replaced with checking if the minimum distance is

found, and finally the minimum distance is returned. In Approach

2, lines 3-4 are simply replaced with returning the distance

between the nearest neighbor pair.

6. EXTENSIONS
Section 6 discusses extensions of the proposed in-memory R-tree

techniques to other distance-related problems such as convex hull,

maximum distance, diameter, and minimum bounding circle.

6.1 Convex Hull
As the convex hull of a spatial object has many practical

applications, such as the rotating caliper algorithms for maximum

distance and diameter described in the next two subsections, this

subsection discusses the usage of an in-memory R-tree for a

spatial object when computing the convex hull of the spatial

object. Note that several convex hull algorithms have been

proposed [2]. For example, the Graham scan algorithm is one of

the well-known algorithms with O(n*log n) time complexity [10].

To simplify our description of the in-memory R-tree based convex

hull algorithm, we assume that a spatial object comprises discrete

points as shown in Figure 2. Note that the algorithm can be

extended to other spatial objects such as polylines and polygons.

In Figure 2, there are four leaf nodes (I, J, K, and L) and each leaf

node has two entries. The eight leaf entries are points A, B, C, D,

E, F, G, and H. Node M is the parent of nodes I and J, node N is

the parent of nodes K and L, and nodes M and N are also two

children in the root node.

Figure 2. An in-memory R-tree is used to find the convex hull.

Since either of the x-axis or y-axis extreme points must be on the

convex hull, we can take the y-axis minimum point (i.e. point F in

Figure 2) as the starting point in the convex hull. Point F can be

easily found from the in-memory R-tree. We also assume that the

convex hull is counter-clockwise. To find the next point that is on

the convex hull from point F, we take a horizontal line from point

F, i.e. line ZF in Figure 2. Then we use the in-memory R-tree to

find point (*) that will have the maximum angle ∠ZF(*). We start

with the root node. There are two entries in the root node: node M

and node N. The maximum angle from node N is angle ∠ZFX

that is 180°. The maximum angle from node M is angle ∠ZFY.

We push them into a priority queue based on a descending order

of the angle values. Then we dequeue to get node N, and for the

two entries (i.e. node K, node L) in node N, compute their

maximum angle. The maximum angle from node K is 90° and the

maximal angle from node L is angle ∠ZFH. We push them into

the priority queue, and dequeue to get node L. For node L, we

compute the maximum angles from point H and point G and push

A

B

C

D

E

F

G

H I

J K

L

M
N

M N

I

J K L

A B C D E F G H

Z X

Y
root node

them into the priority queue. Finally, we obtain point H as the

point where the maximum angle ∠ZFH occurs. The usage of the

priority queue here is similar to that for the incremental nearest

neighbor (NN) algorithm [13]. However, the angle, instead of the

distance, is used in the priority queue. Note that the maximum

angle can only be found at one of the four corner points of an

MBR, and any other angles constructed from other points in the

MBR are not larger than the maximum angle.

Once point H is found, line segment FH will be on the convex

hull. Then from point H, we can proceed to use the in-memory R-

tree to determine that the next point is point G, where the

maximum angle ∠FHG occurs. The algorithm completes once

point F is found to be on the convex hull again.

The following pseudo code describes the complete algorithm.

Algorithm: RTREE_CONVEX_HULL

 input : in-memory R-tree (IMR-tree)

 output: point list (L) of convex hull

 1 find the y-axis minimum point (F) using

 IMR-tree, and build a horizontal line (ZF);

 2 Q = F; /* the y-axis minimum point */

 3 P = Z; /* PQ is the horizontal line now */

 4 R = NULL; /* for next point on convex hull */

 5 add Q into L;

 6 while (R != F) /* if point F found again */

 7 R = FIND_CONVEX_HULL_NEXT_POINT(IMR-tree, P,

 Q);

 8 P = Q; /* prepare for the next one */

 9 Q = R;

10 add R into L;

11 return L;

Algorithm: FIND_CONVEX_HULL_NEXT_POINT

 input : in-memory R-tree (IMR-tree), point P,

 point Q

 output: point R /* next point on convex hull */

 1 initialize a descending priority queue (DPRIQ);

 2 for (each entry in root node of IMR-tree)

 3 compute the maximum angle constructed by any

one of 4 corner points in this entry, and P

and Q;

 4 put this entry with its maximum angle into

 DPRIQ;

 5 while (DPRIQ is not empty)

 6 dequeue from DPRIQ into entry (EN);

 7 if (EN is a leaf entry)

 8 return EN; /* this is the point */

 9 else /* EN is a non-leaf entry */

10 for (each child entry in EN)

11 compute the maximum angle constructed by any

 one of 4 corner points in this entry, and P

 and Q;

12 put this entry with its maximum angle into

 DPRIQ;

The above algorithms can also be extended to 2D geodetic spatial

objects, where 2D geodetic coordinates are converted to 3D Earth-

centered coordinates. We assume the geodetic convex hull is fully

inside a hemisphere. Two modifications are needed. The first

modification is that an angle on a sphere or more accurately a

spheroid (approximating Earth) is used. The angle is constructed

by two geodetic lines. Thus, in line 1 of Algorithm

RTREE_CONVEX_HULL, a horizontal line (ZF) will be replaced

with a geodetic line, which has bearing = 90° to the true north at

point F, if the geodetic convex hull is inside the Northern

Hemisphere. The second modification is in lines 3 and 11 of

Algorithm FIND_CONVEX_HULL_NEXT_POINT. The maximum

angle in a 3D MBB can occur on the 12 boundary edges of the 3D

MBB. Furthermore, we need to consider only points that are on

the surface of Earth. Note that not all points in the 3D MBB are

on the surface of Earth. Some points are under the surface of

Earth, some points are above the surface of Earth, and the rest

points are on the surface of Earth. When the 12 boundary edges

are examined, the maximum angle is found. Any other feasible

angles from the 3D MBB are not larger than the maximum angle.

6.2 Maximum Distance and Diameter
The maximum distance between two spatial objects can be

computed by a rotating caliper algorithm when two convex hulls

(one for each of the two spatial objects) are obtained [36]. With

the in-memory R-tree being built and used in the queries such as

distance computation in previous sections, we can extend the in-

memory R-tree techniques to compute the maximum distance

between two spatial objects. One approach is to use the in-

memory R-trees to build convex hulls as described in Section 6.1

and then use the rotating caliper algorithm. Another approach is to

modify the algorithms in Section 5 for the maximum distance. For

example, in Approach 1 of Section 5, the steps performed in lines

5-8 are not required, lines 2-4 can be replaced with determining

the maximum distance between each line segment or point in the

test spatial object and the given spatial object using the in-

memory R-tree for the latter, and finally the maximum distance

can be returned. In Approach 2 of Section 5, nearest neighbor pair

in line 2 can be replaced with farthest neighbor pair, and finally

the distance between the farthest neighbor pair is returned.

Like the maximum distance, the diameter of a spatial object can

also be computed by a rotating caliper algorithm when the convex

hull of the spatial object is obtained [36]. Thus, the in-memory R-

tree based convex hull algorithm described in Section 6.1 can be

used. Similarly, Approach 2 described in Section 5 can also be

adopted to compute the diameter that is the maximum distance

between two points in a complex spatial object.

6.3 Minimum Bounding Circle
The minimum bounding circle (MBC) computation has been

shown to be related to the problem of locating a third point (R) in

order to minimize the angle ∠PRQ, given that points P and Q are

on the MBC [32].

Before we proceed with the complete algorithm for the MBC

problem, we explain how to use the in-memory R-tree to quickly

find the third point, given two points on the bounding circle. In

Figure 3, we assume that point F and point H are on a bounding

circle. We also assume that the third point is on the left of line

segment FH. Note that three non-collinear points can define a

circle. To find the third point on the bounding circle, we need to

find the point (*) such that the angle ∠F(*)H is minimum. There

are two cases, where the angle ∠F(*)H can be minimum in an

MBR.

Case 1: Point (*) is one of the four corner points. For example in

Figure 3, angle ∠FAH is minimum for all points in node M, and

point A is the top-left corner point of the MBR (node M).

Case 2: Point (*) is the intersection point between line FH and the

MBR, and the intersection point is outside line segment FH. In

this case angle ∠F(*)H is 0°. Figure 4 shows that case 2 (where

the minimum angle = 0°) occurs in (c), but not in (a) and (b).

Figure 3. How to find the third point, given that point F and

point H are on a bounding circle.

 (a) (b) (c)

Figure 4: The minimum angle = 0° case occurs in (c), not in (a)

and (b).

The angle ∠FWH is the minimum for points in node N. For the

two entries of the root node in Figure 3, both angle ∠FAH and

angle ∠FWH are pushed into an ascending order priority queue.

As angle ∠FWH is less than angle ∠FAH, the top entry in the

priority queue is node N. When the top entry (node N) is

dequeued, node L and node K will be used to compute their

minimum angle, and they will be pushed into the priority queue.

For node L, it is still the angle ∠FWH. For node K, it is the angle

∠FVH. Because the angle ∠FWH is the minimum in the priority

queue, the top entry that is node L is dequeued. Points G and H

are entries in node L. As point H has been used as one of two

points (F and H) on the bounding circle, we only need to push the

angle ∠FGH into the priority queue. Now the angle ∠FAH is the

top entry in the priority queue. Similarly, the search will continue

from node M, to node I, and finally to point A, where the MBC is

found. The following pseudo code shows the above algorithm to

find the third point.

Algorithm: FIND_MBC_THIRD_POINT

 input : in-memory R-tree (IMR-tree), point P,

 point Q

 output: point R /* the third point */

 1 initialize an ascending priority queue (APRIQ);

 2 for (each entry in root node of IMR-tree)

 3 compute the minimum angle constructed by any

one of 4 corner points, or the intersection

point (the minimum angle = 0° case) in this

entry, and P and Q;

 4 put this entry with its minimum angle into

 APRIQ;

 5 while (APRIQ is not empty)

 6 dequeue from APRIQ into entry EN;

 7 if (EN is a leaf entry)

 8 return EN; /* this is the point */

 9 else /* EN is a non-leaf entry */

10 for (each child entry in EN)

11 compute the minimum angle constructed by any

 one of 4 corner points, or the intersection

 point (the minimum angle = 0° case) in this

 entry, and P and Q;

12 put this entry with its minimum angle into

 APRIQ;

A line segment on the convex hull can be used to get the first two

points [32]. Thus, the complete algorithm to compute the MBC is

described as follows.

Algorithm: RTREE_MBC

 input : in-memory R-tree (IMR-tree)

 output: MBC

 1 find the y-axis minimum point (F) using

 IMR-tree, and build a horizontal line (ZF);

 2 P = F; /* the y-axis minimum point */

 3 S = Z; /* the horizontal line */

 4 Q = FIND_CONVEX_HULL_NEXT_POINT(IMR-tree, S,

 P);

 5 while (1)

 6 R = FIND_MBC_THIRD_POINT(IMR-tree, P, Q);

 7 if (∠PRQ >= 90°)

 8 return the circle constructed by P and Q;

 /* the case of two points: PQ is the diameter

 of this circle */

 9 else if ((∠PQR <= 90°) && (∠RPQ <= 90°))

10 return the circle constructed by P, Q and R;

 /* the case of three points */

11 else if (∠PQR > 90°)

12 Q = R; /* move on, use Q side */

13 else

14 P = R; /* move on, use P side */

Note that the logic in lines 7-14 of Algorithm RTREE_MBC was

also described in the previous work [32]. The above algorithms

can also be extended to 2D geodetic spatial objects, where 2D

geodetic coordinates are converted to 3D Earth-centered

coordinates. First, we assume that Earth’s surface can be

approximated to a sphere, so that three points on Earth’s surface

A

B

C

D

E

F

G

H
I

J K

L

M
N

M N

I

J K L

A B C D E F G H

W
root node

V

F

H

F

H

F
H

can also construct a circle. We also assume the geodetic MBC is

fully inside a hemisphere. In line 2 and line 11 of Algorithm

FIND_MBC_NEXT_POINT, we need to figure out where the

minimum angle occurs in a 3D MBB. Note that those points are in

3D Cartesian space, and an angle is also a 3D angle constructed

by two 3D straight lines. It can be shown that the minimum angle

can occur at one of the 8 corner points of the 3D MBB, or at the

intersection point, which is similar to the minimum angle = 0°

case in Figure 4 (c). Thus, once these points are examined, the

minimum 3D angle is found in the MBB and any other 3D angles

in the 3D MBB must be not less than the minimum 3D angle.

Note that the logic in lines 7-14 of Algorithm RTREE_MBC also

applies to the geodetic MBC.

7. EXPERIMENTS
In this section, we discuss experiments conducted using real-

world data sets. We are mainly concerned with complex spatial

objects as they are present frequently in expensive distance

queries. We use three complex spatial object data sets including

polygons, polylines, and heterogeneous collections. For complex

polygons, we have 50 US states and 1061 local regions including

Manhattan, NY and Long Island, NY. The areas of the 1061 local

regions range from 5.83 km2 to 78,200 km2 with an average area

of 4,330 km2. The average number of vertices in the 50 US states

and the 1061 local regions is 1,755 and 520, respectively. For

complex polylines, we take 239 US interstate highways. The 239

US interstate highways have an average length of 296.5 km, and

the longest one I-90 is 4,290.6 km. The average number of

vertices in the 239 US highways is 1,075. For complex

heterogeneous collections, we consider the 38 longest rivers of the

United States [39], the longest of which is the Missouri River. The

average number of vertices in the 38 US rivers is 31,952. Note

that the wide portions of these rivers are represented as polygons

while the narrow portions are represented as polylines. We also

take two large spatial data sets, and use the above three complex

spatial object data sets to run queries against them. For a large

point data set, we use the US Business Area (ABI) data set

consisting of over 10 million locations. For a large polygon data

set, we use the BLOCKS data set consisting of around 11 million

US census blocks. The BLOCKS data set (about 9 GB) is the

largest of the above data sets. All experiments were conducted on

an Intel Xeon server with 6GB of RAM. All these data sets have

geodetic coordinates (longitude, latitude) in the World Geodetic

System (WGS 84).

7.1 Compare Different MBR Optimizations
In this subsection, we conduct experiments to measure the

following within-distance query performances.

 SELECT COUNT(*)

 FROM BLOCKS a

 WHERE SDO_WITHIN_DISTANCE(a.geometry,

 :given_spatial_object, 'distance=4 unit=km') = 'TRUE';

All three complex spatial object data sets are used as given spatial

objects, or query spatial objects. Five different configurations,

where different MBR optimizations described in Section 4 can be

enabled individually, are used.

• In Configuration A, the filter step only uses MBRs (or more

specifically MBBs for geodetic spatial objects) and the

refinement step uses the techniques discussed in Section 5.

• In Configuration B, the filter step uses step 1 and step 3 for

non-leaf MBR optimizations, which are discussed in Section

4.1. The refinement step is the same as that in Configuration A.

• In Configuration C, the filter step uses all three steps for non-

leaf MBR optimizations discussed in Sections 4.1. The

refinement step is the same as that in Configuration A.

• In Configuration D, the filter step use not only the three steps

for non-leaf MBR optimizations discussed in Section 4.1, but

also step 1 and step 3 for leaf MBR optimizations discussed in

Section 4.2. The refinement step is the same as that in

Configuration A.

• In Configuration E, the filter step uses the three steps for non-

leaf optimizations in Sections 4.1 as well as the three steps for

leaf optimizations in Sections 4.2. The refinement step is also

the same as that in Configuration A. This is the default

configuration in Oracle Spatial.

Note that Configuration A can be used to simulate a spatial

database system, where the R-tree index component and the

computational geometry component are loosely coupled, so that

the R-tree index component only uses the MBR of a given spatial

object to examine the MBRs from the R-tree index on test spatial

objects. In Figure 5, we report the total execution time for each of

three complex spatial object data sets under the above five

configurations. Note that because the query execution for the

heterogeneous collections (i.e. US longest rivers) under

Configuration A takes longer than 10 hours or 36,000s, it was

terminated. It is clear that Configuration A is the most inefficient,

as many false-positives have to be examined in the refinement

step. The experimental results suggest that the spatial index

component and the computational geometry component should be

tightly integrated in spatial database systems. Although some

approximations are used to obtain Hausdorff distances in both

step 2 for non-leaf MBR optimizations and step 2 for leaf MBR

optimizations, these approximations are relatively efficient.

Figure 5. Execution time (in seconds) of within-distance

queries under different configurations.

7.2 Comparison of Within-Distance Queries
and Intersects-Buffer Queries
As we have described, within-distance queries can be translated to

topological relationship INTERSECTS queries with a new spatial

object, BUFFER(given spatial object, given distance). In Oracle

Spatial, SDO_ANYINTERACT is the operator that is equivalent to

Open Geospatial Consortium (OGC)’s INTERSECTS operation

[27]. For example, the within-distance query in Section 7.1 can be

rewritten as the following query with a buffer operation on the

given spatial object.

 SELECT COUNT(*)

 FROM BLOCKS a

 WHERE SDO_ANYINTERACT(a.geometry,

 SDO_GEOM.SDO_BUFFER(:given_spatial_object, 4,

 :tolerance, ‘unit=km')) = 'TRUE';

In Section 7.2, we compare the within-distance queries with their

equivalent intersects-buffer queries. We use all three complex

6
2
3
3
.5

4

6
7
8
5
.5

3

>
3
6
0
0
0

0

300

600

900

1200

1500

Polygon Polyline Collection

Config. A

Config. B

Config. C

Config. D

Config. E

spatial object data sets to run both within-distance queries and

intersects-buffer queries against the ABI point data set, with

distance values ranging from 0.125km to 128km. We also pre-

compute these buffer objects, and use them directly as given

spatial objects to run intersects queries, so that expensive

BUFFER operations are not taken into account.

Figures 6, 7 and 8 show experimental results for complex

polygons, polylines and collections, respectively. Note that the

“intersects” line in the figures is for intersects queries with pre-

computed buffer objects. The results show that because the buffer

operations can be expensive, within-distance queries can be faster

than their equivalent intersects-buffer queries. However, if buffer

objects have been pre-computed, the equivalent intersects queries

can be slightly faster than within-distance queries. In some cases,

it is possible that the equivalent intersects queries are much faster

than within-distance queries as visible for the given distance =

128km in Figure 8. This occurs due to two reasons. Firstly, when

the given distance is large, the buffer objects can be simpler than

the original complex objects, so that distance computations

described in Section 5 can be relatively more expensive than

operations used in corresponding intersects queries. For example,

when the given distance = 128km, the average number of vertices

in 38 buffer objects for US rivers is only 5044. Secondly, since

the Hausdorff distance calculations described in Section 4 use

approximations, some MBRs cannot be determined fully within

the given distance of given spatial objects early in the filter step.

For example, the height of the R-tree index on the ABI point data

set is 5. None of non-leaf MBRs at level = 4 can be determined to

lie completely within 128km of the 38 longest rivers using

Hausdorff distance approximations, but some non-leaf MBRs at

level = 4 are actually completely within 128km of the 38 longest

rivers.

Figure 6. Execution time (in seconds) of within-distance

queries vs. intersects-buffer and intersects queries with

distances from 0.125km to 128km, given polygons.

Figure 7. Execution time (in seconds) of within-distance

queries vs. intersects-buffer and intersect queries with

distances from 0.125km to 128km, given polylines.

Figure 8. Execution time (in seconds) of within-distance

queries vs. intersects-buffer and intersects queries with

distances from 0.125km to 128km, given collections.

7.3 Convex Hull
In Section 7.3, we conduct experiments to compare the in-

memory R-tree based convex hull algorithm described in Section

6.1 with the Graham scan algorithm [10, 2]. We use 38 longest

rivers of the United States, because they are more complex than

50 US states, 1061 local regions and 239 US interstate highways

so that it takes longer to complete the same query on average. For

example, the average number of vertices in the 38 rivers is much

higher than other spatial objects. In order to easily compare the

original 2D Graham scan algorithm [10, 2], we also transform the

geodetic spatial objects to projected spatial objects, which are flat

in 2D Cartesian space. For the 38 US longest rivers, the total

execution time of the Graham scan algorithm is 0.952s, while the

total execution time of the in-memory R-tree based convex hull

algorithm is 0.16s, which includes 0.083s for building in-memory

R-trees. Note that as described in Section 5, several neighbor line

segments are grouped into a single leaf entry, and the cost of

building in-memory R-trees can be limited.

7.4 Maximum Distance and Diameter
In Section 7.4, the same projected data set of 38 US longest rivers

in Section 7.3 is also used to compare two algorithms that

compute maximum distance and diameter. The first algorithm

uses the in-memory R-tree based convex hull algorithm before

running the rotating caliper algorithm. The second algorithm is

obtained by modifying Approach 2 of Section 5. For maximum

distance computation, the total execution time of the first

algorithm is 1.83s, which includes 0.16s for building convex

hulls, while the total execution time of the second algorithm is

38.72s. For diameter calculation, the total execution time of the

first algorithm is 0.23s, which also includes 0.16s for building

convex hulls, while the total execution time of the second

algorithm is 2.80s. This means that to determine the farthest

neighbor pairs, the second algorithm is not as efficient as the first

algorithm that applies the rotating caliper technique on convex

hulls.

7.5 Minimum Bounding Circle
In Section 7.5, the same projected data set of 38 US longest rivers

is used to compare the in-memory R-tree based MBC algorithm

described in Section 6.3 with the randomized MBC algorithm [38,

2]. For the 38 US longest rivers, the total execution time of the

randomized MBC algorithm is 0.132s on average. Note that

because this is a randomized algorithm, there could be some rare

runs in which it takes significantly longer. In contrast, the in-

memory R-tree based MBC algorithm is deterministic, and it takes

0.098s, which also includes 0.083s for building in-memory R-

trees. If the time of building in-memory R-trees is not taken into

account, the total execution time of the in-memory R-tree based

0

200

400

600

800

1000

1200

0.125 0.25 0.5 1 2 4 8 16 32 64 128

within-distance

intersects-buffer

intersects

0

50

100

150

200

250

300

350

400

0.125 0.25 0.5 1 2 4 8 16 32 64 128

within-distance

intersects-buffer

intersects

0

100

200

300

400

500

600

700

800

0.125 0.25 0.5 1 2 4 8 16 32 64 128

within-distance

intersects-buffer

intersects

MBC algorithm is 0.015s. Thus, when the in-memory R-trees are

already built, the in-memory R-tree based MBC algorithm can be

much faster than the randomized MBC algorithm.

8. CONCLUSIONS
In this paper, we discussed some in-memory R-tree based

optimization techniques in Oracle Spatial to speed up distance

queries for complex spatial objects. We also discussed distance-

related problems, such as the maximum distance between

complex spatial objects, and the diameter computation, the convex

hull and the minimum bounding circle computation for a complex

spatial object, can also be solved by using the in-memory R-tree

structure. Finally, we have conducted experiments by utilizing

real-world data sets to demonstrate that the performance of these

distance and distance-related queries can be significantly

improved by using the in-memory R-tree techniques.

9. REFERENCES
[1] Dana H. Ballard: Strip Trees: A Hierarchical Representation for

Curves. Commun. ACM (CACM) 24(5):310-321 (1981)

[2] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-

Verlag, New York (2008)

[3] Thomas Brinkhoff, Holger Horn, Hans-Peter Kriegel, Ralf
Schneider: A Storage and Access Architecture for Efficient Query

Processing in Spatial Database Systems. SSD 1993: 357-376

[4] Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, Bernhard
Seeger: Multi-Step Processing of Spatial Joins. SIGMOD

Conference 1994: 197-208

[5] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, Michael

Vassilakopoulos: Closest Pair Queries in Spatial Databases.
SIGMOD Conference 2000: 189-200

[6] Antonio Corral, Jesús Manuel Almendros-Jiménez: A performance

comparison of distance-based query algorithms using R-trees in
spatial databases. Inf. Sci. 177(11): 2207-2237 (2007)

[7] Edward P. F. Chan: Buffer Queries. IEEE Trans. Knowl. Data Eng.

15(4): 895-910 (2003)

[8] Tobias Emrich, Hans-Peter Kriegel, Peer Kröger, Matthias Renz,
Andreas Züfle: Boosting spatial pruning: on optimal pruning of

MBRs. SIGMOD Conference 2010: 39-50

[9] Brian S. Everitt, Sabine Landau, Morven Leese, Daniel Stahl:
Cluster Analysis. Wiley, UK, 2011

[10] Ronald L. Graham: An Efficient Algorithm for Determining the

Convex Hull of a Finite Planar Set. Inf. Process. Lett. 1(4): 132-133
(1972)

[11] Güting, R.H., An Introduction to Spatial Database Systems. VLDB

Journal 3, 4 (1994) (Special Issue on Spatial Database Systems),
357-399.

[12] Antonin Guttman: R-Trees: A Dynamic Index Structure for Spatial

Searching. SIGMOD Conference 1984: 47-57

[13] Gísli R. Hjaltason, Hanan Samet: Incremental Distance Join
Algorithms for Spatial Databases. SIGMOD Conference 1998:237-

248

[14] Gísli R. Hjaltason, Hanan Samet: Distance Browsing in Spatial
Databases. ACM Trans. Database Syst. 24(2): 265-318 (1999)

[15] Ying Hu, Siva Ravada, Richard Anderson: Geodetic Point-In-

Polygon Query Processing in Oracle Spatial. SSTD 2011: 297-312

[16] Ying Hu, Siva Ravada, Richard Anderson, Bhuvan Bamba:
Topological relationship query processing for complex regions in

Oracle Spatial. SIGSPATIAL/GIS 2012: 3-12

[17] Ying Hu, Siva Ravada, Richard Anderson, Bhuvan Bamba:
Supporting Topological Relationship Queries for Complex Line and

Collection Geometries in Oracle Spatial. SIGSPATIAL/GIS 2013:

94-103

[18] IBM DB2 Spatial Extender: http://www-
03.ibm.com/software/products/en/db2spaext/

[19] JTS Topology Suite: http://tsusiatsoftware.net/jts/main.html

[20] Ravi Kanth Kothuri, Siva Ravada, Daniel Abugov: Quadtree and R-
tree Indexes in Oracle Spatial: A Comparison Using GIS Data.

SIGMOD Conference 2002: 546-557

[21] Suikai Li, Weiwei Sun, Renchu Song, Zhangqing Shan, Zheyong
Chen, Xinyu Zhang: Quick Geo-Fencing Using Trajectory

Partitioning and Boundary Simplification. SIGSPATIAL/GIS 2013:

590-593

[22] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N.
Papadopoulos, Yannis Theodoridis: R-Trees: Theory and

Applications. Springer, London, 2006

[23] Microsoft SQL Server Spatial Data: http://technet.microsoft.com/en-
us/library/bb933790.aspx

[24] MongoDB Geospatial Indexes and Queries:

http://docs.mongodb.org/manual/applications/geospatial-indexes/

[25] MySQL Spatial Extensions:
http://dev.mysql.com/doc/refman/5.0/en/spatial-extensions.html

[26] Sarana Nutanong, Edwin H. Jacox, Hanan Samet: An Incremental

Hausdorff Distance Calculation Algorithm. PVLDB 4(8):506-517
(2011)

[27] Open Geospatial Consortium Inc.: OpenGIS® Implementation

Standard for Geographic information - Simple feature access - Part
1: Common architecture

[28] Oracle Spatial and Graph Developer's Guide 12c Release 1 (12.1):

http://docs.oracle.com/cd/E16655_01/appdev.121/e17896/toc.htm

[29] PostGIS: http://postgis.net/

[30] Sean Quinlan: Efficient Distance Computation Between Non-
Convex Objects. ICRA 1994: 3324-3329

[31] Siva Ravada, Mohamed H. Ali, Jie Bao, Mohamed Sarwat: ACM
SIGSPATIAL GIS Cup 2013. SIGSPATIAL/GIS 2013: 574-577

[32] Jon Rokne: An Easy Bounding Circle. Graphics Gems II 1991: 14-

16.

[33] Nick Roussopoulos, Stephen Kelley, Frédéic Vincent: Nearest
Neighbor Queries. SIGMOD Conference 1995: 71-79

[34] Hanan Samet: Foundations of Multidimensional and Metric Data

Structures. Morgan Kaufmann, San Francisco, CA, 2006

[35] Erich Schubert, Arthur Zimek, Hans-Peter Kriegel: Geodetic
Distance Queries on R-Trees for Indexing Geographic Data. SSTD

2013: 146-164

[36] Godfried T. Toussaint: Solving geometric problems with the rotating
calipers. Proc. MELECON '83, Athens

[37] Thaddeus Vincenty: Direct and Inverse Solutions of Geodesics on

the Ellipsoid with application of nested equations". Survey Review.
XXIII (176) : 88–93 (1975)

[38] Emo Welzl: Smallest enclosing disks (balls and ellipsoids). New

Results and New Trends in Computer Science, Lecture Notes in
Computer Science 555, Springer-Verlag, 359–370 (1991)

[39] Wikipedia: List of longest rivers of the United States (by main stem).

http://en.wikipedia.org/wiki/List_of_longest_rivers_of_the_United_

States_%28by_main_stem%29

[40] Tianyu Zhou, Hong Wei, Heng Zhang, Yin Wang, Yanmin Zhu,
Haibing Guan: Point-Polygon Topological Relationship Query using

Hierarchical Indices. SIGSPATIAL/GIS 2013: 582-585

