Persistence Based Online Signal and Trajectory
Simplification for Mobile Devices

Panagiota Katsikouli
Dept. of Informatics
University of Edinburgh
Edinburgh, United Kingdom

p.katsikouli@sms.ed.ac.uk

ABSTRACT

We describe an online algorithm to simplify large volumes of lo-
cation and sensor data on the source mobile device, by eliminating
redundant data points and saving important ones. Our approach is
to use topological persistence to identify large scale sharp features
of a data stream.

We show that for one-dimensional data streams such as trajec-
tories, simplification based on topologically persistent features can
be maintained online, such that each new data-point is processed in
O(1) time. Our method extends to multi-resolution simplifications,
where it identifies larger scale features that represent more impor-
tant elements of data, and naturally eliminates noise and small de-
viations. The multi-resolution simplification is also maintained on-
line in real time, at cost of O(1) per input point. Therefore it is
lightweight and suitable for use in embedded sensors and mobile
phones. The method can be applied to more general data streams
such as sensor data to produce similar simplifications. Our exper-
iments on real data show that this approach when applied to the
curvature function of trajectory or sensor data produces compact
simplifications with low approximation errors comparable to exist-
ing offline methods.

Categories and Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems]: Geometrical
problems and computations

General Terms
Algorithms

Keywords

Mobile sensing, spatial data, geometry, persistence, trajectory sim-
plification.

1. INTRODUCTION

Sensing on mobile devices offers opportunities to understand
people and environment in great detail: from understanding move-
ment patterns of masses [14] to detecting the context and activi-
ties [30, 28] of individuals. However, continuous sensing of loca-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

SIGSPATIAL’ 14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright 2014 ACM 978-1-4503-3131-9/14/11 ...$15.00
http://dx.doi.org/10.1145/2666310.2666388.

Rik Sarkar

Dept. of Informatics
University of Edinburgh
Edinburgh, United Kingdom

rsarkar@inf.ed.ac.uk

Jie Gao
Dept. of Computer Science
Stony Brook University
Stony Brook, NY, USA.

jgao@cs.stonybrook.edu

tions and physical quantities can produce large quantities of data [4],
that can be costly to store, transmit and process.

In this paper, we develop methods to simplify sensor data by
discarding redundant information and saving only the significant
data points. Our goal is to preserve the sharp features that repre-
sent the important characteristics of the sensed quantity. Figure 1
shows an example where the light levels detected by a sensor on a
phone drops and later rises again. Simplification using our method
(shown in red) preserves the sharp drop and rise in light levels that
is the characteristic of this graph. Many sensor signals show such
piecewise constant or linear behavior, where sharp changes signify
critical events [34, 28]. In case of Fig. 1, the changes signify the
user moving from outdoors to indoors and then outdoors again.
The noisy, jittery nature of real data makes it challenging to detect
sharp features, and traditional methods (such as low pass filters)
that look for smooth features are unable to detect the sharp changes
and events.

2000 ‘ : ‘ : . ‘ .
— Original Signal \’
— Approximation /
% 15001
=}
2 /‘
> ‘
£ 1000{
2
£
+—
£
o
= 500t
0 AT VY WYY N
0 20 40 60 80 100 120 140 160
Time (s)

Figure 1. Light levels at 147 data points in Lux (shown in black)
recorded by light sensor on a Nexus 5 phone and a simplification
with only 10 data points obtained by our algorithm (in red).

Locations and trajectory are important data sensed by mobile de-
vices. GPS receivers give discrete samples of locations producing
a piecewise linear trajectory. This trajectory is not smooth and the
turns are its most important features. Road intersections, for exam-
ple, are implied by turns and are thus critical in automated road map
generation and refinement [17, 32]. Figure 2 shows a typical GPS
trajectory and as can be seen easily, the most important information
of this trajectory lies in the small number of turns. Simplifying the
trajectory using the sharp features naturally produces compact high
quality approximations that are useful in analytics. Due to the im-
portance of trajectory data, recent works have focused on analyzing
trajectories through clustering [29, 5], segmenting [35, 3] and find-

ing medians [6]). The complexity of these methods increase with
the input size, thus simplified inputs open the possibility of analyz-
ing larger datasets and performing analytics on mobile devices.

+1.1631e2

0.020 12.0

0.015

460
0.010

145

430

0.005 -

0.0

0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022
+3.999e1

Figure 2. A GPS trajectory consisting of 204 points and a total
length of 2.4km. The rectangular markers show the 8 most signif-
icant points along the trajectory detected by our method; the size
and color of the rectangle grows proportionally to the importance of
the turn (the scale to which it survives; this will be explained later).
The axes of the plot correspond to the latitudes and longitudes of
the points of the trajectory.

Problem description and our contribution. Our goal is to sim-
plify trajectories and signals on low power, battery operated mobile
phones and sensors, so that simplified data can be used or transmit-
ted on demand.

Such simplification methods must be efficient and process con-
tinuous data streams on the fly, ideally with O(1) time on each
incoming vertex. A major challenge is created by the noisy nature
of real data (Fig. 1), that can introduce sharp turns, in a local scale
resembling the true sharp features we would like to capture. One
way to handle noise and unimportant detours is to interpret the data
at larger scales that are not affected by noise. Thus we need an
algorithm for detecting persistent (large scale) features with multi-
resolution simplifications.

The main contribution of our method is a simple and online al-
gorithm for topological persistence. Important geometric features
of a shape can be seen as persistent features of its curvature func-
tion [9] and can be applied to real point clouds through a tangent
approximation method [11]. However, these existing methods aim
to find smooth features in higher dimensional data and are designed
with offline computation in mind. They handle noise by smoothing
the data, which may distort the sharp features. Our algorithm in
contrast explicitly seeks sharp features and is designed for online
embedded computation.

We first describe an O(n) algorithm for computing persistence
on one-dimensional data, that is lightweight and suitable for em-
bedded devices. Then we show that in the case of one-dimensional
streaming data, such as a time series or trajectory, persistence can
be applied online, if the persistence threshold is known. Each in-
coming data point can be processed and included into the existing
simplification or discarded as redundant, in constant time. Anal-
ogously, multiple simplification segments can be merged together
in time proportional to the number of segments. This implies easy
distributed operation, for example, when segments of a trajectory
are recorded by different sensors.

The multi-resolution simplification works as follows: The level
j simplification has successive vertices at least distance 2’ apart;

the level j + 1 simplification is computed from level j:

1. On the level j simplification, execute persistence to remove
redundant vertices and detect important vertices.

2. If successive important vertices are within distance of oI+t
then sample them suitably to ensure that successive vertices
are at least distance 27 apart.

We show that the multi-resolution simplification can be executed
online, and also works at average space and time complexity of
O(1) per vertex. We also show quality bounds on the resulted sim-
plification.

We conduct experiments on real data, including the Geolife [33]
trajectory set, and light and cellular signal strength data collected
in our own experiments. We find that our online method performs
comparably in quality to offline methods and produces approxima-
tions with median error of only a few meters using less than 5% of
the input vertices.

In the following we first survey related work on shape/curve sim-
plification. Then we introduce the background of persistence idea
and discrete curvature. Our algorithm is explained afterwards with
experimental results reported at the end.

2. RELATED WORKS

Simplification of curves has been a topic of study in computa-
tional geometry, data analysis and related fields. In computational
geometry, the problem is typically formulated as finding a subset
of vertices from the input vertices of a polygonal curve such that
the resulting curve is within ¢ distance from the original one [15].
The distance of two curves can be measured as Hausdorff distance
or Fréchet distance. The most well known algorithm is possibly
the Douglas-Peucker algorithm [12], initially suggested in cartog-
raphy. It starts from a segment connecting the beginning and end-
point of the curve and recursively selects and inserts points fur-
thest away from the current approximation, until the distance is
below a user-specified tolerance. Work along the theoretical direc-
tion mainly aim for near linear running time algorithms with given
error guarantee (see [2] and references therein). Variants of the
Douglas-Peucker algorithm can be applied recursively for different
resolutions [20, 23, 10]. These papers aim to produce aggressive
compression with small Hausdorff errors.

Most of the algorithms in the literature are offline algorithms,
assuming that the curves are entirely available. A few of them con-
sider the online setting, the same as in our paper, making them ap-
propriate for compressing GPS traces. Furthermore, for the case of
simplification of GPS trajectories some applications also need aux-
iliary information such as time and speed, and accordingly some
methods attempt to preserve these quantities [24, 27, 25]. Thus,
the Hausdorff distance measure as used for the Douglas-Peucker
algorithm is often replaced by a time-aware measure called the Syn-
chronous Euclidean Distance (SED) [24].

The most trivial online compression method for GPS trajectory
simplification is Uniform Sampling which simply takes every ith
point in the trajectory. This may produce a curve with high in-
formation loss. Dead Reckoning is a technique commonly used
in calculating one’s current position based on previous positions
to achieve adaptive sampling [8, 31]. A new sample is kept if it
deviates from the prediction significantly. Muckell et al. [25] im-
proved over that and proposed a system called SQUISH in which
local optimization is used to permanently prune redundant or in-
significant points from the original GPS trajectory, while [26, 19]
attempt to save energy costs through prediction. Yet another class
of algorithms called direction preserving, tries to preserve the di-
rectional information in the input [22]. From a theoretical angle,

Mark de Berg et al. [1] introduce online algorithms using the Haus-
dorff and Fréchet error functions and show theoretical results about
the monotonicity of those error functions under different types of
curves. Other works approach the problem from the perspective of
moving object databases [31, 21]. Lange et al. proposed a family
of tracking protocols [21]. An experimental comparison of some
existing online algorithms can be found in [16].

Path segmentation is the problem of subdividing a trajectory with
respect to a signal into fewest segments such that the signal func-
tion satisfies some property in each segment (consider for example
segmenting a path based on cell signal strength). While this ques-
tion bears some similarity to our aims, existing works [7, 35, 3]
take an optimization approach that can only be used offline.

We also note that path compression is often considered together
with map matching. The problem is then formulated as trajectory
compression with network constraints [18, 8]. In our setting, the
significant turns are likely also significant elements in the underly-
ing map although all information is inferred purely from the trajec-
tories, requiring no knowledge of the map data.

3. BACKGROUND

Our online simplification method works on the basis of persis-
tent topology. In this section, we introduce the basic concepts in
persistence and discrete curvatures, and describe how persistence
helps in path simplification.

3.1 Persistence

Topological persistence, as described in [13], is a technique for
simplifying geometric data using topological features of an object.
We explain it using the graph of a function f in Figure 3. Among
the ups and downs of f(x), the hill and the valley at d and a are
intuitively large features that should be preserved in a simplifica-
tion of f(x). The small bump and depression created by fluctuation
around points b and ¢ are clearly less significant.

Persistence sweeps the values of the function f from minimum
to maximum, and keeps track of the connected components of sub-
level sets. When the current sweep value is y, we update the con-
nected components of the domain z, that satisfy f(z) < y. Con-
nected components are created (or born) when the sweep reaches
minima such as a and c. These components merge when the sweep
reaches maxima like b — when the smaller (more recent) component
is merged into the larger (and considered to have died).

Persistence produces (min, max) pairs corresponding to birth and
death of components, that give rise to a set of intervals or bars, often
called a barcode (Fig. 3(c)). The smaller bars in the barcode corre-
spond to less important characteristics of the function. Removing
them can produce a simplification, which still preserves the func-
tion at the important points which are the end-points of the larger
bars.

3.1.1 Use of persistence in path simplification

Persistence lets us explicitly identify and remove noise and less
important features, while preserving the important points (such as
a and d), thus locations of large turns in trajectory, or exact time
a sensor signal jumps, are preserved exactly. However, persistence
cannot be applied directly to the graph of a trajectory the way we
applied it to the function f(x), since the maxima and minima with
respect to a given direction may not always correspond to the sig-
nificant points. For example, see Fig 4(a). The path from s to ¢
has the most important turns at a, b, c and d. But applying per-
sistence using the coordinates shown here detects only s, and z
as these are the only maxima and minima. A change of coordin-
ates maybe able to detect some of the important points, but not

(a) (b)

Figure 4. (a) On path from s to ¢, the important points are a, b, ¢, d.
But persistence in the given coordinates finds z instead of a, b, ¢, d.
Analogously, Douglas-Peucker [12] identifies z first, and misses
the importance of high curvature points. (b) Curvature as signed
angle of turn.

all. We would like a way to detect a, b, ¢, d irrespective of coordin-
ates. Observe that such a path with only a, b, ¢, d as intermediate
points (shown in dashed grey) is a good approximation of the orig-
inal path. This problem can be solved by applying persistence to
the curvature function of an object instead of its raw coordinates.
However, existing approaches as in [11] are designed for offline
computation and rely on smoothing the data, which makes them
unsuitable for our purpose.

3.2 Discrete Curvature

We thus look at curvature as a function to analyze our input path
— higher curvatures signify sharper turns and therefore can be con-
sidered representative of important features. Curvature is also a
complete descriptor of a curve, that is, it encodes all the informa-
tion needed to reconstruct the curve. Our inputs are sequences of
locations, which constitutes discrete data, such as a piecewise linear
path. In this case, curvature can be measured as the counterclock-
wise angle of turns (Fig. 4(b)). Clockwise turns are measured as
negative curvature.

We can intuitively expect significant points along the trajectory
to have high absolute discrete curvatures. For example in Fig. 4(a),
removal of z and similar vertices yield approximations close to the
original curve as shown by the dashed line.

4. ALGORITHM

In this section, we first describe an efficient O(n) algorithm for
persistence. Using the fact that the data is one-dimensional and ar-
rives sequentially in time, we then develop the distributed and on-
line versions. Finally we will describe how this algorithm naturally
extends to a multiscale format.

We assume our path is given as a sequence of locations P =
{pi}. We use the shorthand notation P;; to represent the entire
trajectory between p; and p;. We can assume without loss of gen-
erality that no two vertices have exactly the same value (we can
resolve ties arbitrarily, for example, by IDs). We aim to compute
the (3-persistent vertices of the function f. That is, the (min, max)
pairs from persistence that differ in their f-value by more than 3.

4.1 0O(n) Persistence Algorithm

To make the paper self-contained, we present how to implement
the persistent simplification algorithm in a centralized offline set-
ting at O(n) cost suitable for embedded devices, with adaptations
that make it easier to extend to distributed and online cases. The
main contribution is a distributed online algorithm described in the
following subsection.

Phase 1. We first traverse the path and identify all local maxima
and minima of f along P. Then at each minimum vertex m; = p;

h

Sweep line

Y

(a)

barcode T

(©

Figure 3. Persistence analysis of the sublevel sets of a part of function f(x). (a) The values of f(z) are swept with a line in increasing
order. The first point encountered is the minimum at a and a new component of the sublevel set is created and continues to grow. (b) Next
component created at minimum c. These components meet each other when they both reach the maximum at b. Component of ¢ merges into
the larger component of a. The blue bar on the left shows its /ifetime. (c) After the sweep has covered this region, the barcode (blue bars
on the left), show paired (birth, death) of components: (c, b), (e, d), etc giving the lifetime of each feature. The small bars such as (c, b)

represent small features.

(we use m; to represent the fact that vertex p; is a minimum), we
start constructing a connected component C'(p;) (interchangeably
written as C;) by appending neighboring vertices to both ends. The
component can be maintained simply as a pair of end-points that
demarcates it in P. Any connected component along a path has
exactly 2 neighboring vertices — let us call these ¢ and g2 — with
one on each side. We grow the component by including one of
these vertices in each step: if f(q1) < f(g2), then we add ¢1 to C;,
else we add g2. We repeat this process until a vertex x, which is a
maximum of f is added to C}, then we stop growing Cj.

At each maximum, we keep track of the components to which it
has been added. When a maximum « has been added to 2 compo-
nents, say C1, C2, we merge these into the component that started
earlier. Thatis, if m1 > meo, then we merge C'; into C'2, and output
abar (m1, z) and set C> = C2 U C (note that in a path, concate-
nating two consecutive subpaths is done by just reassigning one of
the end-points). After this merge, neither of the end points of C is
a maximum, and it is possible to continue growing C'> as before.

The process of growing and merging components continues until
all vertices of P belong to the same component. When the algo-
rithm ends, we have a set of bars corresponding to different seg-
ments of the path.

(—persistent simplification P(3). The sequence of vertices that
lie at the end of bars of length greater than or equal to 3 constitute
a B—persistent simplification of P. Let us use z°, m®, z', m*, ...
to represent the interleaved sequence of minima and maxima in the
[—persistent simplification. We use mé- to represent that minimum
1 occurs at vertex p;, and we use it interchangeably with p;. Anal-
ogous notations hold for maxima. See Fig. 7 for an example of the
output of this simplification.

Since the end points of a trajectory are always important, we
make a few special selections at the boundaries to keep things con-
sistent. Let us call this Phase 2:

Phase 2. We always select an end point to be part of the simplifica-
tion. An end point pp must always be a maximum or a minimum,
since no two vertices have same f value. Let us say it is mJ. Sup-
pose that m; is the first §—persistent extremum after mJ selected
in phase 1. Without loss of generality, we are assuming it is a min-
imum. Suppose . = arg max,cp, f(p), that is, x., holds the
highest value of f between m§ and mj, then we also include } in
the simplification. (analogously, when the first 5 —persistent vertex
is a max, we will select the lowest minimum.)

Interior vertices. We define as Interior vertices of a simplifica-
tion any vertex other than the terminal vertices (such as my), their

Interior
i i+1
x(l I(‘,

(a) (b) (c)

Figure 5. (a) Interior and non-interior vertices in a simplifica-
tion. (b) Existence of vertices p, and p, that differ by § from
mi, with m} the smallest min between them, implies that m.
must be S—persistent: Lemma 4.1. (c) If zi, m¢ and 22t are
B—persistent, then m} must be the smallest min between z and

a:i“, and must differ by 8 from both: Lemma 4.2.

neighbors (such as z}), and the next vertex selected in phase 1,
such as mi. Observe that all interior vertices must be selected in
phase 1. We refer to m®, ' and m' as non-interior vertices (see
Fig. 5).

Complexity of the algorithm is O(n). There are at most O(n)
maxima and minima. The maximum number of components is
therefore O(n). The number of growth updates to components
equals the number of vertices, which is O(n) and the number of
merges is bounded by the number of maxima, which is O(n). Thus
the total complexity of the algorithm is O(n). The argument that
this algorithm produces the same result as the standard sweep al-
gorithm described in the previous section is straightforward, and
omitted here.

The efficiency of the algorithm makes it suitable for processing
large volumes of data, and for use on small devices.

4.1.1 Properties of the 3—persistent simplification.

After removing bars of persistence less than (3, we are left with
a sequence of vertices that alternate between maxima and minima.
Each minimum m is paired with a maximum x such that f(z) —
f(m) > 6.

We now show a few properties that will be important in con-
structing the distributed and online versions of our algorithm.

Lemma 4.1. For any minimum m{; if there exist vertices p, and p.
such that both the following conditions hold (See Fig. 5(b)):

1. mlﬁ = arg min,,. p _ f(p). That is, m' is the minimum of f
in the interval between p,, and p.

2. f(pa) > f(m") + Band f(pc) > f(m') + B

Then, m; will be selected as a 3—persistent element in the simpli-
fication by the phase 1 of persistence algorithm.

PROOF. Suppose to the contrary, that m® is not 3-persistent, im-
plying that the maximum z where the component C(mj},) dies, sat-
isfies f(x) < f(m') + B. Without loss of generality, suppose no
other vertices on P, other than p, and p. satisfy the conditions.

In that case, there cannot be a maximum = € Py : f(z) >
f(m}) + B (other than possibly p, or p.). Since then, by the in-
termediate value theorem, there will be vertex between m} and x
satisfying the conditions of the lemma.

Now consider the evolution of C'(m}). Since every other mini-
mum in P, is higher than f(m?), C'(m}) cannot die at any max-
imum in P, (other than possibly p, ors p.). Maximum x where
C(mi) dies must be at pq, pe, or outside P,.. Thus, when C(mi)
dies p,, or p. must be in C'(mj},), and = must satisfy f(z) > f(m*)+
(3, contradicting our hypothesis. g

The next lemma shows a converse result that for a 5—persistent
vertex m, its neighboring 3—persistent vertices must differ by (3,
and m must be the extreme critical point between them.

Lemma 4.2. For the interleaved sequence of 3— persistent maxima
and minima . ..z%,mi, it ..., where m{ is an interior vertex

(see Fig. 5(c)), the following properties hold:

1. m} = arg min,.p f(p). That is, m' is the smallest mini-
mum of f in the interval between a and c

2. f(z") > f(m") + B and f(z*) > f(m*) + 8

PROOF. Part 1. If to the contrary, there was another minimum
m?, in Py such that f(m?) < f(mj), then components Cy, and
Cq would meet at some maximum « in Pyg and Cy will survive
as the unique minimum between x; and x;41. This contradicts
the hypothesis that C is the surviving minimum. (Observe that
if the maximum 2 existed, it must satisfy f(z) < f(m’) + 3,
since other wise by Lemma 4.1, = must be in the simplification and
cooab,mb T cannot be a sequence in the simplification.)
Proof of Part 2. Suppose w.l.o.g f(x) < f(z*™'). And for the
sake of contradiction, assume f(z°) < f(m®) + 3. Now suppose
that during the run of the algorithm, the component C'(m’) meets
component C'(m?) at z*. If f(m?) < f(m?), then C(m’) merges
into C'(m7), and m’ cannot be in a 3-persistent simplification.

Alternatively, if f(m?) > f(m?), then f(z*) < f(m?)+ 3, and
therefore, z* cannot be in a S-persistent simplification. g

Observe that the lemma above is unrelated to m' being paired
with either of its neighboring maxima x* and 2***. Tt establishes
the important fact that the persistent maxima neighboring a persis-
tent minimum are separated from it by at least (3 irrespective of the
pairing of the minimum.

We proved the properties only for the minima of f; correspond-
ing properties hold for the maxima.

4.2 Distributed and online algorithms

The computation of S—persistent simplifications can be modi-
fied to distributed and online algorithms respectively. We first make
a few observations about the output — that having computed the
simplification on a finite path, extending the path at either end can-
not affect the S—persistent simplification of the interior vertices.

Observation 4.3. An interior vertex of the simplification can not
be non-persistent in an extended path.

This follows from Lemma 4.1 using the fact that f does not
change at an interior vertex or its neighboring vertices.

Observation 4.4. A vertex not selected in either phase 1 or phase
2 cannot become persistent on addition of more vertices at either
end.

This follows from Lemma 4.2 using the fact that f does not
change on existing path P and interior vertices, and the terminal
point is part of P(3) and the smallest/largest critical point (say x)
between the terminal point and the first interior point are also part
of P(f3) from phase 2. That is, any vertex rejected in the interior
portion cannot be important in the larger path. Using Lemma 4.2,
any vertex in the non-interior portion that may be persistent must
be the lowest minimum or the highest maximum, and both these
have been selected in phase 2. Thus, it suffices to consider only the
vertices in the simplification of the existing segment to extend it.

Distributed algorithm. This algorithm assumes that the path has
been segmented into multiple pieces, and the simplification is known
for each piece. We assume that each segment is long enough to
have interior vertices. Our goal is to merge these simplifications
into a single simplification, in time proportional to the number of
pieces. This has applications where a device periodically uploads
simplified data to a server, or when different parts of a trajectory
are recorded by different devices.

On any segment, the relevant portion is a sequence of P((3) given
by ¢°,q", ¢, ¢*. Where:

e ¢°, ¢! and ¢ are the non-interior vertices, with ¢° being the
terminal vertex;

e ¢ is the interior vertex that is neighbor to ¢.

Observations 4.4 and 4.3 suggest that we can restrict our atten-
tion entirely to the non-interior vertices of the simplifications to
merge them. The rest of the simplified segments can be simply
concatenated.

Thus, in merging two segments sharing an end-point, we need
to take only a sequence of 7 vertices: ¢ >, ¢ 2, ¢, ¢°, ¢', 4%, ¢*
covering the non-interior vertices of two segments (see Fig. 6(a)).
Now, any vertex among these that is S—persistent must also be
an interior vertex in the combined simplification. Thus we then run
phase 1 of the algorithm on this sequence to obtain the 5—persistent
vertices here.

(@ (b)

Figure 6. (a) Concatenating two precomputed simplifications. ¢° is
the common vertex. Persistence decision can change only for non-
interior vertices, we can make the decision by executing persistence

on the segment ¢~ to ¢°. (b) Online algorithm: p is incoming new
vertex. We are trying to decide if ¢ is interior.

Online algorithm. We would like an online method, where each
vertex is processed and incorporated into the simplification imme-
diately on arrival. We maintain a working list ¢°, g%, ¢*, ¢° as be-
fore. Remember that in this list, ¢° is interior, ¢> was selected in

phase 1, but is not interior. Thus q2 is the first candidate to become
interior — see Fig. 6(b) — and that is the decision we are trying to
make. This will be the case, for example (by Lemma 4.1), if on
both sides of ¢ we can find vertices that are higher than ¢* by 3 in
f value, and ¢ is the lowest minimum between them.

Now suppose a new vertex p arrives. Without loss of generality,
let us assume that ¢ is a minimum.

1. If ¢° becomes a maximum and greater than ¢', set ¢* := ¢°.

2. If ¢° becomes a minimum and f(¢°) < f(g?), then ¢* :=

¢°,and ¢* :=p.

3.10f f(p) > f(¢°) and f(p) > f(q®) + B assign ¢° := ¢°;
and set ¢° := ¢* == p.

4. ¢ :=p

Step 1 simply updates ¢* to be the highest non-interior maxi-
mum. Step 2 updates ¢ to be the lowest non-interior minimum.
Step 3 takes the important action — if there is evidence that there
are vertices 3—separated on either side of ¢, then we promote ¢>
to be interior, and proceed to mark list vertices arrived after q2 as
non-interior. The correctness of this step is implied by Lemma 4.1.
The final step simply updates ¢° to be the current terminal vertex.

Theorem 4.5. The online and distributed algorithms produce the
same (3— persistent simplification as the centralized algorithm.

The proof follows using Lemmas 4.1 and 4.2. We omit the proof
here due to lack of space.

Complexity. It is easy to see that both the distributed and the online
versions run in O(n) time for a path of length n. In the distributed
case, the merging of two segments occurs in constant time, since it
needs to compute persistent points on a constant sized input. In the
online algorithm, each new vertex is incorporated at O(1) cost.

Figure 7. Result of persistence on trajectory curvature. Selected
vertices are shaded. Vertices on segment ab do not get selected,
in spite of having high curvature. Vertices such as c get selected
due to noise. Taking a larger neighborhood (red circle) shows c has
small curvature at larger scale.

Outputs of persistence algorithm. Figure 7 shows the result of the
persistence algorithm on the curvature of a trajectory. Observe that
persistence selects a and b because their curvatures differ by more
than 3, while vertices in between, that individually have curvatures
higher than 3, simply form a curved line without any significant
sharp feature.

Vertex c has high persistence since curvature varies sharply in
its neighborhood due to noise. However, if we take a larger neigh-
borhood around ¢, shown by the red circle, then with respect to the
more distant neighbors, ¢ has a small curvature more representative
of the general progress of the trajectory through this region. Note
that a and b have high curvatures even at the larger scale. In the
next section, we address this problem of handling noise.

In our experiments, we find that a threshold of § = 10 deg pro-
duces good results.

4.3 Multi-resolution simplification

The curvature function, and derivatives in general, tend to am-
plify the noise in the data — creating extreme critical points — that
cannot be removed by persistence alone. We therefore suggest a
multi-resolution simplification where discrete curvature x is con-
sidered at different scales, to reduce the impact of noise. The
method can be applied to any function, we use curvature for ease
of explanation and its importance in trajectory and signal compres-
sion.

The algorithm works using multiple levels or scales of simpli-
fication. At level j, we have a scale s = 27 simplification P?,
which is defined as: For any two successive vertices u,v € P4,
d(u,v) > s, where d is a suitable distance measure. In the case of
a trajectory, d can be the Euclidean distance.

Our algorithm uses the output of level j as the input to level
j+1. Thatis, on x(P?) we apply the persistence algorithm to select
[—persistent vertices, and then sample these vertices to ensure that
any pair of successive vertices are 271! apart. The output is P/ **,
which contains only a subset of P7.

Observe that for a vertex v occurring in both P/ and P? ™!, k(v)
can be different at the different levels or scales, since the neighbors
of v can be different in the two cases.

Sampling of vertices of P/ to compute P/*! can be done with
different strategies. We use a simple heuristic: Scanning P? from
the start, for every pair of successive vertices that are within dis-
tance 2s, remove the one with the smaller absolute curvature and
repeat until the sampling satisfies the definition of P7*!. The ra-
tionale is that a vertex with smaller absolute curvature represents a
shallow and less significant turn.

Observation 4.6 (Linear size and complexity.). Assuming that
the maximum velocity of the moving object is bounded by some
constant v, and that location measurements are taken at (approx-
imately) equal intervals, the multi-resolution representation is
computed in O(n) time and space, where n the number of vertices
in the input.

This follows simply from the exponential growth of the spacing
between vertices with increasing levels, which implies an exponen-
tial decay of number of vertices through levels. An alternate way to
state it, which does not rely on equal intervals of location sampling
will be that for a trajectory recorded over time 7" and with some
bounded velocity, the space and time complexity of processing are
both O(T).

Online multi-resolution algorithm. The multi-level 2s selection
can be implemented in the online version of the algorithm. Here,
we can execute the persistence based online selection on P’ to

maintain a copy P?(3) of the trajectory. We also maintain Ptjefnlp

as vertices from P’([3) guaranteed to be 2s apart. When a new
vertex is selected as an interior point of P’(/3), we place it as the

terminal vertex of P,f;'r}p and measure its distance to its neighbor

in Pg;'r}p. If the distance is less than 2s, we remove the one with

lower absolute curvature. P?T' consists of all vertices of Ptj:,',}p
except the most recent (terminal) vertex. Note that we introduce
lists P’(3) and Pg;‘,}p for ease of explanation. These are not re-

quired in an actual implementation.

Discussion. An example of the multi-resolution algorithm in action
can be seen in Fig. 8. Here Fig. 8(a) shows that the large scale
sharper turns are preserved to higher scale approximations, while
noise and small turns are eliminated quickly. Such deviations can
also be caused by erroneous data, for example, GPS errors, and are
not easy to distinguish from true movements of the user. In our

0.0030 +1.16321e2

Original track
scale 1
scale 2
scale 3
scale 4
scale 5
scale 6
scale 7
scale 8
scale 9

0.0025

0.0020

0.0015

0.0010

0'0088000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
+4.0007e1

(a)

10

Scales

LI THHW HT HMT

0 10 20 30 40 50 60

Points of Original Trajectory

(b)

80

Figure 8. A GPS trajectory consisting of 79 points, and approximations at different scales. (a) Scale 23, 2%, 2° and 2° metres approximations
have 25, 18, 11 and 7 points respectively. (b) Shows the different levels/scales to which vertices survive. Survival scales (or persistence) of

vertices produces a natural ranking.

experiments we observed that those features are usually small and
do not survive to the higher scales of the multi-resolution algorithm.

Figure 8(b) shows the scales to which different vertices survive.
This can be seen as another layer of persistence, where all elements
start at the same time, but some survive longer (to higher scales).
The more persistent features reveal the more important properties
of the data. This ranking of vertices is particularly useful in creating
adaptive resolution reconstructions, by considering more important
vertices first.

Constant complexity per vertex. The online algorithm processes
each incoming vertex in constant time on average. This follows
again simply from the exponential decay of number of vertices
through levels and thus that a vertex on average only “rises” to a
constant level in the hierarchy.

S.

We implemented our algorithm and ran experiments on two dif-
ferent datasets: (i) GPS trajectories near Beijing from Microsoft’s
GeoLife database [33] and (ii) Sensor signal datasets recorded on a
Google Nexus 5 smartphone in Edinburgh, UK.

Experiments show that our algorithm produces efficient and ef-
fective simplifications. In particular:

e Our online algorithm generates compact approximations to
trajectories with low error comparable to offline methods.

e On sensor signal data, such as light level and cell signal
strength, it performs better than Fourier transform based com-
pression.

e Detects the significant turns in trajectories with high accu-
racy; removes noise and short detours to produce intuitive
results.

Choice of persistence threshold 3. In these experiments, we used
a persistence threshold of 3 = 10deg. Intuitively, 8 should not
be too small, since that will preserve very small changes in curva-
ture that are not significant. On the other hand, 8 should not be
too large, since that may miss important features. By conducting
some trials with different values of 3, we found 5 = 10 deg gives
more intuitive results than others. However, a thorough study of the
impact of the value of (3 remains to be done in future.

IMPLEMENTATION AND EXPERIMENTS

5.1 Existing methods

We compared our algorithm to several existing methods. We
briefly describe them here.

Douglas-Peucker [12] is a heuristic that works in rounds and takes
as a parameter the maximum allowed error of approximation, €. It
starts with a line segment connecting the endpoints of the path P as
the simplest approximation. At each round, it adds to the approx-
imation the vertex on P that is furthest from the current approxi-
mation. The rounds continue until all vertices of the trajectory are
within a distance € of the approximation.

This method has a natural multi-resolution property, since points
added earlier are more important and have a greater impact on the
error. However, the method does not naturally extend to online
versions. The worst case running time of the method is O(n?),
although in practice it runs much faster.

Iri-Imai [15] This algorithm is more resource intensive but pro-
duces optimal results. It takes as a parameter the maximum error
€, and constructs a graph GG on the set of vertices, with the prop-
erty that (u,v) € G if the straight line (u, v) is within a distance
€ from P,,. Then it computes the shortest path in G that connects
the end-points of P. This is naturally the smallest (fewest link)
approximation of P that is within an error of €. This algorithm is
optimal in the sense of approximation errors. Its drawback is the
running time of O(n?) to construct G. This strategy is not suitable
for online computations.

FFT (Fast Fourier Transform) Fourier transform is a classical
method in signal analysis that decomposes signals into constituent
sine and cosine waves. Compression can be achieved by preserving
the larger low frequency components and removing high frequency
noise. We use the discrete cosine transform to achieve this effect.
This method is good for preserving smooth properties of signals
while eliminating noise, which is not suitable for our goal of pre-
serving the sharper features. The method also does not work in
online settings. We compare the accuracy of our method with FFT
based compression for the sensor data of light levels and cellular
signal strength.

5.2 GPS trajectory simplification

Figure 9 shows the result of simplification using our algorithm
on real data on a map and for a couple of hand drawn trajectories.

400

400

350

— Original Track
— Approximation

Original Track

350) .
— Approximation

300

250

200

150

100

50

0

300

250

200

150

100

50

0 50 100 150 200

250

(b)

0

300 350 40 0 50 100 150 200 250 300 350 400

©)

Figure 9. (a) GPS trajectory (red) and its approximations. Green track: scale s = 2! metres. Blue track scale s = 2% metres approximation.
(b) A hand drawn trajectory of 743 points, approximated by 23 points. (c) A hand drawn loopy curve of 266 points approximated by 5 points.

We tested the performance of our algorithms on a dataset of 500
random GPS Trajectories from the GeoLife database [33]. These
trajectories were from mobility inside a city, typical trajectories
were a few Km in length. The multiscale persistence algorithm was
applied on the discrete curvature function of each trajectory. The
distance of a trajectory P from its approximation P’ was computed
as the Hausdorff distance:

dy (P, P') = max{sup inf d(p,q), sup inf d(p,q)}
pEP qeP’ qEP! peP

with d measured in the Ly metric. (here we consider both P and P’
as the continuous pointsets along the polylines instead of discrete
vertices.)

Because the trajectories represent coordinates on the surface of
the Earth, we used a modified Lometric using the Haversine dis-
tance as follows:

a = sin®(A¢/2) + cos ¢, - cos ¢, - sin®(AN/2)

c:=2-arctan(v/a, /(1 — a)

dp,q) :=R-c

Where ¢, and ¢4 are latitudes, A¢ is difference in latitudes, and
A is the difference in longitudes. R is mean radius of the earth
(6,371km).

We compared the size versus approximation error results of our
algorithm on the 500 GPS trajectories against the results of the
Douglas-Peucker and the Iri-Imai algorithms. Our algorithm pro-
duces a ranking of vertices based on the scale to which they survive
(Fig. 8). Douglas-Peucker also produces a natural ranking given by
order in which they are added to the simplification.

For Iri-Imai, since the algorithm itself has an O(n?) complex-
ity which is impractical to run on large trajectories, we divided the
trajectories into sequences of 200 vertices, computed the simplifi-
cations on these segments, and then concatenated the results. For
our algorithm, we used a persistence threshold of § = 10 deg.

The results are shown in Figure 10, for max, mean and median
errors. As seen from the plots, Iri-Imai produces the smallest errors.
The persistence algorithm, even with an online approach, performs
similar to Douglas Peucker. The most important observation is that
the median error drops to a few meters with only 5% of the vertices
in approximation. Note that GPS localization itself is likely to have
a few meters of error.

Execution times. The average running times per trajectory on an
Inter(R) Core(TM) i5-3470 CPU at 3.20 GHz with 8GB RAM, run-
ning python 2.7 on Scientific Linux 6.4, are shown in Table 1.

Iri-Imai
5.582

Persistence
0.00328

Douglas-Peucker
0.0181

Table 1. Average running time in seconds per trajectory on a set of
500 random Geolife trajectories.

Detection of significant turns. To test that the algorithm detects
the important turns at a suitable scale, we created artificial trajec-
tories with clear points of important turns. The trajectories follow
straight segments of length between 20 and 40 units, and successive
segments are at an angle of 75 deg to 105 deg, implying important
turns. There were about 100 Vertices along each segment which
were perturbed randomly by noise by upto 2 units, which is 10%
of the segment length. At a suitable scale, such as scale 10 (half
of segment lengths), we expect the simplification to select a vertex
near each turn in the artificial trajectory.

Thus we executed the multi-resolution simplification and consid-
ered the scale 10 simplification. In Fig. 11 we plot the fraction of
real turns that have a level 10 simplification vertex within a radius
z. The plot shows that most points of turn are well represented —
nearly 90% turn points are represented by a simplification vertex
within 2 units — which is the margin of noise.

1.00

© © o o o
N O o0 W W
v O U1 O WU

Percentage of points

o
g
o

.0 15 2.0 25 3.0

Units of radius

3.5 4.0

Figure 11. Percentage of points of the approximation close to the
significant turns of the curve. Noise was added between points of
sharp turns on artificially and randomly generated curves.

In Fig. 12 we show the significant turns as detected by our algo-
rithm on a small set of GPS trajectories, with more important ver-
tices shown with larger and darker squares. The busier regions of
the domain have a concentration of large scale sharp turns. Which
suggests that busy/popular regions, or hotspots, can be detected
easily from the simplified data without the need for complete GPS

o
-3
o
=)
a

e—e Persistence
«~— Douglas-Peucker
+—+ Iri-Imai

o
~

o

o
o
o
=

o

%
o
o
@

o

w
e
<)
)

o

N
o
o
=

Maximum Error of Approximation (km)
=3 o
[S

Average Error of Approximation (km)

o
o

o
o
=]

o

10 20 30

Size of Approximation (%)

(a)

40 50

)

10 20

0.030
e—e Persistence 5 o—e Persistence
~— Douglas-Peucker < 0.025 «~— Douglas-Peucker
. . < . .

+—+ Iri-Imai 2 +—+ Iri-Imai

£ 0.020

®

o

o

£0015

-

o

C

S 0.010

I

w

5

5 0.005

Q

=

0.000
30 40 50 0 10 20 30 40 50

(b)

Size of Approximation (%)

Size of Approximation (%)

()

Figure 10. (a) Maximum (b) Average and (c) Median error of approximation per size of approximation. The performance of the persistence

algorithm is close to Douglas-Peucker and Iri-Imai.

traces.
0.030+1.1631e2 12.0
10.5
0.025
9.0
0.020(
75
g
£ 0015} 6.0
§ 45
0.010} '
30
0.005
15

0.000
8.0050.0100.015 0.0200.0250.0300.035 0.0400.045
Latitude +3.997e1

Figure 12. The most significant turns of the trajectories are repre-
sented by rectangles of various sizes. More important vertices are
marked with larger and darker squares. A concentration of large
scale vertices implies popular regions or hotspots.

5.3 Simplification of sensor signal data

We collected the data of cell signal strength and of the light in-
tensity, using a Nexus 5 mobile phone, to test the simplification of
timeseries data, while maintaining important features needed for
activity and context recognition.

We used the light intensity and the cell signal strength data of
20 different small trips in the city centre. =~ We used the multi-
scale persistence algorithm on the discrete curvature function of
the light intensity and the cell signal strength datasets and used the
L1 metric for the scale s simplification. A graph of light intensity
and its simplification can be seen in Fig. 1, while a graph of cell
signal strength simplification can be seen in Fig. 13(a). The cell
signal strength is shown in ASU'.

In Figures 13(b) and 13(c) we show the median approximation
error against the size of simplification for our algorithm, Douglas-
Peucker, Iri-Imai and FFT (or DCT). FFT has the worst perfor-
mance in both cases, since its approach of approximating smooth
features does not work well on jittery sensor data. In particular, as
seen in Fig. 1, the variation in light signals is in the range of about
1000Lux, thus an error of several hundred Lux is unacceptable for
any application.

The performance of our algorithm using online computation is
close to Douglas-Peucker and Iri-Imai, that use offline computation
with knowledge of entire trajectories.

'ASU (Arbitrary Strength Unit) is an integer value proportional to
the received signal strength measured by a mobile phone.

6. CONCLUSION

Detecting and preserving sharp features accurately is important

in sensor data processing. We presented an online algorithm for
topological persistence that preserves sharp features. We extended
the algorithm to produce adaptive resolution approximations, and
showed that it effectively simplifies real trajectory and sensor data.
Other applications of this simplification and use in trajectory clus-
tering, segmentation, signal reconstruction etc remains to be inves-
tigated. As part of future work, we plan to implement our technique
on mobile devices and evaluate its real time operation in data gath-
ering.

Acknowledgements Jie Gao would like to acknowledge support
from NSF through CNS-1217823, DMS-1221339, and DMS-1418255.

7. REFERENCES

[1] M. A. Abam, M. de Berg, P. Hachenberger, and A. Zarei. Streaming
algorithms for line simplification. In Proceedings of the Twenty-third
Annual Symposium on Computational Geometry, SCG ’07, pages
175-183, New York, NY, USA, 2007. ACM.

P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and Y. Wang.
Near-linear time approximation algorithms for curve simplification.
In Proceedings of the 10th Annual European Symposium on
Algorithms, ESA °02, pages 29—41, London, UK, UK, 2002.
Springer-Verlag.

B. Aronov, A. Driemel, M. van Kreveld, M. Loffler, and F. Staals.
Segmentation of trajectories on non-monotone criteria. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1897-1911. SIAM, 2013.

J. Biagioni, A. Musa, and J. Eriksson. Thrifty tracking: online gps
tracking with low data uplink usage. In Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 486—489. ACM, 2013.

K. Buchin, M. Buchin, J. Gudmundsson, M. Loffler, and J. Luo.
Detecting commuting patterns by clustering subtrajectories.
International Journal of Computational Geometry & Applications,
21(03):253-282, 2011.

K. Buchin, M. Buchin, M. Van Kreveld, M. Loffler, R. 1. Silveira,
C. Wenk, and L. Wiratma. Median trajectories. Algorithmica,
66(3):595-614, 2013.

M. Buchin, A. Driemel, M. van Kreveld, and V. Sacristin.
Segmenting trajectories: A framework and algorithms using
spatiotemporal criteria. Journal of Spatial Information Science,
(3):33-63, 2014.

H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal data
reduction with deterministic error bounds. The VLDB Journal,
15(3):211-228, Sept. 2006.

G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas. Persistence
barcodes for shapes. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, SGP ’04, pages
124-135, New York, NY, USA, 2004. ACM.

(2]

3

—_

[4

[inar)

(51

[6

=

(71

[8

[

[91

Cell Signal Strength (ASU)

12

600

6l — Original Signal B e—e Persistence 3 e—e Persistence
. . [} =}
— Approximation <10 +— Douglas-Peucker = 500 +—a Douglas-Peucker
14 5 +—+ Iri-Imai é +—+ Iri-Imai
12 R —a FFT £ 400 =—a FFT
£ %
10 2 g
o o
300
8 & g
k] 6
6 5 5 200
]]
4 < S
© = 100
2 3 K
= =
0 0 oL
0 50 100 150 200 250 0 10 20 30 40 50 0 10 20 30 40
Time (s) Size of Approximation (%) Size of Approximation (%)
(a) (b) (©

Figure 13. (a) A typical cell signal strength graph with 243 points. The red line represents the approximation at scale s = 16 ASU,
consisting of 6 points and returning a maximum error of approximation of 3 ASU. (b) Median performance of four algorithms tested on cell
signal strength data sets. (c) Median performance of four algorithms tested on light intensity data sets.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]

M. Chen, M. Xu, and P. Franti. A fast o(n) multiresolution polygonal
approximation algorithm for gps trajectory simplification. Image
Processing, IEEE Transactions on, 21(5):2770-2785, May 2012.

A. Collins, A. Zomorodian, G. Carlsson, and L. J. Guibas. A barcode
shape descriptor for curve point cloud data. Computers & Graphics,
28(6):881-894, 2004.

D. Douglas and T. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its
caricature. The Canadian Cartographer, 11(2):112-122, 1973.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological
persistence and simplification. Discrete and Computational
Geometry, 28(4):511-533, 2002.

M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding
individual human mobility patterns. Nature, 453(7196):779-782,
2008.

H.Imai and M. Iri. Polygonal approximations of a curve-formulations
and algorithms. Computational morphology, 1988.

N. Honle, M. Grossmann, S. Reimann, and B. Mitschang. Usability
analysis of compression algorithms for position data streams. In
Proceedings of the 18th SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pages 240-249. ACM,
2010.

S. Karagiorgou and D. Pfoser. On vehicle tracking data-based road
network generation. In Proceedings of the 20th International
Conference on Advances in Geographic Information Systems, pages
89-98. ACM, 2012.

G. Kellaris, N. Pelekis, and Y. Theodoridis. Trajectory compression
under network constraints. In Proceedings of the 11th International
Symposium on Advances in Spatial and Temporal Databases, SSTD
’09, pages 392-398, Berlin, Heidelberg, 2009. Springer-Verlag.

M. B. Kj®rgaard, S. Bhattacharya, H. Blunck, and P. Nurmi.
Energy-efficient trajectory tracking for mobile devices. In
Proceedings of the 9th international conference on Mobile systems,
applications, and services, pages 307-320. ACM, 2011.

A. Kolesnikov, P. Frinti, and X. Wu. Multiresolution polygonal
approximation of digital curves. In ICPR (2), pages 855-858, 2004.
R. Lange, F. Diirr, and K. Rothermel. Efficient real-time trajectory
tracking. The VLDB Journal, 20(5):671-694, Oct. 2011.

C. Long, R. C.-W. Wong, and H. V. Jagadish. Direction-preserving
trajectory simplification. Proc. VLDB Endow., 6(10):949-960, Aug.
2013.

P-F. Marteau and G. Ménier. Speeding up simplification of
polygonal curves using nested approximations. Pattern Analysis and
Applications, 12(4):367-375, 2009.

N. Meratnia and R. A. de By. Spatiotemporal compression
techniques for moving point objects. In E. Bertino,

S. Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis,
K. BAGihm, and E. Ferrari, editors, Advances in Database Technology
- EDBT 2004, volume 2992 of Lecture Notes in Computer Science,
pages 765-782. Springer Berlin Heidelberg, 2004.

[25]

[26]

(271

[28]

[29]

[30]

(311

[32]

(33]

[34]

[35]

J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. S.
Ravi. Squish: An online approach for gps trajectory compression. In
Proceedings of the 2Nd International Conference on Computing for
Geospatial Research & Applications, COM.Geo ’11, pages
13:1-13:8, New York, NY, USA, 2011. ACM.

J. Paek, K.-H. Kim, J. P. Singh, and R. Govindan. Energy-efficient
positioning for smartphones using cell-id sequence matching. In
Proceedings of the 9th international conference on Mobile systems,
applications, and services, pages 293-306. ACM, 2011.

M. Potamias, K. Patroumpas, and T. Sellis. Sampling trajectory
streams with spatiotemporal criteria. In Scientific and Statistical
Database Management, 2006. 18th International Conference on,
pages 275-284. IEEE, 2006.

V. Radu, P. Katsikouli, R. Sarkar, and M. K. Marina. A
semi-supervised learning approach for robust indoor-outdoor
detection with smartphones. In (fo appear) Proceeding of The 12th
ACM Conference on Embedded Networked Sensor Systems (SenSys),
2014.

S. Sankararaman, P. K. Agarwal, T. Mglhave, J. Pan, and A. P.
Boedihardjo. Model-driven matching and segmentation of
trajectories. In Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, pages 234-243. ACM, 2013.

L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu. Transportation mode
detection using mobile phones and gis information. In Proceedings of
the 19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 54-63. ACM, 2011.

G. Trajcevski, H. Cao, P. Scheuermanny, O. Wolfsonz, and

D. Vaccaro. On-line data reduction and the quality of history in
moving objects databases. In Proceedings of the 5th ACM
International Workshop on Data Engineering for Wireless and
Mobile Access, MobiDE 06, pages 19-26, New York, NY, USA,
2006. ACM.

Y. Wang, H. Wei, and G. Forman. Mining large-scale gps streams for
connectivity refinement of road maps. In Proceedings of the 21st
ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 438—441. ACM, 2013.

Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting
locations and travel sequences from gps trajectories. In Proceedings
of the 18th international conference on World wide web, pages
791-800. ACM, 2009.

P. Zhou, Y. Zheng, Z. Li, M. Li, and G. Shen. Iodetector: A generic
service for indoor outdoor detection. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems, pages 113—126.
ACM, 2012.

X. Zhou, S. Shekhar, P. Mohan, S. Liess, and P. K. Snyder.
Discovering interesting sub-paths in spatiotemporal datasets: A
summary of results. In Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, pages 44-53. ACM, 2011.

50

