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ABSTRACT
In traffic research, management, and planning a number of
path-based analyses are heavily used, e.g., for computing
turn-times, evaluating green waves, or studying traffic flow.
These analyses require retrieving the trajectories that follow
the full path being analyzed. Existing path queries cannot
sufficiently support such path-based analyses because they
retrieve all trajectories that touch any edge in the path. In
this paper, we define and formalize the strict path query.
This is a novel query type tailored to support path-based
analysis, where trajectories must follow all edges in the path.
To efficiently support strict path queries, we present a novel
NETwork-constrained TRAjectory index (NETTRA). This
index enables very efficient retrieval of trajectories that fol-
low a specific path, i.e., strict path queries. NETTRA uses
a new path encoding scheme that can determine if a tra-
jectory follows a specific path by only retrieving data from
the first and last edge in the path. To correctly answer
strict path queries existing network-constrained trajectory
indexes must retrieve data from all edges in the path. An
extensive performance study of NETTRA using a very large
real-world trajectory data set, consisting of 1.7 million tra-
jectories (941 million GPS records) and a road network with
1.3 million edges, shows a speed-up of two orders of magni-
tude compared to state-of-the-art trajectory indexes.
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1. INTRODUCTION
Increasingly large quantities of high frequency GPS data

are being collected from vehicles. Such data makes it pos-
sible to reconstruct the exact path followed, e.g., each turn
made and each road segment passed. Taking the path of tra-
jectories from vehicles into consideration, enables a plethora
of important use cases such as: (1) traffic anomaly detec-
tion by monitoring the travel time of vehicles that follow
a specific path [14], (2) studies of multi-edge effects, e.g.,
turn-time costs (essentially just a short path), (3) studies of
intersection coordination, e.g., “green-waves” [9] where the
intersections are optimized along a specific path, (4) inves-
tigative analysis, e.g., identifying a vehicle that followed a
specific path (within a specific time interval), and (5) for
determining the most frequently used path in a set of paths
to improve route planning.

b c d e

g h i j

k l

t1

t2 t3

t4

a f

Figure 1: Network and trajectories

These use cases require finding the set of trajectories that
follow a specific path through a network. As an example,
consider computing the average travel time of the path from
vertex a to vertex f following the edges eab, ebc, ecd, ede, and
eef in Figure 1 (edges are directed and labeled using the no-
tation efrom−vertex to−vertex). Intuitively, this travel time
can be computed by retrieving the trajectories that follow
the entire path, and taking the time difference between en-
tering the path (at vertex a) and leaving it again (at vertex
f). In Figure 1 this is only trajectory t1.

The path queries discussed in [5, 16] are range queries.
These queries retrieve all trajectories that intersect a given
path. Thus, the path query retrieves the trajectories that
touch any edge on the path, i.e., retrieves all four trajectories
in Figure 1. This is obviously wrong, because the trajectory
t2 touch only a single edge (ebc) on the path and is therefore
not usable for computing the average travel time of the path
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from vertex a to vertex f . Similarly, the trajectories t3 and
t4 are not usable because they contain detours.

The path query discussed in this paper differs significantly
from the path query discussed in related works. In this pa-
per the trajectories returned follow the entire path from its
beginning to its end without any detours. To distinguish be-
tween path queries in the related work and the path queries
proposed here, we name our variation the Strict Path Query
(SPQ).

We propose the NETwork-constrained TRAjectory index
(NETTRA) for very efficient retrieval of trajectories that
follow a specific path. The basic idea behind NETTRA, is
to represent each trajectory as a sequence of touched net-
work edges. For each edge touched, an entry is stored that
contains the edge id, enter and leave time, and a novel en-
coding of the entire path up to and including the edge itself.
Using only the novel path encoding for the first and last
edge on a query path, it is possible to determine whether
the trajectory followed a specific path between these edges.

NETTRA is implemented in standard SQL and is portable
between DBMSs. We perform extensive experiments using
a real-world trajectory data set containing 941 million GPS
records, 1.7 million trajectories, and the transportation net-
work for Denmark (1.3 million edges). Using NETTRA, we
demonstrate speed-ups over state-of-the-art of up to two or-
ders of magnitude for SPQs. To the best of our knowledge,
NETTRA is the first solution that efficiently supports path-
based trajectory analysis using very large trajectory data
sets, on large country-sized networks.

The main contributions of this paper are the following.

• The novel strict path query (SPQ) type is introduced
and formalized. This query type is essential to the
traffic domain.

• An exact solution for answering SPQs. This solution
only needs to retrieve trajectory data for a few edges
in the SPQ.

• A practical-exact solution answering SPQ. This solu-
tion only retrieves trajectory data for the first and last
edges in the SPQ.

• A thorough performance study of NETTRA using a
large real-world trajectory data set.

The rest of the paper is organized as follows. Section 2 re-
views the related work. Section 3 introduces the context and
formalizes the queries. Section 4 introduces the NETTRA
index. Section 5 discusses implementation details. Section 6
evaluates NETTRA experimentally. Finally, Section 7 con-
cludes the paper.

2. RELATED WORK
The related work can be divided into network constrained

indexing techniques where movement is constrained by an
underlying network and string matching techniques. String
matching is included because a SPQ can be considered as
finding exact matches of a pattern (the SPQ) in a large text
corpus (the paths of all trajectories).

2.1 Network Constrained Indexing
From a network constrained perspective, [4, 5, 7, 15, 16]

give a thorough treatment on indexing and querying mov-
ing objects in a network. However, the path query previ-
ously considered does not efficiently support the retrieval of

trajectories that follow a specific path through a network.
Because of this, many path-based analyses are very difficult
and inefficient to perform.
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Figure 2: Transportation network abstractions.

The related work represents the transportation network
using either the segment, the edge, or the route network ab-
straction. A segment is a straight line between two spatial
locations, an edge is a polyline between two intersections,
and a route is a complete road, which may cross many in-
tersections. The small transportation network in Figure 2
illustrates this distinction. The network consists of the seg-
ments, s1, . . . , s9, or the edges e1 = (s1, s2), e2 = (s3, s4),
e3 = (s5, s6, s7), and e4 = (s8, s9), or the routes r1 =
(s1, s2, s3, s4) and r2 = (s5, s6, s7, s8, s9). Note that mul-
tiple configurations are possible for the route abstraction.

The MON-tree, presented in [5], supports segment, edge,
and route abstractions. A top level 2D R-tree is used to in-
dex the transportation network, with a forest of leaf-level 2D
R-trees indexing the movement along the polylines. Addi-
tionally, a top level hash structure is used to map polylines to
the corresponding leaf-level 2D R-tree to speed-up insertion.
When evaluating a SPQ, the hash structure can be used to
directly map each edge in the query to the corresponding
leaf-level 2D R-tree. All trajectories that follow the entire
path can be retrieved by examining the R-tree for each edge
on the path queried. The shortcomings of the MON-tree are
the following: the actual path of each candidate trajectory
needs to be retrieved in order to remove trajectories with de-
tours. A route-based MON-tree may simplify some SPQs,
e.g., when a SPQ is contained within a route. This is rarely
the case, however, for instance when a SPQ includes turns,
or when roads merge/diverge.

The PARINET approach [16] is to the best of our knowl-
edge state-of-the-art in network-constrained trajectory in-
dexing. PARINET supports the segment, edge, and route
abstractions, with practically identical implementations. For
this reason, we only describe it using the edge abstraction.
Each edge is assigned a weight corresponding to the number
of trajectories that touch that edge. A graph partitioning
algorithm then partitions the network (and data) such that
each partition has a similar accumulated weight (and size).
The index is thereby tuned to the specific data set. The
on-disk format for a partition is shown in Table 1. There is
a B+tree on the tenter column. By grouping multiple edges
into one on-disk structure, PARINET reduces the number
of random I/Os for range and path queries. It is straight-
forward to insert a trajectory t into PARINET: for each edge
touched an entry is inserted into the relevant partition.

Executing a SPQ using PARINET is similar to using a
MON-tree. First, we retrieve the trajectories that touch
each edge in the SPQ. Next, we filter out trajectories with
detours by retrieving the full path of each candidate trajec-
tory or query the edges adjacent to the SPQ. Because mul-
tiple edges are stored in the same partition on disk, fewer
partitions are usually queried than the number of edges in
the SPQ.



Column Description

tid Trajectory identifier
eid Edge identifier
tenter Time then trajectory tid entered edge eid
tleave Time then trajectory tid left edge eid

Table 1: The on-disk format of PARINET

2.2 String Matching Techniques
String matching techniques can be used to execute SPQs,

by first converting path, π = [e1, e2, . . . , en], of each trajec-
tory t into a textual representation, st. Next, the strings of
all trajectories are concatenated into S, and separated using
a special marker, e.g., S = st1 + ′$′ + st2 + . . ., where the +
operator concatenates two strings. A SPQ is then executed
by converting the SPQ into its textual representation, s, and
retrieving all exact matches of s within S.

Suffix trees or the more space-efficient suffix arrays [10,
12] have optimal search time complexity for finding exact
matches of a search string s in a large text corpus S. Due
to the similarity, we use suffix trees to refer to either suffix
trees or suffix arrays in the rest of the paper. Suffix trees
require only O(|s| + k) time for finding all instances of s,
where |s| is the number of characters in the search string
and k is the number of occurrences of s in S.

Given that suffix trees have optimal search time complex-
ity, they may appear optimal for evaluating SPQs. There
are, however, a number of significant drawbacks to suffix
trees: (1) they have significant main-memory requirements,
(2) they do not support temporal filtering, and (3) they are
difficult to update, and (4) they do not support concurrent
update and read operations. In general we do not assume
that the entire trajectory data-set can be loaded into main-
memory, and we therefore consider the very high memory
requirements of suffix trees prohibitive.

Recent approaches such as [11], reduce the main-memory
requirements of suffix tree construction for texts up to 4
GB. Unfortunately, preprocessing of the full text corpus S
is required prior to constructing the suffix array, and S can-
not be updated. Because trajectory data-sets are frequently
updated with more trajectories, the lack of update support
makes suffix trees ill-suited as a trajectory index. In addi-
tion, temporal filtering is not possible using a suffix tree.
This lacking support for temporal filtering is a major draw-
back within the traffic domain because it is necessary to,
e.g., distinguish between peak and non-peak hours.

3. PRELIMINARIES
This section first describes the data model used for rep-

resenting the network and the trajectory data. Next, we
proceed to formalize both the plain path query and the SPQ.

3.1 Data Model
NETTRA is designed for use with the segment and edge

network abstractions. NETTRA is implemented identically
independent of network abstractions, and for this reason we
only describe NETTRA with the edge abstraction.

The network consists of edges and is represented as a di-
rected graph G = (V,E), where V is a set of vertices and
E is a set of directed edges, E ⊆ V ×V.

A Moving Object (MO) reports its position periodically.

Each location update is a tuple loc = (moid, ts, pos), where
moid is an identifier, ts is a time-stamp, and pos is the
spatial position of the MO at time ts.

Any network constrained indexing technique requires that
the location updates of the MO is map-matched to the net-
work, i.e., that the route of the MO is identified. Map-
matching transform the input sequence of spatial location
updates into network constrained location updates. Each of
these updates is a tuple, locmm = (tid, eid, tsenter, tsleave),
where tid is a trajectory identifier, eid is an edge identifier,
tsenter and tsleave (linearly interpolated) are the times at
which tid entered and left edge eid, respectively.

A trajectory, t = [locmm1 , locmm2 , . . . , locmmn ], is a logi-
cal sequence of network constrained location updates during
the course of one trip. For a convenient notation, the func-
tion path(t) returns the path followed by trajectory t, and
the functions entertimes(t) and leavetimes(t) return the
ordered list with enter and leave times of each edge, respec-
tively. Finally, the set of trajectories, T = {t1, t2, . . . , tn},
contains all trajectories from all moving objects.

Trajectories are usually not updated after being inserted.
However, additional trajectories are frequently added to the
database, e.g., every night, and the index must therefore be
able to handle inserts efficiently.

3.2 Problem Definition
The Strict Path Query (SPQ) is formalized in Equation 1.

It returns all trajectories that strictly follow the path, π,
within a temporal interval defined by start and end. The
function SubList(path(t), i, j) returns the sub-list of path(t),
t ∈ T, between index i (inclusive) and index j (exclusive),
i < j. Thus the result of a SPQ consists of each trajectory
from T, that has π as its sub-path, enters π at a time in-
stance equal to or later than start, and leaves π at a time
instance equal to or later than end.

SPQ(π, start, end) =

{t | t ∈ T, ∃i, j : π = SubList(path(t), i, j + 1)

∧ start ≤ entertimes(t)[i]

∧ leavetimes(t)[j] ≤ end} (1)

A SPQ is very different from the plain path query de-
fined in [16]. To clarify the differences, we have formalized
the plain path query in Equation 2. Similarly to a SPQ, a
plain path query takes as arguments a path π, and a tem-
poral interval denoted by start and end. For a trajectory to
satisfy the constraints of a plain path query, the trajectory
only needs to visit an edge in the query path π, within the
temporal interval.

PQ(π, start, end) =

{t | t ∈ T,∃(e, tsenter, tsleave) ∈ t : e ∈ π
∧(start ≤ tsenter ≤ end
∨start ≤ tsleave ≤ end)} (2)

Because a SPQ is more strict in the evaluation of both
the spatial and temporal components it always holds that
SPQ(π, start, end) ⊆ PQ(π, start, end). This is also evi-
dent when considering the path π = [eab, ebc, ecd, ede, eef ] in
Figure 1. For this path a plain path query returns all four
trajectories, whereas a SPQ returns only the trajectory t1.



Note that sub-trajectories are used, e.g., the SPQ on path
π = [eab, ebc] returns the trajectories t1, t3, and t4.

4. THE NETTRA INDEX
In this section, we present the NETTRA index. The basic

idea is to apply an encoding to the path of each trajectory
and to use this encoding to determine whether a trajectory
follows a specific path through the network.

We present three solutions for evaluating SPQs that use
the same path encoding. Two solutions are exact and one
solution is practically exact. The latter solution may include
false positives in the result set (but never false negatives).
However, the probability of false positives is extremely low,
see Section 6.

For a SPQ on the path, π = eab, ebc, ech, ehi, eid, ede, and
eef in Figure 1, the first exact solution retrieves trajectory
data of all edges in the SPQ, i.e., from edges eab, ebc, ech,
ehi, eid, ede, and eef . The second exact solution usually
only needs to retrieve data for a few edges in the SPQ, e.g.,
edges eab, eid, and eef . The practically exact solution only
retrieves trajectory data for the first and the last edge of the
SPQ, i.e., edges eab and eef .

4.1 Trajectory Representation and Encoding
Similar to [5, 7] and [16], the movement of objects is repre-

sented in terms of a network. Here the enter and leave times
for each edge touched by a trajectory is stored as shown in
the first four columns in Table 2, for the four trajectories
in Figure 1. In addition, a hash value is computed for each
touched edge and stored in the hash column in Table 2.
Concretely, a weight is assigned to each edge, and the hash
value is the prefix-sum of all touched edges of the trajec-
tory. Specifically, the ith hash value is computed using the
function defined in Equation 3. The equation uses a list of
edges, π = [e1, e2, . . . , en] to model the path of a trajectory.
The edge at position 1 is the first edge on the path, the edge
at position 2 is the second edge on the path, and so on.

hash(π, i) =

i∑
j=1

π[j].weight (3)

Table 2 shows the hash values for the four trajectories
in Figure 1. The edge length is used as a weight and each
square is assumed to have length one. In this case, hash(t1, 1)
= 3, hash(t1, 2) = 7, and hash(t1, 3) = 11.

In general, we assume that the weight assigned to each
edge is a non-zero positive value. For now, the weight is
the length of the edge; a different weight configuration is
discussed in Section 4.4.

Except for the hash column, the data model used in this
paper is very similar to the data model used in [5, 7] and
[16]. However, we will in Section 6 show that this addition
has a huge positive impact on the performance.

Querying
Given a candidate set of trajectories that touch the first and
last edge of a path, we can use the values in the hash column
in a filtering step. Concretely, we check that the difference
in the hash column between entering and leaving the path,
match the change determined by the path.

For each candidate trajectory we evaluate the expression
in Equation 4. hashstart and hashend are the hash values
of a trajectory on the first and last edge of π, respectively.

tid eid tsenter tsleave hash

t1 eab 9 11 3
t1 ebc 11 13 7
t1 ecd 13 17 11
t1 ede 17 21 15
t1 eef 21 23 18
t2 egb 14 16 3
t2 ebc 16 19 7
t2 eck 19 21 10
t3 eab 14 16 3
t3 ebc 11 13 7
t3 ech 13 15 10
t3 ehi 15 18 14
t3 eid 18 21 17
t3 ede 21 24 21
t3 eef 24 27 24
t4 eab 14 16 3
t4 ebc 16 20 7
t4 eck 20 22 10
t4 ekl 22 25 14
t4 eld 25 28 17
t4 ede 28 30 21
t4 eef 30 33 24

Table 2: The visitedsegments table

The deltahash function, in Equation 5, returns the change
in the hash column for a given path π. In the equation, n,
is the number of edges in π. If the expression in Equation 4
is false, the candidate trajectory necessarily followed some
other path than π.

hashend − hashstart = deltahash(π) (4)

deltahash(π) =

n∑
j=2

π[j].weight (5)

To demonstrate the filtering step, we show how to eval-
uate a SPQ, using the visitedsegments table shown in
Table 2. Specifically, we consider the SPQ over the path
π = [eab, ebc, ecd, ede, eef ], in Figure 1 (we ignore the tem-
poral constraint for now). Only the trajectory t1 should be
returned by this query, because the other trajectories have
detours or do not follow the entire path. We first compute
the candidate set of trajectories that touch both the first
and last edges of π, i.e., eab and eef . Using Table 2, we find
that this candidate set contains the trajectories t1, t3, and t4.
The trajectory t1 has hashstart = 3 and hashend = 18. Both
trajectories t3 and t4 have hashstart = 3 and hashend = 24.

For each trajectory in the candidate set, we then evaluate
the expression in Equation 4, i.e., hashend − hashstart =
deltahash([eab, ebc, ecd, ede, eef ]). Concretely, this is true for
t1, i.e., 18− 3 = 4 + 4 + 4 + 3, but false for both t3 and t4,
i.e., 24−3 6= 4+4+4+3. After this step, it is clear that the
trajectories t3 and t4 have followed some other path, and
they are consequently removed from the candidate set.

Finding a candidate trajectory set and applying this fil-
tering is easy to define in SQL, as shown in Listing 1. The
functions first and last return the first and last edge of a
path, respectively.

Note that the query in Listing 1 can be answered by only
retrieving trajectory data for the first and last edges of the



select estart.tid
from visitedsegments as estart
join visitedsegments as eend using (tid)
where estart.eid = first(π)
and eend.eid = last(π)
and eend.hash - estart.hash = deltahash(π)

Listing 1: Query to find a candidate trajectory set.

path. This access can be accelerated by conventional index-
ing, see Section 5. In most cases, the query in Listing 1
removes all false positives from the candidate set (see Sec-
tion 6.2). However, trajectories that follow a different path
π′, from the first edge of π to the last edge of π, and have
deltahash(π) = deltahash(π′) cannot be removed by this
approach. As an example, using the length as the weights
on the edges we cannot distinguish between the path of tra-
jectory t3 and the path of trajectory t4 in Figure 1, even
though they clearly follow different paths. We will next
show how to resolve this situation.

4.2 Exact SPQ Evaluation
We now describe how to refine the candidate set of tra-

jectories such that it only contains true positives. First, we
define a näıve approach that guarantees the correct result,
but with a high cost in terms of I/Os compared to the query
in Listing 1. This approach incurs I/Os on the order of a
plain path query from the related work [16].

For a path, π, that consists of exactly two edges, deltahash(π)
uniquely identifies π between all paths between first(π) and
last(π). Therefore, for any path that consists of two edges
the result of the query in Listing 1 is correct and does not
need to be refined further. This is formalized in Proposi-
tion 1.

Proposition 1. For any path consisting of two edges,
π = [estart, eend], the query in Listing 1 retrieves exactly
the trajectories that strictly follow π.

Proof. To satisfy the query in Listing 1, a trajectory t
must follow a path, πt, between the first and last edges of
π, such that deltahash(πt) = deltahash(π) (Equation 4).
Assume, that πt = [estart, e2, . . . , en−1, eend].
deltahash(πt) = e2.weight+. . .+en−1.weight+eend.weight.
Because, deltahash([estart, eend]) = eend.weight, it follows
that deltahash(πt) > deltahash(π). Because deltahash(πt)
> deltahash(π), t cannot be returned by the query in List-
ing 1.

Proposition 1 can be used to prevent false positives for any
path π, by proving that candidate trajectories follow all sub-
paths of π. Concretely, we convert a path π over n edges,
into the n − 1 sub-paths that each consists of exactly two
edges. For instance, the path π = [e1, e2, e3, e4] is converted
into π1 = [e1, e2], π2 = [e2, e3], and π3 = [e3, e4]. First,
we use the query in Listing 1 to load a candidate set of
trajectories that follow the entire path π. Next, trajectories
that do not follow each of the sub-paths π1 to πn−1, n =
size(π), are pruned from this candidate set. If a trajectory,
t, has the hash values h1, h2, h3, h4 on edges e1, e2, e3, e4,
respectively, and h2−h1 = deltahash(π1), then t must have
followed the sub-path π1 (guaranteed by Proposition 1). If
not, we prune t from the candidate trajectory set. Similarly,
if hi+1−hi = deltahash(πi), we know that t follows the sub-
path πi. As such, we can prove that t follows the full path
π.

Extending the query in Listing 1 with this incremental
pruning approach results in the query in Listing 2. This
query has a self-join for each sub-path of the SPQ. Each
join adds overhead, in that for each πi of the n − 1 sub-
paths, the trajectories that touch the edge last(πi) will be
retrieved.

select estart.tid
from visitedsegments as estart
join visitedsegments as eend using (tid)
join visitedsegments as e2 using (tid)
...
join visitedsegments as en−1 using (tid)
where estart.eid = first(π)
and eend.eid = last(π)
and e2.eid = last(π1)
...

and en−1.eid = last(πn−1)
and eend.hash = estart.hash + deltahash(π)
and e2.hash = estart.hash + deltahash(π1)
and e3.hash = e2.hash + deltahash(π2)
...

and eend.hash = en−1.hash + deltahash(πn−1)

Listing 2: Exact strict path query

The plain path query considered in [16] retrieves all tra-
jectories that touch each edge of π. As such, the approach in
Listing 2 requires approximately the same number of I/Os
as the plain path query in the related work. However, this
approach does not consider the fact that the network con-
strains the movement of moving objects. In the next section
we describe how we, by considering the network, can reduce
the number of sub-paths and I/Os significantly.

4.3 Optimized Exact SPQ Evaluation
We now show that for some paths the query in Listing 1

is guaranteed to return exactly the trajectories that strictly
follow a specific path π, independently of the number of
edges in π. This implies that all additional self-joins can be
omitted, without compromising correctness. Note that the
query in Listing 1 returns false positives only when a differ-
ent path, π′, exists such that deltahash(π) = deltahash(π′),
first(π) = first(π′), and last(π) = last(π′). If such a path
π′ does not exist, we say that π is unique. When π is unique,
the query in Listing 1 is guaranteed to retrieve only the tra-
jectories that strictly follow π. This is very valuable because
the query in Listing 1 retrieves trajectory data from only the
two edges first(π) and last(π), independently of the num-
ber of edges in π.

It is always the case that π is unique when π match exactly
the shortest path between first(π) and last(π), and there is
exactly one shortest path between first(π) and last(π). In
such case, any other path, π′, will always be longer than π,
i.e., deltahash(π) < deltahash(π′). Note that, existing al-
gorithms such as Hub Labeling (HL) [2], can very efficiently
determine if π is a shortest path and if there are more than
one shortest path. As such, HL can be used to determine
whether π is a unique path. The problem we are left with
is when π is not a unique shortest path. The query listed
in Listing 2 could be used to answer the query. However,
this query uses n − 1 self-joins, where size(π) = n, and
retrieves trajectory data for each edge in π. This has sig-
nificant overhead, and the query in Listing 2 is therefore
orders of magnitude slower than the query in Listing 1, see
Section 6.



Instead of using the query in Listing 2, we split π into k
sub-paths, π1, . . . , πk, such that each πi is unique, first(π1) =
first(π), last(πk) = last(π), and last(πi) = first(πi+1). In
the best case, k = 1, i.e., π is unique. In the worst case,
k = n − 1, where n = size(π). This is because Proposi-
tion 1 states that any path consisting of exactly two-edges
is unique.

By proving that each candidate trajectories follows all
unique sub-paths, in turn, all false positives can be pruned
from the candidate set. Concretely, we first retrieve a can-
didate trajectory set using the query in Listing 1. If a
trajectory, t, has the hash values h1, . . . , hk, hk+1, on the
edges first(π1), . . . , first(πk), last(πk), and h2 − h1 =
deltahash(π1), then t must follow π1. Similarly, if hi+1 −
hi = deltahash(πi), it follows that t follows πi. By following
this strategy for each unique sub-path, we prove that each
candidate trajectory follow the entire path π

We will shortly present a very efficient algorithm for split-
ting π into a number of sub-paths, such that each sub-path
πi is unique. We will show in Section 6 that the number
of sub-paths required, k, on average is less than size(π)/30.
Therefore, the average case is much closer to the best case
shown in Listing 1 than the worst case shown in Listing 2.

Algorithm 1 Find the unique shortest paths of a SPQ.

Input: A path π
Output: The set of unique sub-paths of π
1: function UniqueSubPaths(π)
2: if size(π) < 3 then
3: return π
4: end if
5: vi← 2
6: for i = 3→ size(π) do
7: sppath← Shortest(π[1], π[i])
8: if sppath 6= SubList(π, 2, i) then
9: break

10: end if
11: vi← i
12: end for
13: if vi = size(π) then
14: return π
15: else
16: first← SubList(π, 1, vi+ 1)
17: π′ ← SubList(π, vi, size(π) + 1)
18: subpaths← UniqueSubPaths(π′)
19: return {first} ∪ subpaths
20: end if
21: end function

The function UniqueSubPaths, shown in Algorithm 1,
transforms a path into its unique sub-paths. As input the
function takes the path π. As output it returns the unique
sub-paths of π. In Line 2 to 4 we check if the input path π
contains less than three edges. In such case, Proposition 1
guarantees that π is unique. The function SubList(π, i, j)
returns the sub-list of π between index i (inclusive) and in-
dex j (exclusive). vi (Line 5) is an index into π, where
it has been verified that the path SubList(π, 1, vi + 1) is
unique. vi is initialized to 2 because the corresponding path,
πvi = SubList(π, 1, 2 + 1), consists of exactly two edges,
which is guaranteed to be unique by Proposition 1. vi is up-
dated in each iteration on Line 11, after a longer sub-path
of π has been verified. Line 6 to 12 iterate through π, and

check whether the path from π[1] to π[i] is a unique shortest
path. The function Shortest(estart, eend) returns the short-
est path from the end vertex of edge estart to the start vertex
of eend. Shortest returns an empty list if the shortest path
is not unique. After verifying that Shortest(π[1], π[i]) =
SubList(π, 2, i), vi is updated accordingly.

If the entire path π is a unique shortest path, π is simply
returned. In this case, the query in Listing 1 returns the
correct trajectory set without any further checks. If not,
the unique part of π is extracted and stored in the first
variable on Line 16. The remaining part of π, π′, is extracted
on Line 17, and UniqueSubPaths recursively calls itself on
π′ and returns the sub-paths of it.

Algorithm 1 performs one shortest path computation for
each edge in the path π. We use the state-of-the-art Hub
Labeling (HL) [2] shortest path algorithm for the step on
Line 7. HL has a time complexity of O(log |V |) for shortest
path computations, where |V | is the number of vertices in
the network. As such the time complexity of Algorithm 1 is
O(n log |V |), where n is the number of edges in the π. Note
that the comparison on Line 8 can be implemented as a O(1)
operation, by simply comparing the distance of sppath with
the distance of SubList(π, 2, i).
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Figure 3: Processing of path abcde

To illustrate Algorithm 1, consider applying the Unique-
SubPaths algorithm to the path abcde on the network in
Figure 3. In the first iteration of the loop in Line 6 to 12,
the path abc is verified to be unique. That is, the path b
that connects edges a and c is a shortest path, and there
is exactly one shortest path between edges a and c (shown
by a blue line in Figure 3A). Next, the path abcd is verified
to be unique path. Again, the path bc that connects a and
d is a shortest path, and there is exactly one shortest path
between edges a and d (shown by a blue line in Figure 3B).
Finally, abcde is found not to be a unique path. The path
bcd is a shortest path between a and e, but there are multi-
ple shortest paths between edges a and e (these are shown
by a red line and a blue line in Figure 3C). The longest
unique sub-path along abcde is therefore abcd. UniqueSub-
Paths is then invoked recursively on the remaining sub-path
de. Because de consists of two edges, it is unique (Proposi-
tion 1) and further processing is not required. Finally, the
two sub-paths abcd and de are returned.

4.4 Practical Exact SPQ Evaluation
The query in Listing 1 only requires retrieving data for

the first and last edges in a SPQ. However, with the current
weight configuration the probability of false positives de-
pends on the probability of two paths having equal length.
In Section 6, we show that multiple shortest paths are fre-
quent in real-world transportation networks, even when mea-
suring the length of edges with a millimeter granularity.

We therefore design a new weight configuration such that
the probability of false positives is very low. To distin-



guish between the different weight configurations, we re-
fer to the weight configuration used up to this point as
length-weight, and the weight configuration described below
as prime-weight.

The fundamental theorem of arithmetic [8] states that the
product of a unique set of primes is unique. As such, we can
assign a globally unique prime to each edge in the network,
and use the product of these primes as our hash function.
This hash function guarantees uniqueness for all paths with-
out cycles, because a different path will result in a different
set of primes and in turn a different product. For paths with
cycles this hash function cannot guarantee the order of vis-
iting each edge in the path, only that each edge is visited
the correct number of times. A path containing cycles can
be supported by transforming the path into a set of a-cyclic
sub-paths or paths consisting of two edges.

However, the product of a large set of primes is an ex-
tremely large number and it is not feasible to represent
such values using a fixed-width data type. Instead, we com-
pute the logarithm to the product of primes, and store the
transformed value with as many digits as possible given
a specific data type. Due to the arithmetic rule for loga-
rithms, i.e., log(xy) = (log x) + (log y), the e.weight field of
each edge can be assigned the value of log(e.prime), where
e.prime is the prime number assigned to edge e. By set-
ting e.weight = log(e.prime), the prime-weight configura-
tion can be used without further changes.

The logarithm transformation does not affect uniqueness,
but the loss of precision due to rounding error may affect
uniqueness. As such, estimating the precision of this number
gives a rough estimate of the probability of two arbitrary
paths having deltahash(π1) = deltahash(π2).

In the following, we assume that an unsigned 64 bit fixed-
point data type is used for the hash column, a network of 50
million edges, and that a trajectory touches at most 1 mil-
lion edges. The largest possible hash value under these as-
sumptions is generated by a trajectory that passes the edge
assigned the largest prime number one million times. The
50 millionth prime is just below 109, and the largest possible
hash value is therefore at most: log10(109) · 106 = 9 · 106.
A value of this magnitude requires dlog2(9 · 106)e = 24 bits
to represent the integer part, which leaves 40 bits to repre-
sent the fractional part. The number of significant decimal
places, digits, is therefore blog10(240)c = 12. In other words,
false positives can only occur due to rounding error, and this
rounding error is bound by 10−12. For two arbitrary paths,
π1 and π2, between edges e1 and e2 an estimate of the prob-
ability of deltahash(π1) = deltahash(π2) is 10−12. Obvi-
ously, a wider data type increases the number of decimal
places, and reduces the probability.

In order to have a false positive in the result set for the
path π1, three conditions must be true: a path π2 have the
same first and last edge as π1, π2 is followed by at least one
trajectory, and deltahash(π1) = deltahash(π2). Intuitively,
the risk of false positives increases with the number of fol-
lowed paths between first(π1) and last(π1). One way to
estimate the probability of false positives is to assume that
the 12 digits used to represent the decimals are random. Un-
der this assumption, the probability can be computed using
the following formula.

pn = 1−
(
B − 1

B

)n

Where pn is the probability false positives, n is the number
of distinct traveled paths between first(π1) and last(π1),
and B is the number of possible values for the fractional part,
i.e., 1012. We observe that n is usually low, i.e., vehicles tend
to follow similar routes between locations. In our data set, n
is always well below 1000. Using these numbers, we arrive at
a probability of approximately 10−9 for false positives when
using the prime-weight configuration.

In Section 6, we experimentally evaluate the probability
of false positives for both the prime-weight and the length-
weight approach.

5. SPQ PROCESSING
The recursive function ProcessSPQ, described in Algo-

rithm 2, is used to evaluate SPQs. ProcessSPQ takes as
arguments the path π, a Boolean value exact, and the tem-
poral predicate (start, end). ProcessSPQ returns the set
of trajectories, C, that strictly follow the path π, and satisfy
the temporal predicate (start, end). The Boolean parameter
exact controls whether false positives are acceptable in the
result set. On Line 2, a candidate trajectory set is retrieved
using the LoadTrajectories function. LoadTrajectories is
similar to the query shown in Listing 1. In addition to re-
trieving the tid, the hash value is retrieved for the first and
last edge of the path π, i.e., hashstart and hashend, respec-
tively. Further, both estart.tsenter and eend.tsleave are con-
strained to be within the temporal interval (start, end).

Algorithm 2 Processing a Strict Path Query

Input: A path π, Boolean exact, and temporal predicate
(start, end)

Output: The set of trajectories that strictly follow the path
π, and satisfy the temporal predicate (start, end)

1: function ProcessSPQ(π, exact, (start, end))
2: C ← LoadTrajectories(first(π), last(π),

deltahash(π), (start, end))
3: if exact or π has cycles then
4: Subpaths← UniqueSubPaths(π)
5: for all πi ∈ Subpaths do
6: C′ ← ProcessSPQ(πi, false, (start, end))
7: if i = 1 then
8: C ← filter init(C,C′)
9: else

10: C ← filter(C,C′)
11: end if
12: end for
13: end if
14: return C
15: end function

On Line 4, π is transformed into the set of sub-paths that
guarantee no false positives. This step is performed when
the exact parameter is set to true, or when π has a cy-
cle. When π has a cycle, the hash column cannot determine
the order that edges are touched in. It is therefore neces-
sary to transform π into a set of acyclic sub-paths using the
UniqueSubPaths algorithm.

Line 7 to 11 verifies that each sub-path is followed, using
the two similar functions filter init and filter. As the name
implies, filter init is only used for the first unique sub-path
of π. Concretely, filter init selects the trajectories from C′

where each tid from C′ is in C, and the hashstart of tid in



C match hashstart of tid in C′. The filter function selects
the trajectories from C′ where each tid from C′ is in C, and
the hashend of tid in C match hashstart of tid in C′.

After each sub-path has been checked, the trajectories in
C are guaranteed to follow exactly the path π. Obviously,
ProcessSPQ is only recursive when exact is set to true, or
when π has a cycle. For all recursive invocations, exact is set
to false and πi is acyclic. Hence Algorithm 2 is recursive
to at most depth two.

The implementation of LoadTrajectories uses the visit-
edsegments table shown in Table 2 with a covering B+tree
index on the columns: eid, tenter, tid, tleave and hash

(in this sequence). LoadTrajectories is implemented using
a slightly extended version of the query shown in Listing 1
as described in Section 5. Because of the order of columns
in the B+tree index, it can be used for both spatial and
temporal filtering when evaluating the query.

6. EXPERIMENTAL STUDY
In this section, we experimentally study and compare the

NETTRA index to state-of-the-art in network constrained
trajectory indexing, i.e., PARINET.

We evaluate our index w.r.t. frequency of false positives of
the practically exact solution, response times, and sensitivity
to density, i.e., the number of trajectories that touch the
edges in the SPQ.

The experiments are conducted on a Dell Server, with 32
GB RAM, 2 AMD Quad-Core Opteron 2376 CPUs, and 3
Dell Cheetah 15k RPM drives in a RAID 5 configuration.
NETTRA is implemented in PostgreSQL 9.3.

Our experiments use a very large real-world trajectory
data set1 recorded from more than 13 thousand vehicles over
several years. In total, the data set contains 941 million
GPS records and 1.7 million trajectories. This results in
134 million entries such as those in Table 2. We used the
map-matching algorithm described in [13], to transform the
GPS records into the format in Table 2. The transportation
network used is from OpenStreetMap [1] and consists of 1.3
million directed edges.

In order to experimentally study NETTRA, a realistic set
of SPQs is required. For this, we use path of each trajectory
in our data set as a query (randomly selected). Thus each
query evaluated has a realistic path in that at least one
trajectory in our data set follows that path. In total, 1.7
million SPQs are created. A SPQ over 10 edges is between
90 m and 30 km long; a SPQ over 240 edges is between 9
km and 300 km long. The temporal constraint is the entire
lifetime of the database unless explicitly stated otherwise.

6.1 Number of Sub-paths
Figure 4 shows the average number of unique sub-paths

that a path is transformed into. Recall, that for each sub-
path, πi, it is necessary to retrieve additional trajectory
information. As such, a reduction in the number of sub-
paths translates directly into a lower number of I/Os. The
All curve shows the number of sub-paths required by the
näıve approach described in Section 4.2. The length-weight
and prime-weight curves show the number of unique sub-
paths for each weight configuration. Compared to the All
curve, the length-weight configuration reduces the number of

1The data set is owned by third parties, and therefore cannot
be made publicly available.
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Figure 4: The number of sub-paths of a SPQ.
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Figure 5: Process time of Algorithm 1.

sub-paths by a factor of approx. 30, on average. Using the
prime-weight configuration, the reduction is a factor of 20 on
average compared to All. It is expected that more sub-paths
are required with the prime-weight compared to the length-
weight configuration because trajectories (and therefore the
SPQs used) tend to follow the shortest or the fastest path
through a network. A trajectory will generally not follow the
path that minimizes an arbitrary cost such as prime-weight.

Finally, we study the delay added by Algorithm 1. All 1.7
million paths are processed, and the average processing time
w.r.t. the number of edges is measured. Figure 5 shows the
average delay. The delay is well below one millisecond, and
negligible compared to the time required by a random I/O.
Note that the delay is nearly linear to the number of edges
in the SPQ.

6.2 Frequency of False Positives
To study the frequency of false positives for the practically

exact solution, all 1.7 million SPQs are executed. Each SPQ
is executed three times: using the length-weight configura-
tion, using the prime-weight, and using the optimized exact
solution.

If the result set of a practically exact query differs from
the result set of the exact query, a false positive is reported
for the corresponding weight configuration. length-weight
is configured with a granularity of one millimeter. prime-
weight is configured as described in Section 4.4.

Figure 6 shows the frequency of false positives. In general
we find false positives for each n number of edges using the
length-weight configuration. The false positives per query
fluctuates significantly, but appears to decrease for longer
paths. We believe the fluctuation in false positives is due
to variations in the query sets, and the decrease is due to
the fact that fewer trajectories touch both endpoints of a
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long path compared to a short path. length-weight works
reasonably well as a filter step, and removes all false positives
in 99.9% of all SPQs evaluated.

Using prime-weight, we did not identify any false positives.
This supports our claim in Section 4.4 that the probability
of false positives with this weight configuration is extremely
low. Having executed 1.7 million SPQs without finding any
false positives, we consider this approach virtually exact and
acceptable for most real-world applications.

6.3 Query Response Time
We now compare the query response times of different

implementations for evaluating SPQs. The first implemen-
tation is a baseline, and demonstrates the performance of
SPQs using an implementation of PARINET [16]. Two
methods can be used to answer a SPQ using PARINET.
For both methods the first step is finding a candidate tra-
jectory set by retrieving trajectory data for each edge in
the SPQ and finding the trajectories that touch all edges in
the path. The candidate set is then refined by retrieving
the full path of each trajectory in the candidate set, or by
querying the edges adjacent to the SPQ. Both approaches
have been implemented and tested. The approach where the
edges adjacent to the path are queried is consistently slower
than the other approach (by up to one order of magnitude).
Because querying adjacent edges is consistently slower, we
have omitted it from the graphs. The baseline is referred to
as BL in the following.

The second implementation is a suffix tree. As described
in Section 2.2, executing a SPQ can be reduced to the prob-
lem of finding exact sub-string matches in a text database.
First, the path of each trajectory is converted into a string
and all strings are concatenated and separated with a special
marker ’$’. Next, we instantiate a compressed suffix array
on the concatenated string, using the compressed suffix ar-
ray implementation from PostBio [3]. The compressed suffix
array implementation is described in [6] and is to the best
of our knowledge a state-of-the-art implementation of com-
pressed suffix arrays. We use the shorthand SUF to refer
to this index. We also used the ERA [11] suffix tree imple-
mentation, which is the state-of-the-art in external memory
suffix tree construction. ERA alleviates some of the memory
constraints of suffix trees. The source code of ERA is pro-
vided by the authors of [11]. However, the compressed suf-
fix array implementation from [6] consistently outperforms
ERA and ERA is therefore omitted from all the graphs.

Three variations of NETTRA have been implemented. N-
E uses the näıve exact approach described in Section 4.2,
N-OE uses the optimized exact approach described in Sec-
tion 4.3, and N-PE uses the practically exact approach de-
scribed in Section 4.4. The optimized exact implementation
uses the length-weight configuration because it reduces the
number of sub-paths the most, see Figure 4. The practically
exact implementation use the prime-weight configuration to
avoid false positives, see Figure 6.

The query response time w.r.t. the number of edges in
the SPQ is analyzed in Figure 7 (a) and (b). For each
data point, a query set of 30 randomly chosen SPQs over
n-edges are executed (the same query set across all imple-
mentations). Before executing a query set, the file-system
cache is flushed and PostgreSQL is restarted. Figure 7, (a)
and (b), illustrate the query response time with cold and
hot cache, respectively. The average query response times
of BL, and N-E, in (a) and (b), are similar and increase with
the number of edges in the path as predicted. SUF exhibits
constant query time w.r.t. the number of edges in the SPQ.
With cold cache in (a), the query performance of the op-
timized exact version, N-OE, is very competitive compared
to SUF, except for very long SPQs, where the two indexes
have similar query performance. With a hot cache in (b), N-
OE significantly outperform SUF for any number of edges
in the query. Finally, N-PE consistently outperforms the



other variations. In particular, this solution is more than
two orders of magnitude faster than BL.

As can be seen by comparing Figure 7 (a) and (b), the ef-
fect of the file-system cache is significant. To further study
the effects of the cache, we selected 1000 paths, each con-
sisting of 50 edges, and divided them into 100 query sets
with 10 queries in each. Then we flush the file system cache,
restarted PostgreSQL, and incrementally executed these 100
query sets. After executing a query set the elapsed time is
recorded. Figure 7 (c) shows the execution time per query
of this experiment. As can be seen, most implementations
benefit considerably from the cache. N-OE and N-PE are
consistently faster than both BL and SUF with up to one
order of magnitude.
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Figure 8: Effects of temporal selectivity.

Finally, we study the query response time w.r.t. the se-
lectivity of the temporal constraint in Figure 8. The graph
is generated by executing 30 randomly chosen SPQs that
each consists of 50 edges with varying temporal selectivity.
The effects of the temporal predicate appear small, but a 1%
temporal constraint is generally evaluated 50% faster than
queries with a 50% temporal constraint. The notable excep-
tion here is the suffix tree that does not support temporal
filtering. Therefore, its query time is independent of the
temporal constraint. To perform temporal filtering, suffix
trees require a secondary index to look up temporal infor-
mation given a network edge and trajectory identifier.

7. CONCLUSION
We have presented and formalized the novel strict path

query (SPQ) which we argue has a large number of applica-
tions, e.g., within the traffic domain.

State-of-the-art in network constrained trajectory index-
ing [16] does not support SPQs efficiently. We have there-
fore presented the NETTRA index that uses a novel path-
encoding scheme to significantly reduce the number of I/Os
compared to other trajectory index structures. Two algo-
rithms are used in NETTRA for executing SPQs: an exact
and a practical-exact. The former is an order of magni-
tude faster than existing work. The latter is two orders of
magnitude faster but can with an extremely low probability
include false positives.

We test and validate the NETTRA index using a very
large set of real-world trajectories and queries. For the 1.7
million different queries executed, the practical-exact algo-
rithm has not returned a single false positive and we there-
fore conclude that this implementation is virtually exact for
all practical purposes.

A SPQ can be converted to an exact string-matching prob-
lem where suffix trees have optimal search time complexity.
We show that in practice NETTRA is a better approach for
SPQs, because: (1) the query response time is an order of
magnitude faster, (2) the memory requirements are lower,
and (3) updates are possible and efficiently supported.
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