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ABSTRACT
An immense wealth of data is already accessible through the Se-
mantic Web and an increasing part of it also has geospatial context
or relevance. Although existing technology is mature enough to
integrate a variety of information from heterogeneous sources into
interlinked features, it still falls behind when it comes to represen-
tation and reasoning on spatial characteristics. It is only lately that
several RDF stores have begun to accommodate geospatial entities
and to enable some kind of processing on them. To address inter-
operability, the OGC has recently adopted the GeoSPARQL stan-
dard, which defines a vocabulary for representing geometric types
in RDF and an extension to the SPARQL language for formulat-
ing queries. In this paper, we provide a comprehensive review of
the current state-of-the-art in geospatially-enabled semantic data
management. Apart from an insightful analysis of the available
architectures in industry and academia, we conduct an evaluation
study on prominent RDF stores with geospatial support. We also
compare their performance and attested capabilities to renowned
DBMSs widely used in geospatial applications. We introduce a
methodology suitable to assess RDF stores for robustness against
large geospatial datasets, and also for expressiveness on a variety
of queries involving both spatial and thematic criteria. As our find-
ings demonstrate, the potential for query optimization, advanced
indexing schemes, and spatio-semantic extensions is significant.
Towards this goal, we point out several challenging issues for joint
research by the GIS and Semantic Web communities.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS
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1. INTRODUCTION
In recent years, Semantic Web technologies have strengthened

their position in data and knowledge management. Standards and
protocols for organizing and querying semantic information in the
Web, such as RDF [47], RDFS [48], OWL [40], and SPARQL
[50], are commonplace in related academic research. RDF stores1

like [4, 9, 30, 36, 39, 49, 51] have become robust enough to sup-
port billions of triples, and can offer storage and querying func-
tionalities similar to those in traditional relational database systems
(DBMS) [19, 26, 28, 39, 44]. Corporate vendors have begun adopt-
ing semantic technologies to organize, expose, exchange and re-
trieve such data for various applications, such as online shopping
facilities, personalized content delivery, social networking, etc.

Yet, it is remarkable how much geographic context exists in in-
formation searched on the Web, either explicitly or implicitly. For
instance, a portal or a mobile application may provide to users not
only clips, photographs or reviews for a film, but also its screen-
ing times in nearby cinemas with their locations pinpointed on a
city map. A professional may wish to combine publicly available
statistics (e.g., demographics, epidemics, etc.) or other analytics
(e.g., product sales, road traffic) with open, crowdsourced, up-to-
date geographic maps like OpenStreetMap (OSM) [38]. And if a
visitor looks for a suitable hotel, apart from pricing, facilities, re-
cent ratings or customer opinions on its quality of service, she may
be also interested in its proximity to public transport or city attrac-
tions. But almost certainly, not all this information is available on
a single site, so its pieces must be retrieved from multiple disparate
sources and carefully interlinked to provide the answers, according
to the Linked Data paradigm [5].

For over three decades, Geographic Information Systems (GIS)
have been successfully used for editing large geographic datasets,
map visualization, and spatial analysis in diverse domains (such
as geology, hydrology, city planning, real estate, marketing, etc.).
Typical GIS software for desktop computation or mapping services
must cope with multiple, heterogeneous data sources (e.g., propri-
etary datasets, coming in various formats). Particular effort is also
required to associate non-spatial data (e.g., census, multi-lingual
content, etc.) to varying geographic layers (e.g., administrative ar-
eas, points of interest, transportation networks). Such operations
usually require specialized skills and technical know-how that not
all software developers have.

Core database technology offers consistency and integrity for
scalable datasets, as well as powerful means for indexing and query
optimization. But, even though DBMSs can nowadays host large
geospatial datasets, they do not inherently support qualitative anal-

1A system for storing and managing RDF data is usually called
RDF store or triple store, but terms such as semantic repository,
semantic store, or RDF database are also used in the literature.



ysis, e.g., deduce directional relations between geometric shapes
(such as that Italy is to the west of Greece, although there is no land
border between them). Thanks to their ability for inferencing and
linkage of data, triple stores are being increasingly attractive for ad-
vanced searching and reasoning [23]. Geospatial information often
includes complex type hierarchies, which cannot be fully expressed
or exploited in typical GIS platforms. For instance, a river can be
a waterway, a transportation route, and an administrative bound-
ary. Thanks to schema versatility, RDF stores are better equipped
to cope with complex requests, such as multiple joins across en-
tities, queries with variable properties, or ontological inference on
datasets. Interlinking data sources on the Web is of major impor-
tance as well. For example, points of interest combined with hotel
pricing, user recommendations and driving directions could offer
much more refined and personalized travel planning services.

Therefore, a synergy of the mature geospatial database technol-
ogy with the knowledge and reasoning capabilities of RDF stores
could be extremely promising, both for the Semantic Web and GIS
domains. In particular, we think that efficient integration of geo-
spatial data representations and processing methodologies into the
Semantic Web is a priority. In order to lower the burden for appli-
cation development and facilitate creation of value added services,
we deem that two main challenges should be addressed.

First, proper standards and vocabularies must be defined to de-
scribe geospatial information according to RDF(S) and SPARQL
protocols, also conforming to the principles of established geo-
graphic standardization, such as OGC standards [33, 34], GML
[31, 32], INSPIRE [8], etc. There have been several incomplete
attempts from the Semantic Web community [2, 11, 13, 14, 15,
18, 42, 54] towards a geospatial RDF standard. Recently, Geo-
SPARQL [35] has been endorsed by the Open Geospatial Consor-
tium (OGC), with the aim of standardizing representation, query-
ing, and reasoning for geospatial RDF data. GeoSPARQL provides
various conformance classes concerning its implementation of ad-
vanced reasoning capabilities (e.g. quantitative reasoning), as well
as several sets of terminology for topological relationships between
geometries. Since GeoSPARQL adheres to existing OGC standards
for spatial data types, operators, and functions, it can facilitate ex-
change with geographic formats and swift migration to/from spatial
databases. Although few triple stores are currently compliant with
GeoSPARQL, this standardization is a major step towards interop-
erability among geospatial RDF data infrastructures.

In contrast, we observe less progress on another key challenge,
namely development of technologies for efficient storage, robust
indexing, and native processing of geospatial semantic data. Many
proprietary or open-source RDF stores can efficiently handle large
volumes of RDF data, but relatively few of them actually support
triples with geospatial features. Even fewer can store all types of
geometric objects (i.e., not only points, but also polygons, lines,
etc.), or fully conform to the GeoSPARQL specification. A related
open issue concerns the efficiency of currently available RDF stores
with geospatial capabilities; regrettably, no such store is yet com-
parable to established spatial DBMSs in terms of performance.

In this paper, we present the actual state-of-the-art in geospatially-
enabled semantic data management. We review several RDF stores
with geospatial support, offering insight into their architecture, in-
dexing capabilities, and deployment options. Our approach caters
to the emerging need of accurately and objectively evaluating such
platforms. We not only examine the degree of geospatial support
they provide, but we also carry out qualitative and quantitative com-
parisons. In an attempt to capture real-world relevance and user
requirements in geographic applications, we introduce a method-
ology that aims at inspecting functionality of RDF stores through

rich and diverse geospatial semantics in the query workload. Far-
ther beyond typical topological operations (e.g., objects within a
given spatial range, intersecting entities, etc.), these queries cover
advanced cases involving spatial aggregation, joins, nearest neigh-
bor search, or negation.

To the best of our knowledge, this is the first attempt to conduct a
comprehensive evaluation of all currently available, fully-fledged,
geospatially-enabled RDF stores. We examine both commercial
platforms (AllegroGraph [9], OWLIM [30], Virtuoso [36], and an-
other proprietary triple store), as well as research prototypes (Open-
Sahara/uSeekM [37], Parliament [46], and Strabon [24]). We also
compare them to established spatial database systems: the open
source PostGIS [43] and another commercially available DBMS.
Performance results reveal that RDF stores are considerably less ef-
ficient than DBMSs in data loading and query execution. Our find-
ings highlight shortcomings in expressiveness for certain queries,
and sometimes indicate insufficient support for geometries other
than points. Most importantly, our evaluation draws attention to
challenging issues for research in geospatial RDF data manage-
ment, principally regarding storage, indexing, scalability, and query
optimization, as well as potential specialized extensions.

The remainder of this paper proceeds as follows. Section 2 sur-
veys basic concepts and approaches regarding geospatial RDF data.
In Section 3, we examine features and spatial capabilities of promi-
nent RDF stores. In Section 4, we develop a methodology for eval-
uating geospatially-enabled RDF stores. Section 5 reports compre-
hensive performance results against OSM datasets. In Section 6,
we propose a tentative research agenda towards efficient manage-
ment of geospatial RDF data. Section 7 concludes the paper.

2. GEOSPATIAL FEATURES IN RDF
The Resource Description Framework (RDF) [47] is a language

for representing information about entities (i.e., resources) on the
Web as triples with 〈Subject, Predicate, Object〉, e.g., 〈Homer,
wrote, Odyssey〉. Resources are uniquely identified via Interna-
tionalized Resource Identifiers (IRIs), and a collection of triple
statements forms a labeled, directed graph. Enhancements include
the RDF Schema [48], which offers a vocabulary for managing re-
sources and their relationships via a set of reserved words, as well
as the Web Ontology Language (OWL) [40], which can be used to
define and instantiate Web ontologies. Recommended by the W3C,
the SPARQL Protocol and RDF Query Language resembles SQL
with its main blocks SELECT-WHERE, but query evaluation is ac-
tually based on graph pattern matching. Its latest version SPARQL
1.1 [50] also supports aggregates, nested subqueries, negation, and
data management operations (i.e., to insert or delete triples).

However, the particular demands for geospatial data storage and
operations are not handled at all by these generic protocols. Besides
full-fledged triple stores and vendor platforms (to be reviewed in
Section 3), several attempts have been made towards encoding sim-
ple geometry data in RDF. The W3C Basic Geo Vocabulary [2] was
one of the earliest works and enabled representation of point ge-
ometries with latitude/longitude coordinates in WGS84 reference
system. GeoRSS [15] provided support for more geometric ob-
jects (such as lines, rectangles, or polygons) and GML application
profiles. In another approach, GeoOWL [13] was developed as a
more flexible model for geospatial concepts with an ontology that
matches the existing GeoRSS vocabulary. The NeoGeo Geometry
Ontology [29] was proposed for the topological modelling of vari-
ous geometric shapes in RDF. According to this ontology, each co-
ordinate must be retained as a resource, so polygons and lines are
represented with an RDF collection of points. Hence, this model
increases verbosity of the data without significant benefits in terms



of expressiveness and query processing with SPARQL. GeoRDF
[14] was intended as an RDF-compatible profile for geographic
points, lines, and polygons. Its two vocabularies (RDFGeom, RD-
FGeom2d) provide a framework that is extensible via subclassing
to all kinds of geometric data in Cartesian coordinates, although the
class hierarchy is currently only sparsely populated. GeoJSON [11]
is a geospatial data interchange format based on JavaScript Object
Notation (JSON) and can encode a variety of shapes (points, poly-
gons, etc.). Overall, the aforementioned schemes mainly supported
coordinates with Cartesian or WSGS84 georeferences (thus leading
to gross errors in other reference systems), they were often limited
to point geometries, and offered insufficient capabilities for spatial
operations in real-world GIS applications.

Besides, querying geospatial RDF data also attracts a growing re-
search interest. An extension to SPARQL, termed SPARQL-ST [42]
suggested a modified syntax for specifying spatial queries against
data modeled in a GeoRSS-like ontology, also including temporal
and thematic (i.e., non-spatial) properties. But this dialect deviates
from the standard SPARQL, hence the exposed data cannot be ac-
cessed from third-party systems. Adding topological predicates to
SPARQL was briefly examined in [54] with an ontology that takes
advantage of OGC Simple Features [33]. However, relations have
to be specifically encoded in RDF, without any support for multi-
ple Coordinate Reference Systems (CRS). The model in [18] nicely
abstracts spatial knowledge from its underlying representation at
several hierarchical levels, but mappings must be defined for each
dataset at the instantiation level.

Regarding query optimization schemes, the RDF store prototype
in [7] models spatial features as complex geometry literals and aug-
ments SPARQL with spatial range filter functions based on OGC
Simple Features relations [33]. Geo-Store [52] focuses on range
and k-nearest neighbor search and makes use of a Hilbert curve en-
coding of IRIs for accelerating spatial predicate evaluation. Also
based on Hilbert encoding, but coupled with a hierarchical space
decomposition, the scheme proposed in [25] handles complex ge-
ometries and offers significant cost savings when evaluating range
and spatial join queries with thematic criteria. The SS-tree hybrid
index [53] combines a bitmap encoding of entities in the graph
along with the MBRs of geometries, so at query time it allows prun-
ing of candidate answers with a top-down search algorithm.

The recent (2012) OGC standard on GeoSPARQL [35] suggests a
concrete ontology for representing features and geometries in RDF,
as well as an extension to SPARQL for querying such data. A core
component defines top-level RDFS/OWL classes for representing
spatial objects with georeferences at well-known CRS. Adhering
to OGC standards [33, 34], GeoSPARQL offers two ways to repre-
sent geometry literals and their associated type hierarchies, namely
WKT and GML. Properties geo:asWKT and geo:asGML link a
feature (e.g., a bus stop, a road, or a parcel) to its geometry serial-
izations encoded as geo:wktLiteral or geo:gmlLiteral.
A vocabulary defines RDF properties for asserting and querying
topological relations between spatial objects using SPARQL exten-
sion functions (geof:sfIntersects, geof:sfContains,
geof:sfWithin, geof:Crosses, etc.) according to OGC
Simple Features [34]. Spatial analysis is also possible using func-
tions like geof:union, geof:buffer, geof:distance, etc.

Overall, GeoSPARQL is designed to accommodate systems for
qualitative spatial reasoning (e.g., "is there a statue of Lord By-
ron inside Hyde Park?") and systems based on quantitative spatial
computations (e.g., measuring distances). Using a common set of
topological relations, GeoSPARQL allows conclusions from quan-
titative applications to be used by qualitative systems, and offers
a single language for both types of reasoning. Thus, spatial on-

tologies may be exchanged, combined, indexed and queried along
with other proprietary ontologies from data providers. With such
standardization, vendors and users can achieve uniform, transpar-
ent, platform-independent access to geospatial RDF data with a rich
collection of query operators. Example queries in Section 4 provide
more intuition on how geometries and features are related, as well
as how spatial functions and topological operators can be applied2.

3. SPATIAL SUPPORT IN RDF STORES
Support for spatial data in RDF stores is still a work-in-progress.

Datasets have been published using the W3C vocabularies (like [1])
and some RDF stores (e.g., [30]) support data represented by these
ontologies in WGS84 datum. So, in order to be valid, data in any
other CRS must be reprojected, which may incur some geomet-
ric distortion or inaccuracy in measurements. But most of these
proposals have not exceeded an incubator state and the respective
ontologies never became official W3C recommendations. Several
vendors support spatial data, but not all vendors follow the same
representation of data or share identical specifications for spatial
queries. Some triple stores use W3C ontologies, some employ
OGC specifications, while others have invented their own. Table 1
provides a concise comparison of advertised features for widely
used triple stores and research prototypes with geospatial support.
Next, we review these platforms in more detail.

3.1 RDF Stores with Geospatial Capabilities
AllegroGraph [9] is a commercial graph database offering a wide
range of data types (including geospatial and temporal) as native
data structures. It can perform reasoning efficiently, combined with
its indexing and range query mechanisms. AllegroGraph stores
quints of five slots in its SPOGI index: a Subject, a Predicate, an
Object, a named Graph, and an internally assigned unique Identifier.
The I slot can be referred to by other quints directly; this drastically
reduces storage size and query response time.

For geospatial features, AllegroGraph uses a custom data type
and actually performs a mapping into a "strip" of space in the 2-
dimensional index that contains all geometries. This novel indexing
scheme divides the Y range into strips of a known width, chosen
according to the expected size of searched regions, which is a sub-
tle limitation. Apart from points, there is also support for simple
polygonal regions. A modified SPARQL syntax offers a GEO op-
erator, which can take as arguments a Cartesian or spherical point
and a radius, a bounding box, or a polygon, and it is used to specify
the spatial conditions of a query. Implementation of the geospatial
component for SPARQL is still ongoing. Currently, all spatial op-
erations are defined in terms of points, so there is no support for
OGC types and operations [33], or for GeoSPARQL [35].

OWLIM is a family of semantic repositories, most recently (as of
August 2014) rebranded as GraphDB [30]. Free-of-charge OWLIM-
Lite is designed for medium data volumes, i.e., below 100 mil-
lion triples. Commercial OWLIM-SE (Standard Edition) offers ad-
vanced features for managing huge volumes of data and multi-user
query performance. OWLIM-Enterprise is a replication cluster in-
frastructure for resilience and parallel query answering.

OWLIM only supports 2-dimensional points that use the W3C
Basic Geo Vocabulary [2] with coordinates in WGS84 only. A
2Examples make use of the following RDF namespace prefixes:
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
geo: <http://www.opengis.net/ont/geosparql#>
geof: <http://www.opengis.net/def/function/geosparql/>
sf: <http://www.opengis.net/ont/sf#>
uom: <http://www.opengis.net/def/uom/OGC/1.0/>



Table 1: Qualitative comparison of RDF stores according to their support for geospatial features and processing.
Platform Supported geometry types Geometry literals Data storage Spatial index Query language
AllegroGraph
(free) ver. 4.10 points and simple polygons Custom geolocation

format
file repository for all
statements and indices

Custom
"strips"

A few custom topological operators as SPARQL
filters; not compliant to GeoSPARQL

OWLIM-SE
ver. 5.4

only points for storage;
ad-hoc polygons in queries

W3C Basic WGS84
GeoVocabulary

file repository for all
statements and indices

R-tree A few custom topological operators as SPARQL
filters; not compliant to GeoSPARQL

Parliament
ver. 2.7.6

most OGC geometries
incl. points, lines, polygons WKT file repository for all

statements and indices
R-tree GeoSPARQL

Strabon
ver. 3.2.9

most OGC geometries
incl. points, lines, polygons

WKT
GML

hosted inside
PostgreSQL + PostGIS GiST Close, but not fully compliant to GeoSPARQL

(differing prefixes and spatial functions)
uSeekM
ver. 1.2.0-a5

most OGC geometries
incl. points, lines, polygons WKT

hosted inside
PostgreSQL + PostGIS GiST GeoSPARQL

Virtuoso Universal
Server ver. 7.1
(ColumnStore)

most geometries for storage;
limitations in processing

Custom namespace
in WGS84

internal database, also
accessible via SQL R-tree A few custom topological operators as SPARQL

filters; not compliant to GeoSPARQL

standard R-tree [16] must be built before using any geospatial op-
erations, so that related graph patterns are treated differently by the
query engine. The spatial index allows SPARQL queries to quickly
find points within ad-hoc rectangles, polygons and circles and to
compute distances (in kilometers) between points. However, none
of these spatial data types and query constructs is compliant with
GeoSPARQL [35]. Currently, neither is there support for other ge-
ometric objects (e.g., lines, stored polygons, etc.), nor for any other
topological or spatial functions.

Parliament [46] runs on a single machine and incorporates a num-
ber of open-source third-party packages. It is compatible with the
RDF, RDFS, OWL, SPARQL, and GeoSPARQL standards. Its stor-
age scheme interweaves the data with a unique index, and consists
of a resource table, a statement table, and a dictionary for resource
mappings [22]. Thanks to that, Parliament can answer queries ef-
ficiently by reordering execution so that the most selective parts of
the query are executed first. This research prototype includes a rule
engine, but not a query processor, so it is typically deployed with a
third-party processor (e.g., Sesame [49]).

With the exception of query rewriting rules, the query engine
supports GeoSPARQL and enables searching over indexed geome-
tries using standard R-trees [16]. Queries are split into multiple
parts during evaluation, allowing for an optimized query plan lever-
aging their spatial and thematic components, as exemplified in [3].

Strabon is an academic prototype [24] developed specifically for
spatiotemporal RDF data. Strabon proposes stSPARQL, a spatially-
enabled dialect of SPARQL against data represented in stRDF, an
extension of RDF that can also capture changes over time. Strabon
is built by extending the evaluator and optimizer of Sesame [49] for
managing thematic, spatial and temporal data in a backend DBMS.
Sesame’s components were extended to support geometry literals
expressed in stRDF. Thanks to its native spatial indexing with GiST
[17], PostGIS [43] is used for storage of stRDF data in PostgreSQL
[44] and evaluation of stSPARQL queries.

Developed independently from GeoSPARQL, the latest versions
of stRDF and stSPARQL [24] follow the OGC standards for WKT
and GML literals. stSPARQL has certain limitations, as it does
not support binary topological relations to be used as RDF proper-
ties. However, stSPARQL extends SPARQL 1.1 [50] and overtakes
GeoSPARQL by offering spatial aggregate functions and triple up-
date commands. Particular optimization techniques allow spatial
operations to take advantage of PostGIS functionality (instead of
relying on external libraries), whereas spatial joins are also effi-
ciently handled by the underlying PostgreSQL/PostGIS optimizer.

uSeekM [37] is an add-on library designed for triple stores that can
be exposed with the Sesame Java interface [49]. Most of its func-
tionality is provided through wrappers; one of them is called In-

dexingSail and extends an RDF database with indexing and query-
ing capabilities, adding geospatial support, full-text search, etc. A
PostgisIndexer builds a GiST spatial index [17], so it requires a
PostgreSQL database with enabled PostGIS extension [43].

Thanks to these two indexing schemes, uSeekM supports all
OGC geometry types specified in [33] and most operations in the
GeoSPARQL standard [35]. WKT literals can be used to describe
2- or 3-dimensional geometries (points, lines, polygons, etc.), al-
ways georeferenced in WGS84; there are no plans to implement
support for GML serializations. GeoSPARQL syntax is slightly
relaxed, e.g., instead of geo:asWKT, any predicate name can be
used to attach a given geometry to a resource or subject. Spatial re-
lationships and methods are those inherently supported by PostGIS,
suitably implemented as SPARQL filters and functions.

Virtuoso Universal Server [36] is a middleware and database en-
gine. Concerning RDF data, it actually implements a quad GSPO,
composed of Graph, Subject, Predicate, and Object. All quads are
stored in one table, where GSP values are IRIs, whereas O is any
SQL serializable object. SPARQL is embedded and translated into
SQL for querying RDF data stored in the database. Lately, Virtuoso
introduced a compressed column store representation for RDF.

Virtuoso can handle 2-dimensional points expressed with WGS84
coordinates as in [2]. Storage of other geometric shapes (e.g., lines,
polygons) has been included recently, but their use in query pro-
cessing is still under development. A geometry is defined via a
special RDF typed literal with custom type virtrdf:Geometry
that gets automatically indexed in a native R-tree [16]. Topological
operations are limited to some built-in predicates (ST_contains,
ST_within, ST_intersects), which can check whether two
geometries are related. A handful of geometric functions are also
available (e.g. ST_distance, ST_x, ST_y, ST_AsText). Over-
all, spatial types and functions are limited in Virtuoso and currently
not compliant with GeoSPARQL [35].

Other commercial triple stores. Support for geospatial features
varies in other commercial RDF platforms. Oracle Spatial and
Graph [39] in its latest release (12c) provides integrated support
for storing, loading and rich DML operations on RDF/OWL mod-
els along with most geometric objects and operators, although not
fully compatible with GeoSPARQL. IBM offers the NoSQL Graph
Store [20], which provides an optimized way to retain graph triples
inside a DB2 database, but there is no indication about support for
geospatial features. Spatial indexing is also missing from Bigdata
store [4], so spatial queries cannot be executed. The most recent
release of Stardog [51] does not include geospatial features, but
GeoSPARQL support has been announced for a future release.

3.2 Qualitative Comparison
As listed in Table 1, not all geometric types are supported in



Table 2: Data contents of OSM layers (originally in ESRI shapefile format).
OSM Layer SPARQL

prefix Geometry type Contents File size
(MBytes)

Number of
features

Points poi Point Points of general interest (bus stops, pubs, hotels, traffic signals, places of worship, etc.) 74.3 590,390

Roads roads
LineString

(spaghetti lines) Road network links (classified as motorway, primary, secondary, tertiary, residential etc.) 706 2,601,040

Natural zones Polygon Surfaces like parks, forests, waterbodies (i.e., lakes, riverbanks), etc. 152 264,570

each RDF store. Some of the examined stores (OWLIM-SE, Vir-
tuoso) are seriously limited, as they either allow storage of points
only or offer a small collection of spatial operators. AllegroGraph
may store simple polygons, but very few topological predicates and
geometric functions can be applied on them. Admittedly, spatial
analysis is severely constrained when no other vector data (such
as lines or polygons) is allowed in the triple store. Other systems
(Parliament, Strabon, uSeekM) allow most OGC geometries with a
wealth of spatial operations and are very close to the functionality
offered by acclaimed DBMSs [19, 26, 28, 39, 43].

Geometries are typically represented as WKT literals or similar
variants. This proves that this OGC serialization is capable to cap-
ture most shapes (including georeferencing) in a uniform and inter-
operable manner. Varying representations in platforms such as Al-
legroGraph, OWLIM-SE, or Virtuoso, diverge from WKT and can-
not be considered a viable solution for complex geometries apart
from points. AllegroGraph, in particular, opts for a custom geomet-
ric format, which requires some preprocessing of original geome-
tries and reconstruction of polygons from their constituent vertices.
Overall, GeoSPARQL compliance [35] for many triple stores is still
an objective. Interestingly, even those implementing GeoSPARQL
(Parliament, uSeekM) have a few differences in namespaces for
WKT literals and variations in spatial functions. Other systems do
not follow GeoSPARQL specifications, although this would mostly
require renaming functions and namespaces for supported geome-
tries (e.g., in Virtuoso or Strabon). Hopefully, discrepancies will
be remedied in forthcoming releases, but even such minimal devi-
ations clearly demonstrate the necessity for standardization.

Regarding spatial indexing, it seems that R-trees [16] are pre-
ferred, since they are an established, provably efficient structure,
and widely used in geospatial DBMSs as well. Two triple stores
(uSeekM, Strabon) make use of PostGIS infrastructure [43], so
they build a GiST index on geometries [17], basically equivalent
to a more efficient 2-dimensional R-tree. The only exception to the
R-tree family of indices amongst the examined platforms is Alle-
groGraph. For successful "strip"-based indexing, one must have a
clue for the expected spatial range of user requests in order to deter-
mine a suitable "strip" size. This could add considerable overhead
for data maintenance in AllegroGraph, but it also makes spatial
predicates less intuitive and more difficult to express in queries.

4. EVALUATION METHODOLOGY
Several benchmarks (e.g., [6, 27]) are currently utilized to as-

sess performance of RDF stores, but they are absolutely devoid of
any kind of spatial processing. In contrast, spatial benchmarks like
Jackpine [45] are mostly geared towards DBMSs and ignore the
case of knowledge inferencing from multiple, schema-agnostic, in-
terlinked RDF data sources. A geospatial RDF benchmark called
Geographica was recently developed in [10], inspired by and closely
adhering to Jackpine. Actually, it is a straightforward porting of
Jackpine query workloads into a RDF context with minor adjust-
ments on its original "micro" and "macro" options (concerning prim-
itive spatial operations and real-world scenarios, respectively). Ge-
ographica has been applied against three selected RDF stores only

(Strabon, uSeekM, Parliament) that provide support for at least a
subset of GeoSPARQL. Further, it uses about 125,000 features in
its real-world dataset and less than 300,000 synthetic features, a
data volume so limited that may not reveal subtle issues in spatial
query processing. In our tests, we employ an order of magnitude
more data and geometric features, as well as a more representative
workload with a broad variety of spatial query types.

In this section, we introduce a methodology for evaluating RDF
stores with geospatial support. We start with a description of the
datasets used in our experiments. Then, we present the types of
spatial queries, which can be expressed either in GeoSPARQL (or
SPARQL, depending on which idiom each triple store supports) or
in SQL (against a geospatially-enabled DBMS).

4.1 Datasets
OpenStreetMap [38] data for Great Britain covering England,

Scotland, and Wales were initially downloaded in ESRI shapefile
format. Of the available geographic layers, only those concern-
ing points of interest (points), the entire road network (roads), and
natural parks and waterbodies (natural) were actually utilized, re-
taining all original OSM features as detailed in Table 2.

These three OSM layers were chosen as representatives for ba-
sic geometry types (points, polylines, polygons) and were deemed
most meaningful for queries involving multiple geospatial layers.
They also contained many more features compared to other similar
layers (e.g., the number of railway links is about 3% of the road
features). All data was used "as is", without editing the original
WGS84 geometries (attribute shape). We made use of the open
source ETL utility TripleGeo [41] to convert geometries into seri-
alized literals recognisable by each platform. In addition, three the-
matic attributes were extracted: the unique OSM identifier osm_id
served as a reference label for each feature, whereas not null values
for name and type were turned into string literals.

4.2 Query Workload
As existing RDF benchmarks ignore spatial processing, we fo-

cused on creating rich and diverse geospatial semantics in our query
workload, showcasing real world needs and emphasizing on checks
for GeoSPARQL compliance. Despite its importance in knowledge
systems, reasoning has not been examined in our evaluation, as the
focus was predominantly on assessment of geospatial support. So,
tested queries required no inferencing at all.

According to [21] there are four primary types of spatial queries
that should be covered: location queries, range queries, spatial
joins, and nearest neighbor search. In addition to these types, we
also tested queries that make sense in geospatial analysis, i.e., com-
puting derived geometries, employing both thematic and spatial cri-
teria, calculating aggregates, or involving negation. As listed in
Table 3, we have prescribed the following categories:

i. Location queries simply request the whereabouts of a given
feature (i.e., like a map click). So, they check whether the
examined system can provide spatial retrieval efficiently.

ii. Range search within an area of interest is specified with a
list of coordinates, e.g., a rectangle, a circle, or a polygon.



Table 3: Operations and queries tested in the evaluation study.
Symbol Type Operation / Query semantics
BL Bulk Loading Time to insert all data into a RDF store or a DBMS.
SI Spatial Indexing Time to build a spatial index (usually an R-tree) on all stored geometries.
BL+SI Loading + Indexing Total cost for Bulk Loading and Spatial Indexing (when a platform performs them together).

L1 Location query Find the geographic location of entity "Westminster Abbey".
L2 Location query Which entity is at given coordinates (longitude, latitude)?
R1 Range search Retrieve all points within a given rectangle of area 1250 km2 (about 0.5% of the total area).
R2 Range search Retrieve all roads intersecting a given rectangle of area 31400 km2 (about 13% of the total area).
SJ1 Spatial join Find all road segments traversing any forest.
SJ2 Spatial join Find all distinct pairs of points within a distance less than 50 meters from each other.
SJ2a Spatial join Variant of SJ2, with a LIMIT 100 or LIMIT 1000 modifier to report only partial results.
kNN1 k-Nearest Neighbors Find the 3 closest points of interest to a given location (longitude, latitude).
kNN1a k-Nearest Neighbors Variant of kNN1, with an additional distance filter to eliminate irrelevant candidates.
kNN2 k-Nearest Neighbors Find the 3 points of interest closest to a given road segment.
kNN2a k-Nearest Neighbors Variant of kNN2, involving point geometries only.
G1 Geoprocessing Return the portions of any motorway overlapping with a given zone (e.g., a flooded area).
G2 Geoprocessing Take the geometric union of all segments of a given road (e.g., "Barnaby Road").
G3 Geoprocessing Compute a buffer around a given road (e.g., "Barnaby Road").
TS1 Thematic+Spatial Filter Find all pubs within a square of side 20 km (or a radius of 20 km, if polygons are not supported).
TS2 Thematic+Spatial Filter Find all pubs within a square of side 200 km (or an equivalent circle) centered at Westminster.
A1 Aggregation Count points of interest located within each forest area.
N1 Negation query Locate pubs farther than 5 km from any bus stop (i.e., difficult to reach by public transport).

R2: SELECT ?f ?fName ?fWKT
WHERE {?f geo:hasGeometry ?fGeom .

?fGeom geo:asWKT ?fWKT .
?f roads:name ?fName .
FILTER (geof:sfIntersects(?fWKT,
"POLYGON((-2.8164 51.6576, -0.277 51.6576,
-0.277 54.1969, -2.8164 54.1969,
-2.8164 51.6576))"^^geo:wktLiteral))};

TS1: SELECT ?f ?fName ?fGeom
WHERE {?f geo:hasGeometry ?fGeom .

?fGeom geo:asWKT ?fWKT .
?f poi:name ?fName .
?f rdf:type poi:pub .
FILTER (geof:sfWithin(?fWKT, "POLYGON((-1.5244 51.4924,
-1.5244 51.9964, -1.0087 51.9964, -1.0087 51.4924,
-1.5244 51.4924))"^^geo:wktLiteral))};

SJ1: SELECT ?r ?rName ?z ?zName
WHERE {?r rdf:type roads:roads .

?r geo:hasGeometry ?rGeom .
?rGeom geo:asWKT ?rWKT .
?r roads:name ?rName .
?z rdf:type zones:natural .
?z geo:hasGeometry ?zGeom .
?zGeom geo:asWKT ?zWKT .
?z zones:name ?zName .
FILTER (geof:sfCrosses(?rWKT, ?zWKT))};

N1: SELECT ?pName
WHERE {?p rdf:type poi:pub .

?p geo:Geometry ?pGeom .
?pGeom geo:asWKT ?pWKT .
?p poi:name ?pName .
FILTER NOT EXISTS {
?f rdf:type poi:bus_stop .
?f geo:Geometry ?fGeom .
?fGeom geo:asWKT ?fWKT .
FILTER (geof:distance(?pWKT, ?fWKT, uom:metre)<5000)}};

Figure 1: GeoSPARQL expressions for four indicative queries in Table 3. Important geospatial semantics are shown in bold.

Different areas can be tested (e.g., covering different per-
centages of the map extent), in order to assess advantages of
spatial indexing over varying selectivities. This search would
certainly benefit from a spatial index, as many locations may
be found inside the given region. The area extent is impor-
tant, as its size could incur significant execution cost.

iii. Spatial join is an expensive operation, as it requires inter-
action between two datasets. This is a tough task for RDF
stores, since joins may be based on diverse geospatial op-
erations (intersects, crosses, distance, etc.), the
involved features can be numerous, and the query planner
may need to handle thematic criteria as well.

iv. Nearest-neighbor queries. For a given location or spatial
feature, a k-NN search returns its k closest geometries, typ-
ically under a Euclidean distance. If not natively supported,
this can be simulated by a LIMIT k modifier to return k ge-
ometry triples having the smallest distances from the query
point. But the cost of an indirect top-k search may be con-
siderable compared to a native k-NN operator (as in [39]).

v. Geoprocessing returns new, derived geometries, as opposed
to other queries that simply retrieve existing, stored entities.
Hence, any intersections or unions over geometric shapes

must be calculated on-the-fly and then returned as answers.
This is specifically intended to verify support for spatial anal-
ysis according to OGC Simple Features [34].

vi. Queries combining thematic and spatial criteria include
meaningful filters on thematic (i.e., non-spatial) attributes
as well as spatial predicates. They are intended to examine
whether the query planner can benefit from spatial and the-
matic selectivities. As argued in [21], if a spatial condition is
selective enough, then it should be prioritized by the planner;
otherwise, the spatial operation should be executed after any
thematic matching. Two indicative queries were specified,
each involving different sizes for spatial ranges and diverse
distribution of features for the given thematic filter.

vii. Aggregation queries with spatial predicates. For each dis-
tinct geometry (e.g., region), functions like avg or count
can be applied against related features (e.g., points therein),
which usually involves a spatial join (e.g., on containment).

viii. Negation queries involve a NOT EXISTS clause. Typi-
cally, negation is a costly operation and here it is also cou-
pled with a spatial predicate, which makes its optimization
and evaluation even more difficult. Our example query in-
volves different types of points, hence additional thematic



properties must be examined apart from the spatial criterion.

The aforementioned workload of SPARQL queries was tested
in seven triple stores. For comparison, equivalent SQL statements
were submitted against the same datasets in two DBMSs. Due
to lack of space, in Figure 1 we provide GeoSPARQL statements
for some indicative queries only. As each system follows its own
conventions regarding geospatial management, variant query ex-
pressions were required. For instance, queries SJ1 and kNN2 can-
not run in a store that supports points only. Extensive remarks on
queries, their variants and execution details can be found in [12].

5. EVALUATION STUDY

5.1 Experimental Setup
Apart from the systems reviewed in Section 3 (their versions as

in Table 1), we also tested a commercially available RDF store with
native support for geospatial features, hereafter nicknamed ’Triple-
Store X’. For comparison, we conducted similar tests on PostGIS
2.1 [43] for PostgreSQL 9.3, as well as in a commercially available
geospatial DBMS (hereafter called ’DBMS Y’). These tests estab-
lish a baseline for assessing performance and robustness of cur-
rent approaches to geospatial data management in RDF stores. Our
evaluation study demonstrates their strengths and weaknesses re-
garding storage, indexing, scalability and expressiveness, not only
to each other, but also to mature geospatial support in DBMSs.

For the experiments, we set up a XEN hypervisor on a server
with Intel Core i7-3820 CPU at 3.60GHz and 10240KB cache,
hosting a group of Virtual Machines (VM). Each platform (RDF
store or DBMS) was installed on a separate VM with 8GB RAM,
2GB swap space, 4 CPU cores and 40GB disk space. During each
experiment, only the system under evaluation was active3.

Although most platforms provided a web interface and SPARQL
endpoints, data loading and query executions were performed lo-
cally in order to avoid network delays in performance measure-
ments. For some stores (AllegroGraph, OWLIM-SE, Parliament,
uSeekM), bootstrap code was written in Java for direct interaction
(bulk loading, querying) without resorting to the web interface. In
all other systems, their native command-line interface was used.
Query times do not include the cost of reporting triples or rows.

Measurements were performed in cold caches and include:

• Amount of inserted triples, including all supported geome-
tries. Due to triplification, this differs substantially from the
number of corresponding records in DBMSs.

• Data insertion time using bulk loading (BL). The total time
includes insertion of both geometry and non-spatial triples
(i.e., those concerning name or type literals).

• Spatial indexing (SI) cost. In some triple stores (e.g., uSeekM,
Virtuoso), the spatial index is adjusted upon every new inser-
tion. In this latter case, only the combined time (BL+SI) can
be reported, which covers data insertion and spatial indexing.

• Response time for each query involving spatial operations;
no other requests were active at the same time. As discussed
in Section 4.2, the query workload offered eight different cat-
egories with a few typical examples per category. Occasion-
ally, due to platform limitations regarding geospatial support,
variant query statements were expressed. Due to such varia-
tions, some queries are not directly comparable in semantics
(and consequently in performance) among all platforms.

3For repeatability, images of preconfigured VMs, as well as data
and queries are all publicly available at http://bit.ly/1pPI5aI.

5.2 Performance Results
Several aspects in the data or the user requests can heavily influ-

ence the expected performance of platforms. Concerning the data,
these factors include shape complexity (e.g., number of vertices in
polygons), as well as the amount of geometries that require index-
ing. With respect to queries, primary characteristics involve spatial
semantics, selectivity, as well as the presence of expensive opera-
tors like join, geoprocessing, or negation. Performance results from
our evaluation involving storage operations (BL: bulk loading, SI:
spatial indexing) and the query workload are shown in Table 4.

First, note the differing number of triples (or records) imported
in each system. Some platforms (OWLIM-SE, AllegroGraph) sup-
port points only, so they retained almost an order of magnitude less
triples. Besides, OWLIM-SE employs two triples per point (for
longitude and latitude); a single geometry triple is used in all other
systems. Occasionally, a small number of geometries were dis-
carded during loading due to inconsistencies w.r.t. supported data
types (e.g., polygons with holes). Still, millions of triples were in-
serted in each store; about 20% of them involved geometry literals.

It must be pointed out that spatial indexing cost varies widely
among platforms. Of course, OWLIM-SE builds an R-tree over
590,390 points and this is a relatively easy task, hence the resulting
cost (less than a minute) is acceptable. AllegroGraph takes much
longer to import points, as it incrementally builds its custom index
of "strips". AllegroGraph also supports simple polygons, but in-
directly: point literals must be created first, which are then used
as vertices for the polygon. But it was not possible to import all
polygons from the dataset, as many of them consist of hundreds of
vertices and there was an upper limit of 5 million triples in the free
edition of AllegroGraph we used.

Regarding management of complex geometries (not only points,
but also lines and polygons), Parliament builds its R-tree index in
less than 3 hours; the cost is considerable, but not prohibitive. In
contrast, uSeekM seems problematic in that respect. Indeed, as
all geometries are inserted into a PostGIS backend, the spatial in-
dex must be frequently updated and the combined operation takes
unacceptably long time (about 33 hours to insert all layers and rear-
range the spatial index). Strabon took slightly longer to import all
data into its PostGIS backend, again due to repeated reorganization
of the GiST index. This is orders of magnitude higher compared to
the spatial indexing cost in DBMSs, and clearly sets a challenging
task for improvement in triple stores. Thanks to its multi-thread
import utility, Virtuoso was the absolute champion, with loading
and indexing completed in just a couple of minutes.

Query semantics involving spatial expressions, functions and topo-
logical predicates is another concern. Quite disappointingly, no
query expression was exactly the same in every RDF store. With
the exception of those adopting GeoSPARQL (uSeekM, Parliament),
all other stores have their own syntax, so it required much effort to
identify all differences in spatial clauses. In AllegroGraph, OWLIM-
SE, and Virtuoso only basic geospatial functionality is available, so
typical queries such as range search (R1) or distance-based joins
(SJ2) can be executed. But more advanced spatial analysis is rather
limited, such as in aggregates over spatial features (A1), or com-
pletely absent, e.g., for derived geometries (G1, G2, G3).

In terms of selectivity, the examined queries vary widely. For in-
stance, range query R1 involves a small area (around Oxford) with
sparse distribution of points, whereas query R2 specifies a much
wider area (the greater London) with the highest density of sought
points. Ideally, a system should perform well both when the result
set is small (R1) and potentially large (R2).

Regarding queries with combined thematic and spatial filters,
note that the area of interest in TS2 is 100 times greater than the one



Table 4: Performance statistics for the geospatial platforms tested (RDF stores and DBMS).
OWLIM-SE
(points only)

AllegroGraph
(points only)

TripleStore X
(all layers)

Virtuoso
(all layers)

uSeekM
(all layers)

Strabon
(all layers)

Parliament
(all layers)

DBMS Y
(all layers)

PostGIS
(all layers)

Triples 3,265,602 2,675,212 25,796,666 25,796,652 25,796,782 25,796,782 25,796,652 N/A N/A
Records N/A N/A N/A N/A N/A N/A N/A 3,455,983 3,456,000
Geometries 590,390 590,390 3,455,975 3,455,714 3,456,000 3,456,000 3,455,961 3,455,983 3,456,000

BL 15,300 ms N/A 7,771,304 ms N/A N/A N/A 20,491,671 ms 1,464,000 ms 473,356 ms
SI 18,100 ms N/A 4,980,000 ms N/A N/A N/A 10,393,209 ms 291,313 ms 412,772 ms
BL+SI N/A 3,163,122 ms N/A 146,291 ms 118,451,387 ms 117,879,000 ms N/A N/A N/A
L1 23 ms 110 ms 735 ms 1,960 ms 516 ms 104,281 ms 496 ms 71 ms 63 ms
L2 18 ms 45 ms 8,279 ms 4,078 ms 145 ms 108,057 ms 211,015 ms 23 ms 5 ms
R1 254 ms 766 ms 38,767 ms 3,961 ms 2,249 ms 100,711 ms 231,077 ms 24 ms 14 ms
R2 N/A N/A 50,628 ms 42,359 ms N/A 135,709 ms 402,740 ms 15,317 ms 12,964 ms

SJ1 N/A N/A incomplete
after 3.5 hours

incomplete
after 5 hours N/A 175,190 ms incomplete

after 4 hours 1,023,189 ms 295,462 ms

SJ2 N/A crashed after
3,573,521 ms

incomplete
after 3.5 hours

incomplete
after 8 hours

incomplete
after 8 hours

incomplete
after 4 hours

incomplete
after 4 hours

incomplete
after 2 hours

incomplete
after 2 hours

SJ2a 1000 results
in 49,034 ms N/A N/A 100 results

in 38,457 ms N/A 100 results in
16,804,349 ms

100 results in
2,108,014 ms

100 rows
in 341 ms

100 rows in
140,896 ms

kNN1 11,743 ms 9,418 ms 3,951 ms 2,487 ms crashed after
157,196 ms 133,260 ms N/A 32 ms N/A

kNN1a N/A N/A N/A N/A 17,290 ms 371,884 ms
but no results!

143,540 ms N/A 1,756 ms

kNN2 N/A N/A N/A 3,914 ms crashed after
147,485 ms 444,836 ms 223,422 ms 223 ms 12,150 ms

kNN2a 7,385 ms 3,533 ms N/A N/A N/A N/A N/A N/A N/A
G1 N/A N/A 221,890 ms N/A 2,255 ms 105,204 ms 17,952 ms 19,643 ms 1,133 ms
G2 N/A N/A 3,605 ms N/A 82 ms 101,472 ms 512 ms 225 ms 14,335 ms
G3 N/A N/A 7,667 ms N/A 100 ms 98,602 ms 926 ms 252 ms 385 ms
TS1 396 ms 212 ms 73,536 ms 2,468 ms 4,772 ms 101,803 ms 254,768 ms 53 ms 20 ms
TS2 2,426 ms 2,121 ms 1,403,180 ms 21,500 ms 21,489 ms 102,662 ms 328,862 ms 726 ms 136 ms

A1 N/A N/A incomplete
after 3.5 hours 4,982,061 ms incomplete

after 5 hours 126,503 ms incomplete
after 30 min 727,360 ms 21,001 ms

N1 incomplete
after 90 min

2,011 ms , but
incorrect result

2,029 ms 2,704,046 ms incomplete
after 8 hours 321,162 ms 594 ms, but

no results!
221,245 ms 100 rows in

248,759 ms

in TS1, but response times escalate sublinearly in many platforms.
Of course, such requests take longer to execute than pure range
search, but existence of mixed conditions in the WHERE clause
seems to pose difficulties to the optimizer. Perhaps, this occurs be-
cause joins are not reordered or the spatial filtering does not make
use of the underlying index (e.g., as currently done in Parliament
[3]). Strabon incurs similar costs for range and combined search,
basically due to good estimates of the respective selectivities.

Presence of expensive operators also varies from query to query.
Some requests just ask for an entity and a few properties, so they are
quite straightforward to execute (like L1, L2). But other operations,
such as spatial joins or negations, incur huge overhead to the query
processor and could push it to its limits.

Starting from spatial joins, SJ1 was answered by PostGIS and
DBMS Y within minutes. Strabon managed even better (in less
than 3 minutes), thanks to powerful query planning by PostgreSQL
and PostGIS. All other triple stores either did not support the op-
eration or failed to provide an answer. Similarly, execution of SJ2
remained incomplete after several hours in all systems, with partial
results reported only for its relaxed variant SJ2a. As distance joins
are quite natural in spatial analysis, this seems a major deficiency.

Indirect support for k-NN search with a LIMIT k modifier was
possible in several triple stores. Especially Virtuoso reported an-
swers rather fast, although execution times exceed by far those in
the examined DBMS.

Insufficient support for geoprocessing is a serious flaw for many
triple stores. While database systems were competent to provide
derived geometries instantly, RDF stores offer rudimentary or no
functionality at all. For example, GeoSPARQL implementations
in uSeekM and Parliament can compute buffer zones (i.e., influ-
ence areas), but cannot unify adjacent geometries into a single one;
this latter operation is not specified in [35], yet offered by DBMSs.
Strabon offers complete answers, although at increased cost. In
contrast, AllegroGraph cannot return dynamically generated poly-

gons without explicitly storing their vertices as literals; Virtuoso
and OWLIM-SE are ineligible as they can handle strictly points.

Quite interestingly, negation involving spatial predicates was sup-
ported in all systems, at least in query syntax. However, only
TripleStore X, Virtuoso, Strabon, and DBMS Y returned a correct
answer. In all other platforms, either the query was executing for
many hours without results, or the reported answer was wrong (Al-
legroGraph), or returned instantly with no results (Parliament).

5.3 Other Observations
During query execution, Parliament was somewhat unstable, prob-

ably due to the considerable volume of data it had to manage. Cu-
riously enough, datasets had to be imported four times, because
the spatial index was causing serious troubles when resuming the
service, and no processing could be started. uSeekM was also prob-
lematic is some cases, especially in k-NN search, when it crashed
unexpectedly some time after submission; its performance on spa-
tial joins also seems to require considerable improvement.

RDF stores that utilize a DBMS as their repository (i.e., Stra-
bon, uSeekM) can really take advantage of its geospatial support
for storing various geometries and answering most types of spatial
queries. But they really suffer when it comes to bulk loading of
millions of features, because the index (essentially, an R-tree) is
predefined to host all geometries and requires reorganization upon
new entries (or deletes/updates on geometries). Instead, platforms
with a native support for storing triples in their own structures (e.g.,
Virtuoso) coped far better with massive insertions.

Performance of spatial operations in triple stores is rather poor
compared to DBMSs; sometimes orders of magnitude worse. Many
queries could not even be expressed (in grey in Table 4), and others
failed or did not complete within a reasonable time (highlighted in
yellow). Evaluation did not involve inferencing, a key advantage of
triple stores but absolutely out of scope even for advanced DBMSs;
otherwise, response times might get exacerbated even more.



6. RESEARCH PERSPECTIVES
We deem that our study offers much more than quantitative met-

rics on performance and a qualitative comparison on conformance
with existing standards. Indeed, we were able to identify certain
deficiencies of RDF stores concerning expressiveness, scalability,
query optimization, and real-world relevance. Next, we point out
some indicative, challenging topics that may be attractive for joint
research by the Semantic Web and GIS communities.

6.1 Enhancing Core Geospatial Functionality
Most triple stores could not easily cope even with moderately

large geodatasets, as those used in our tests. For larger areas (e.g.,
a continent, or the entire planet), performance would suffer both
in terms of bulk loading and query processing. Therefore, sup-
port for billions of geometry triples is a major challenge for RDF
stores. GeoSPARQL compliance would also remedy discrepancies
in namespaces, geometry representations, georeferencing, etc.

Efficiency of spatial indexing over triples should be also im-
proved, as it is evident when compared to similar functionality of-
fered by DBMSs. Building or updating the spatial index (typically,
an R-tree) should be performed faster. Apart from points, this struc-
ture should be able to host diverse geometric shapes (lines, poly-
gons, etc.) and facilitate related computations. Taking advantage
of that index to natively evaluate more types of spatial queries (e.g.,
k-NN, or geoprocessing) would also be worthwhile.

There is much room for query optimization techniques in pres-
ence of both spatial and thematic criteria. Currently, many opti-
mizers split a query into blocks, and suggest that spatial predicates
be evaluated first, followed by thematic filtering on the interme-
diate results. Yet, evaluation of such mixed filtering requests or
spatial joins should rather take advantage of the spatial index, per-
haps also assisted by estimated spatial selectivities. More advanced
query plans might also make use of hybrid "spatio-semantic" access
methods like [25] that interweave spatial and semantic properties in
a common structure to enable aggressive pruning strategies.

In addition, APIs should be developed to seamlessly use RDF
stores as backends in GIS applications (e.g., instead of PostGIS)
and enable interoperability between different spatial formats, RDF
repositories, or databases. Tools for integrating geospatial entities
from diverse vocabularies (e.g., via mappings into GeoSPARQL
ontology) would also be valuable, at least until GeoSPARQL be-
comes the de facto protocol for geospatial RDF data.

6.2 Advanced Geospatial Processing
As the amount of geospatial RDF content will inevitably increase

on the Web, implementation of query rewriting rules could sim-
plify query declaration (also recommended by GeoSPARQL [35]).
For instance, a user request may include a triple pattern that tests
a topological relation between two features; this could be trans-
formed into an equivalent clause involving their geometries.

Support for geometry-based inferencing could strengthen topo-
logical consistency of the stored features, facilitate query expres-
siveness, and offer more intelligence to spatial reasoning. For ex-
ample, built-in methods could be used to deduce, for every pair
of adjacent polygons, their common borderline and identify which
polygon is on either side (left/right) of each line vector. For such
derived geometry features, several OWL assertions could be at-
tached (e.g., a borderline could signify separation between coun-
ties, regions, or states), and the inference engine should apply con-
sistency checks. Such assertions (along with other, non-spatial
ones) could then be readily returned at query time. Turning the
raw geometries into semantically enriched ones could also increase
spatial accuracy of the original data, e.g., for easily detecting dis-

crepancies in edge matching of lines or slight topology overlaps
(a.k.a. "sliver polygons") due to digitization errors.

Another important research direction concerns spatially-aware
interlinking and fusion of RDF datasets. More specifically, meth-
ods are needed to recognize potential matches between different
geospatial datasets and connect resources that correspond to the
same real world entity despite differing RDF representations. For
instance, one dataset may represent a museum as a point and in-
dicate its admission times and pricing, while another dataset may
capture it as a polygon along with detailed information about its
current exhibition. Such integration would improve the quality and
augment the quantity of stored triples. If this process involved ge-
ometry matchings (e.g., point in polygon), it could produce richer,
combined metadata for the matched entities (e.g., source, scale,
last update). This could greatly leverage the value of linked data,
benefiting a lot from geospatial information either implicitly (e.g.,
names, types of places) or explicitly (e.g., coordinates, distances).

6.3 Further Extensions
Many opportunities also arise for building extensions or add-ons

to existing systems. Next, we mention three notable cases:
Open, crowdsourced geographic data like OpenStreetMap [38]

undergo frequent changes from multiple contributors, so the sys-
tem has to keep track of all successive updates. Thanks to global
IRIs, managing geospatial versions of RDF data could be carried
out in a more sophisticated way, while also keeping metadata for
provenance. In case that an existing geometry (e.g., a road seg-
ment) gets modified by diverse users, this would require a more
advanced mechanism for reconciliation of conflicting updates, as it
might also affect other adjacent entities (e.g., nearby roads).

Support for map visualization would also be a precious tool for
faceted spatial analysis and could attract GIS practitioners to start
using triple stores. With the exception of AllegroGraph [9] and a
KML exporting functionality from Strabon [24], there is no indica-
tion about mapping capabilities in triple stores. But, the growing
interest on geospatial DBMS over the past decade indicates that
interconnection of spatial data infrastructure with commercial or
open-source GIS platforms provides a wider user community, an in-
creased number of applications, and leads to further improvements
in terms of processing efficiency and offered functionality.

Last, but not least, integration of temporal and spatiotemporal
semantics [23] would greatly enrich expressiveness of the RDF
schema. With a temporal component, the model can be used for
representation and querying of linked geospatial data that changes
over time (e.g., boundaries of land parcels, water levels in lakes
etc.). With spatiotemporal support, movement of spatial entities
can be linked with thematic data and provide a wealth of informa-
tion about moving objects (e.g., vehicles, cargo containers, etc.).

7. CONCLUSIONS
In this paper, we presented the current state-of-the-art in geospa-

tially-enabled semantic data management. Starting from an over-
view of the recently proposed GeoSPARQL standard, we exam-
ined whether and to what extent it is actually supported in several,
widely used semantic repositories. As no purposeful benchmark is
established yet, we designed a methodology for specifically eval-
uating geospatial capabilities of RDF stores. Moreover, we con-
ducted a comprehensive empirical study on some well known RDF
stores either available from commercial vendors or research pro-
totypes. We utilized OpenStreetMap layers as a large data source,
and a wide range of spatial queries as workload. We also compared
efficiency of RDF stores against traditional geospatial databases in
terms of bulk loading, spatial indexing and query response time.



We expect a mounting interest on handling geospatial data on the
Semantic Web, both in terms of practical applications and innova-
tive processing algorithms. Hopefully, this would bridge the gap
between the GIS and Semantic Web communities. To assist this
effort, we plan to extend our baseline approach with ready-to-use
software, to include scaling datasets for several real-world scenar-
ios, and to refine the query workload with reasoning semantics.
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