
Adding Completeness Information to Query Answers over
Spatial Databases

Simon Razniewski
Free University of Bozen-Bolzano

Dominikanerplatz 3
39100 Bozen, Italy

razniewski@inf.unibz.it

Werner Nutt
Free University of Bozen-Bolzano

Dominikanerplatz 3
39100 Bozen, Italy
nutt@inf.unibz.it

ABSTRACT
Real-life spatial databases are inherently incomplete. This is
in particular the case when data from different sources are
combined. An extreme example are volunteered geographi-
cal information systems like OpenStreetMap.

When querying such databases the question arises how re-
liable are the retrieved answers. For instance, for positive
queries, which ask for existing patterns of objects, further an-
swers could show up if the data is completed. For queries
with negation, it is furthermore possible that after data com-
pletion objects cease to satisfy a query.

On the OpenStreetMap wiki, contributors have started to
record for some areas which object types have been mapped
completely. Given a query, we show how such metainforma-
tion can be used to classify objects in the database as certain
answers, which are certainly answers in reality, impossible
answers, which in reality are definitely not answers, and pos-
sible answers, for which it is not known whether they are
answers in reality. In addition, we compute the complete-
ness area of a query, that is the maximal area for which it is
certain that no further answer objects exist in reality.

All this additional information can be computed with stan-
dard operations on spatial data. Experiments suggest that the
computation of such completeness information is feasible.

Categories and Subject Descriptors
H.2.8 [Database Management]: [Database Applications –
Spatial databases and GIS]

Keywords
Data Quality, Data Completeness, Metadata Management

1. INTRODUCTION
Storing and querying geographic information poses addi-

tional requirements on databases that motivated the devel-
opment of dedicated architectures and algorithms for spa-
tial data management. Recently, due to the increased avail-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGSPATIAL ’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2014 ACM 978-1-4503-3131-9/14/11 ...$15.00.
http://dx.doi.org/10.1145/2666310.2666395.

ability of GPS devices, volunteered geographical information
systems have quickly evolved, with OpenStreetMap (OSM)
being the most prominent one. Ongoing open public data
initiatives that allow to integrate government data also con-
tribute. The level of detail of OpenStreetMap is generally
significantly higher than that of commercial solutions such
as Google Maps or Bing Maps, while its accuracy and com-
pleteness are comparable.

OpenStreetMap allows to collect information about the
world in remarkable detail. This, together with the fact that
the data is collected in a voluntary, possibly not systematic
manner, brings up the question of the completeness of the
OSM data. When using OSM, it is desirable also to get meta-
data about the completeness of the presented data, in order
to properly understand its usefulness.

Assessing completeness by comparison with other data is
only possible if a more reliable data source for comparison ex-
ists, which is generally not the case. Therefore, completeness
can best be assessed by metadata about the completeness of
the data that is produced in parallel to the base data, and that
can be compiled and shown to users. When providing geo-
graphical data it is quite common to also provide metadata,
e.g., using standards such as the FGDC metadata standard1.
However, little is known about how this metadata can be used
to annotate query answers with completeness information.

As an example, consider that a tourist is looking for hotels
that are nearby a park. She can query the OSM database, but
due to the open nature of information in OSM, she does not
get any information about how good the query result is wrt.
the reality. It could be both the case that hotels, that according
to OSM do not have a park nearby, do have a park nearby in
reality, and also that in reality there are further hotels with
parks nearby, which are not mapped in OSM.

For queries that ask for the absence of features, such as
hotels which are not near a factory, the situation is even worse.
Due to the open nature of OSM, one cannot get any guarantees
whether a hotel is nearby a factory or not.

To make conclusions about the completeness of query an-
swers, one needs completeness metadata. Our contribution
in this paper is as follows: We show that when information
about completeness is present, two things can be done:

(i) It is possible not only to identify objects that certainly
satisfy a query even when the query asks for the absence
of other objects, but also to split objects present in the
data into those that can possibly satisfy the query and
those for which that is impossible.

1http://www.fgdc.gov/metadata/geospatial-metadata-
standards

(ii) One can identify in which areas of the map the reality
cannot contain any further answers.

We also show that metadata about completeness is already
present to a limited extent for OSM, and discuss practical
challenges regarding acquisition and usage of completeness
metadata in the OSM project.

The structure of this paper is as follows: In Section 2, we
present a sample scenario, in Section 3 we give background
information about spatial databases, OpenStreetMap and ge-
ographical data completeness. In Section 4, we formalize
spatial databases, queries, completeness statements and an-
swer classes. In Section 5, we present results for reasoning,
show experimental results in Section 6 and discuss practical
aspects in Section 7.

The idea of annotating query answers with completeness
information appeared first in [10]. This work however pre-
sented only a vague formalization of the problem, considered
an intractable framework including arithmetic comparisons,
and contained no decision procedures. Also, it did not dis-
cuss queries with negation.

2. MOTIVATING SCENARIO
OpenStreetMap is a popular volunteered geographical in-

formation system that allows access to its base data to anyone.
To coordinate their efforts, the creators (usually called Map-
pers) of the data use a wiki to record the completeness of
objects in different areas. We want to show that this informa-
tion can also be interesting for users that query the data.

Example 1. As a particular use case, consider that a user
Mary is planning vacations in Abingdon, UK2. Assume Mary
is interested in finding a 4-star hotel that is near a public
park. Using the Overpass API3, she could formulate in XML
the following query4 and execute it online over the OSM
database:

<query type="node">
<has-kv k="leisure" v="park"/>
<bbox-query {{bbox}}/>

</query>
<query type="node">
<around radius="2000"/>
<has-kv k="tourism" v="hotel"/>
<has-kv k="stars" v="4"/>
<bbox-query {{bbox}}/>

</query>
<print/>

Suppose now that the data stored about Abingdon looks like
shown in Fig. 1, that is, there are three four-star hotels, the
Moonshine Star, the British Rest and the Holiday Inn, and
two parks, King’s Garden and Central Park in the database.

In this example, Mary’s query would return only the hotel
Moonshine Star as answer (Fig. 2).

What can be said about the quality of this answer? Can
Mary ignore the British Rest and the Holiday Inn hotels?
Could there be possibly other hotels in Abingdon that would
match her query?
2We chose Abingdon here because the OSM wiki contains
generally much better information about small towns than
about big towns.
3http://overpass-turbo.eu/
4This particular query does not return any answer for Abing-
don, but e.g. for Berlin or Paris it does.

Figure 1: Sample database for Abingdon.

Figure 2: Result for Mary’s query for hotels near a park.

Or, suppose Mary changes her mind and instead searches
for hotels that are not near a factory. For this query, the OSM
database would return all three hotels as answers. But does
that mean that there is really no factory near these hotels?
Or can it be the case that factories have not been mapped in
Abingdon, and that there is one near each hotel?

Without further background information these questions
cannot be answered. Mary therefore browses the wiki of
OSM, where she finds a page5 containing information about
the completeness of data about Abingdon (Fig. 3). What do
the symbols on this page mean? On another page6, she finds
an explanation of the symbols (Fig. 4).

What can Mary deduce from this information about the
completeness of the result of her query? This will be dis-
cussed in the remainder of this paper.

Another use case where completeness is important could
be emergency planning, where the planners are interested to
find all schools that are are within a certain radius of a chem-
ical industry complex. Schools may be completely mapped
only in parts of the area of interest. Therefore, to assess
in which areas the query answer is complete, they would
need metadata telling in which areas all schools have been
mapped. Also, areas where industry complexes have been
mapped completely, and no industry complex exist would
be of interest, because in these areas, irrespective of whether
schools are complete or not, no school can be close to an
industry complex.
5http://wiki.openstreetmap.org/wiki/Abingdon
6http://wiki.openstreetmap.org/wiki/Template:En:Map_status

Figure 3: Extract from the OpenStreetMap wiki page for Abingdon. Source: http://wiki.openstreetmap.org/wiki/Abingdon

Figure 4: Legend for completeness statements as shown on the OpenStreetMap wiki page. Source:
http://wiki.openstreetmap.org/wiki/Template:En:Map_status

3. BACKGROUND
In the following, we introduce spatial database systems,

OpenStreetMap, and the problem of geographical data com-
pleteness.

3.1 Spatial Databases and OpenStreetMap
To facilitate storage and retrieval, geographic data is usu-

ally stored in spatial databases. According to [2], spatial data-
bases have three distinctive features. First, they are database
systems, thus classical relational/tree-shaped data can be
stored in them and retrieved via standard database query
languages. Second, they offer spatial data types, which are
essential to describe spatial objects. Third, they efficiently
support operations on spatial data types via spatial indexes
and spatial joins.

OpenStreetMap (OSM) is a free, open, collaboratively edited
map project. Its organization is similar to that of Wikipedia.
Its aim is to create a map of the world. The map consists
of objects (there called features) which have associated ge-
ometries, which are either points, polygons or groups of the
former two, and each object has a primary type (category),
such as highway, amenity or similar. Furthermore, each ob-
ject can have an unrestricted set of key-value pairs. Though
there are no formal constraints on the key-value pairs, there
are agreed standards for each primary object type.7

There have been some assessments of the completeness of
OSM based on comparison with other data sources, which
showed that the road map completeness is generally good [4,
3, 7]. Assessment based on comparison is however a method
that is very limited in general, as it relies on a data source that
captures some aspects equally well as OSM. Especially since
due to the open key-value scheme the level of detail of OSM
is not limited, comparison is not possible for many aspects.
Examples of the deep level of detail are the kind of trash that
trash bins accept or the opening hours of shops or the kind of
fuel used in public fire pits 8 (these attributes are all agreed
as useful by the OSM community).

While the most common usage of OSM is as online map
service, it also provides advanced querying capabilities, for
instance via the Overpass API web interface. Also, the OSM
data, which is natively in XML, can be downloaded, con-
verted and loaded into classical SQL databases with geo-
graphical extensions.

3.2 Geographical Data Completeness
Geographical data quality is important, as for instance re-

cent media coverage on Apple misguiding drivers into re-
mote Australian desert areas shows.9 There has long been
work on geographical data quality, however it was mostly
focusing on precision and accuracy [11]. Completeness poses
the challenge that it may highly vary depending on the type of
object. If metadata about completeness is present, it is attrac-
tive to visualize it on maps [12]. Completeness is especially a
challenge when (1) databases are to capture continuously the
current state (as opposed to a database that stores a map for a
fixed date) because new objects can appear, (2) databases are
built up incrementally and are accessible during build-up (as

7http://wiki.openstreetmap.org/wiki/Map_features
8http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dbbq
9http://www.dailymail.co.uk/sciencetech/article-
2245773/Drivers-stranded-Aussie-desert-Apple-glitch-
Australian-police-warn-Apple-maps-kill.html

it is the case for OSM) and (3) the level of detail that can be
stored in the database is high (as it is easier to be complete
for all highways in a state than for all post boxes).

Work on analyzing the completeness of OpenStreetMap
was done by Mooney et al. [7] Haklay and Ellul [4, 3] and
Zielstra et al. [13]. The first work introduced general quality
metrics for OSM, while the latter works analyzed the com-
pleteness of the road maps in England and in the US by
comparing them with government data sources, finding that
each data source was better than the other in some aspects,
and worse in others.

To the best of our knowledge, regarding metadata-based
completeness assessment of query answers over geographical
data, no work has been done so far.

3.3 Incompleteness in Database Theory
In database theory, there has been extensive work on in-

completeness. The core framework was established by Imielin-
ski and Lipski [5], who introduced the terms of certain and
possible answers. Note that we are using the terms differ-
ently here, as in the classical framework, certain answers are
a subset of possible answers, whereas in our work, the two
are disjoint.

Completeness statements and completeness reasoning were
first introduced by Motro [8], who used statements about the
completeness of query answers to infer the completeness of
other queries, and Halevy [6], who used statements about
the completeness of parts of a database to infer complete-
ness of query answers. Later work by Razniewski and Nutt
[9] provided decision procedures for the problem introduced
by Halevy. The completeness statements that we use in this
paper are an adaption of a simple case (condition-free) of
the statements introduced by Halevy, although our conclu-
sions are very different, because we consider the state of the
database, whereas the work of Halevy was on the level of the
schema only.

4. FRAMEWORK
In the following, we review the notion of spatial databases,

introduce distance queries as object of study in this paper,
and present a framework for completeness statements over
spatial databases and for the annotation of query answers
with completeness information.

4.1 Standard Definitions
While the data format of OSM allows to add arbitrary key-

value pairs to objects, there exists a community consensus on
the common attributes of different object categories.

Using these agreed attributes, the data can then be trans-
formed into relational data, thus, in the following, we adopt
a relational database view.

Spatial databases consist of sets of objects, which are formu-
lated using a fixed vocabulary, the database schema. Each
object has one location attribute. For simplicity, we assume
that these locations are only points.

We assume a fixed set of object names Σ, where each object
name R has a set of arbitrary attributes and one location
attribute. Then, a spatial database is a finite set of facts over
Σ that may contain null values. Null values correspond to
key/value pairs that are not set for a given object.

Example 2. Represented in a spatial database DAbgd, the in-
formation from Fig. 1 could looks as follows:

Hotel
name stars restaurant location

Moonshine Star 4 yes 48.5527:9.6481
British Rest 4 yes 48.1220:9.5804
Holiday Inn 4 no 48.4176:9.3721

Park
name size location

Central Park med 48.2082:9.5771
King’s Garden small 48.4908:9.6148

In the following, we employ a Datalog-style [1] notation
for queries.

A simple query over a spatial database is written as
Q(t̄, l):−R(t̄, l), where R is an object type, the terms t̄ are either
constants or distinct variables and l is the location attribute
of R.

Example 3. A simple query asking for hotels with 4 stars is
written as follows:

Q4stars(n, 4, r, lhotel):− hotel(n, 4, r, lhotel).

Spatial query languages allow the use of spatial relations
and functions such as distance, growing and shrinking.

Over spatial databases, it is especially interesting to retrieve
objects for which there exists another object of a specific type
within a certain proximity, or for which no object of a spe-
cific type exists within a certain proximity. To express such
queries, we introduce the class of so-called distance queries,
on which we will focus in the remainder of this paper:

Intuitively, a distance query asks for an object for which
specific other objects exist within a certain radius. In this
type of query, joins between atoms appear only between the
location of the first object and the locations of the other objects.
Formally, a positive distance query with n+1 literals is written
as follows:

Q(t̄0, l0):−R0(t̄0, l0), R1(t̄1, l1), dist(l0, l1) < d1, (1)
R2(t̄2, l2), dist(l0, l2) < d2,

. . .

Rn(t̄n, ln), dist(l0, ln) < dn

where li is the geometry attribute of the object Ri, the t̄i are
tuples of constants and distinct variables, and the di are con-
stants. We call Ri(t̄i, li) the literal Li. We will refer to the literal
L0 as the core of the query, and to the other literals as the
satellites of the query.

Later, we will also discuss queries with negated atoms.
Note that using the relations ’,’ and ’=’ together with dist
does not make sense for a nearly continuous-valued attribute
such as location, and that the condition ’dist > d’ does not
make practical sense, because in order to evaluate such a
query, one would need to scan the objects in the whole world.

Example 4. Consider again Mary’s query that asked for 4-
star hotels with a park within two kilometres distance. In
Datalog, this distance query would be written as follows:

Qnice
Hotel

(n, 4, r, lhotel):− hotel(n, 4, r, lhotel), park(n′, s′, lpark),

dist(lhotel, lpark) < 2km.

A query that additionally asks for pubs within one kilome-
tre and a train station within one kilometre would be written

as follows:

Qnicer
Hotel

(n, 4, r, lhotel):− hotel(n, 4, r, lhotel),

park(n′, s′, lpark), dist(lhotel, lpark) < 2km

pub(n′′, lpub), dist(lhotel, lpub < 1km

station(n′′′, lstation), dist(lhotel, lstation) < 1km.

Other examples of distance queries could be real estate
agents that are interested in properties that are larger than
1000 square meters and not more than five kilometres from
the next town with a school and a supermarket, or evacuation
planners, which might want to know which public facilities
(e.g. schools, retirement homes, kindergartens) are within a
certain range around a chemical industry complex.

Given a distance query, the component query for the literal Li
is defined as the query Q(t̄i, li):−Ri(t̄i, li). In the next section,
completeness of component queries will be a central building
block for assessing the completeness of distance queries.

4.2 Completeness Definitions
In many scenarios the open-world assumption is employed

for databases. The open-world assumption is that a database
is not guaranteed to capture all facts from the domain of inter-
est that hold in the real world. This assumption is particularly
natural for volunteered data.

Still, such databases may be complete for parts of the real
world. This can be expressed using completeness statements.

Definition 1 (Completeness statement). A completeness
statement is a pair (R(t̄, l),A), where R is an object class, t̄ is a
tuple consisting of constants and the special symbol ’∗’, and A is
an area. It has an associated simple query QC, which is defined as
QC(t̄, l):−R(t̄, l), l ∈ A, where the ’∗’ are replaced by distinct new
variables.

Example 5. Consider two areas A1 and A2 as shown in
Fig. 5. A completeness statement c1 expressing that ho-
tels with four stars are complete in the area A1 would be
written as Compl(hotel(∗, 4, ∗),A1). A statement c2 expressing
that parks are complete in the area A2 would be written as
Compl(park(∗, ∗),A2).

The simple query Qc1 corresponding to the statement c1
would be Qc1 (n, s, r, l):− hotel(n, 4, r, l), l ∈ A1.

While under the open-world assumption, in general any-
thing more can hold in reality, completeness statements set

Figure 5: Areas A1 and A2.

constraints: They state that in certain parts, the database con-
tains already everything that holds in the real world, there-
fore, the real world cannot contain any more information
in these parts. Completeness statements therefore constrain
what the real world can look like.

A database Di satisfies a completeness statement C wrt. a
given database D, if the query QC does not return more objects
over Di than over D.

Example 6. Consider the database DAbgd from Ex. 2 and con-
sider the completeness statements c1 and c2 from Ex. 5. A
database Di that contains an additional hotel Marygold sat-
isfies the completeness statements, as long as the Marygold
hotel has either not four stars, or is not located within the
area A1. If the Marygold hotel has four stars and is inside the
area A1, then Di would violate the completeness statement c1,
because Qc1 would return the additional answer Marygold
over Di, which is not returned over DAbgd.

Definition 2 (Possible Completions). Given a database D
and a set of completeness statements C, a database Di is called a
possible completion for D if

• D ⊆ Di and

• Di satisfies all statements in C wrt. D.

We write ExtC(D) to denote the set of all possible completions for
D wrt. C.

Note that for any D and C, the set of possible completions
contains at least D again and thus is never empty.

Having defined the possible extensions, we can now define
the first goal of the completeness assessment, namely the
answer classification.

Definition 3 (Candidate Classification). Let D be a fixed
database instance and C be a set of completeness statements. Then
given a distance query Q, each candidate object o that satisfies the
core query QL0 of Q in D belongs to exactly one of the following
categories:

• Certain Answers: If o is an answer to Q over all possible
completions to wrt.C, that is, o ∈ Q(Di) for all Di in ExtC(D).

• Impossible Answers: If there is no possible completion to D
wrt. C where o is an answer.

• Possible Answers: If o is not a certain answer, but there exists
at least one Di in ExtC(D) such that o ∈ Q(Di).

We denote the sets of certain, impossible and possible answers of Q
as certD,C(Q), impossD,C(Q) and possD,C(Q), respectively.

In the following, we will usually assume that D and C are
be fixed, and will therefore drop the subscript for the answer
categories and also for the completeness area.

Example 7. Consider again the database DAbgd from Ex. 2
and the completeness statements c1 and c2 from Ex. 5. The
candidate objects for Q, that is, the objects that satisfy the
query QL0 , are the hotels Moonshine Star, Holiday Inn and
British Rest.

Of these, intuitively, the Moonshine Star hotel is a certain
answer, because it already satisfies the query, so it will also
satisfy it for any possible more complete database. The Holi-
day Inn is an impossible answer, because it currently does not

satisfy the query, and, according to the completeness state-
ment c2 there also cannot appear any parks in the real world
that would make it an answer. The British Rest is a possible
answer, because currently it does not satisfy the query, but
the completeness statements do not exclude the possibility
that in the real world there are parks nearby. We will discuss
the classification of these hotels again in Ex. 10.

The second task of the completeness assessment for a query
is determining the area in which no new answers can appear
at all. We call this area the completeness area of the query.

Given a query Q for objects, its variant Q̃ outputs only the
locations of the objects. We can now define the completeness
area of a distance query as follows.

Definition 4 (Completeness Area). Let Q be a distance
query, D be a database and C be a set of completeness statements.
Then the completeness area CAD,C(Q) is the maximal area A such
that Q̃(D) ∩ A = Q̃(Di) ∩ A for all possible completions Di of D
wrt. C.

An example for the completeness area can be seen in Fig. 6.
In the next section we discuss how the answer categories

and the completeness area can actually be computed.

5. COMPLETENESS ASSESSMENT
For ease of presentation, we first discuss the assessment for

queries that do not contain negated literals, and extend the
techniques to queries containing negated literals later.

5.1 Positive Queries
Given a query Q, a priori any object that satisfies the center

query QL0 could become an answer. For positive queries, the
identification of the certain answers is easy:

Proposition 5 (Certain Answers). Let Q be a positive dis-
tance query, D be a database and C be a set of completeness state-
ments. Then:

cert(Q) = Q(D).

Note that the computation of certain answers is only so
easy because positive queries are monotonic. For queries
with negation “cert(Q) = Q(D)” does not hold.

To divide the remaining answers to QL0 into possible and
impossible answers, and to compute the completeness area,
we need more formalisms. We first analyse how to compute
the completeness area for simple queries.

Given two tuples t1 and t2 of constants and distinct vari-
ables, we say that t1 subsumes t2 if t1 has the same constant or
a variable at every position where t2 has a constant.

Example 8. Consider three tuples (∗, ∗, ∗), (∗, 4, ∗) and (∗, 4, yes).
Then the first tuple subsumes the latter two, and the second
statement subsumes the last one.

Proposition 6 (Completeness Area for Simple Queries).
Let Q(t̄, l):−R(t̄, l) be a simple query and C be a set of completeness
statements. Then CAC(Q), the completeness area of Q wrt C is
computed as follows:

CAC(Q) =
⋃{

Ai

∣∣∣ ti subsumes t and Ci ∈ C
}
.

Observe that this area is independent of database instances.

Example 9. Consider the component query QL0 of the query
QniceHotels, which is written as QL0 (n, 4, r, l):− hotel(n, 4, r, l). The
completeness area for this query is the union of the areas of
all completeness statements that subsume the completeness
of hotels with four stars, for example statements which talk
about the completeness of all hotels.

Given a set of completeness statements C, a database in-
stance D, a literal L and a distance d, we define the area of
points that are certainly out of range, denoted CoorC,D(L, d), as
the set of all points for which in no possible completion an
L-object is within distance d. Let dist(p,P) for a point p and a
set of points P be defined as min{dist(p, p′) | p′ ∈ P}. Then:

CoorC,D(L, d) = {p | dist(p,QL(Di)) > d for all Di
}

The spatial functions grow and shrink enlarge or downsize
geometries by a certain radius. Remember also that for a
query Q for objects, its variant Q̃ outputs only the object loca-
tions. Using this, the area Coor can be computed as follows:

Proposition 7. Given C, D, L and d as above, it holds:

CoorC,D(L, d) = shrink(CA(QL), d) \ grow(Q̃L(D), d).

Intuitively, this means that in order to compute CoorC,D(L, d),
we first identify the completeness area of QL and shrink it by
the distance d. Consider a point in this shrunken area. Then,
this point is certainly out of range d of any L-object, because,
due to the shrinking, also no extension of D satisfying C can
contain an L-object within distance d. Next, consider also the
set of L-objects present in D. Then no extension of D wrt. C
can contain further L-objects in the completeness area of L. As
a consequence the points that are both in the shrunken area
and have a distance of at least d from the L-objects that are
in D and in CA(QL) are certainly out of range of all possible
L-objects.

We can now compute the possible answers, the impossible
answers, and the completeness area as follows.

Theorem 8. Let Q be a distance query as in Eq. 1 with n + 1
literals, C be a set of completeness statements and D be a database
instance. Then the following holds:

(i) imposs(Q) = QL0 (D) ∩ (CoorL1 ,d1 ∪ · · · ∪ CoorLn ,dn)

(ii) poss(Q) = QL0 (D) \ (cert(Q) ∪ imposs(Q))

(iii) CA(Q) = {CAL0 ∪ CoorL1 ,d1 ∪ · · · ∪ CoorLn ,dn } \ poss(Q)

Proof. (i): Suppose an object o is within some area CoorLi ,di .
By definition of Coor, this means (a) that in the current database
there is no Li-object within distance di from o, and (b) that the
Li-objects are complete up to distance di around o. But this
implies that in no possible completion Di can satisfy the literal
Li of the query, which implies that o is an impossible answer
for Q.

(ii): Holds by definition of possible answers.
(iii): We have to show (a) that the query is complete in every

point computed by this formula, and (b) that there cannot be
any additional points where the query is complete.

Regarding (a), observe that in CAL0 no possible completion
can contain further L0-objects, and that, by the same argument
as used for (i), the Coor-areas can only contain impossible
answers.

Regarding (b), observe that any point p not captured by the
above formula is either the location of a possible answer for

the query, or both outside CAL0 and outside all the Coor-areas
for the satellites. If p is the location of a possible answer, this
by definition says that there exists a possible extension such
that there is an additional answer at point p. If p is outside
both CAL0 and all the Coor-areas, this means that in some
valid extension, an additional L0-object may occur at p which
satisfies the query.

Example 10. Consider again Mary’s query for hotels with
a park nearby. The completeness area then would look as
shown in Fig. 6, where the rectangular area in the upper left
is green, because it is the completeness area for hotels with
four stars, and the additional green area to its lower right is
green, because both there are no hotels within a distance of
two kilometres in the database, nor can there be additional
ones in reality because parks are nonexisting and complete in
the two-kilometer surrounding.

We can now formally explain the answer categories for
the hotels: The Moonshine Star hotel is a certain answer,
because it is returned by Q(DAbgd). The Holiday Inn is an
impossible answer, because it is inside the area Coor(L1, 2 km),
as it is both inside shrink(CA(QL1), 2 km) and its distance to
the closest park, the King’s Garden, is clearly more than two
kilometres. The British Rest is a possible answer, because it
is not a certain answer but also not in the area Coor(L1, 2 km),
which means it is not an impossible answer.

Figure 7 shows the relation of the different concepts in com-
pleteness assessment. The boxes at the top show the input
to the algorithm, the boxes at the bottom the output. The
diamonds in the middle are intermediate results. For each
box or diamond, the incoming edges represents the concepts
needed for computing the concept.

5.2 Queries with Negation
We now look at the reasoning for queries with negation.

Recall the query that asks for hotels that do not have a fac-
tory nearby. We can observe two things about this query:
First, that without knowledge about completeness, there are
no certain answers at all, as for any hotel it could be the case
that in reality a factory is nearby. Second, that now the com-
pleteness area also contains those points where a factory is
nearby, as, independent of whether hotels are there or not, it
is clear that those hotels will not satisfy the constraint of not
having a factory nearby.

Figure 6: Completeness area (green) for Mary’s query. The
Moonshine Star is a certain answer, the Holiday Inn an
impossible answer, the British Rest a possible answer.

Figure 7: Relation of the concepts in completeness assess-
ment of positive queries.

Formally, a distance query with negation has a form as
follows:

Q(t̄0, l0):− R0(t̄0, l0),
R1(t̄1, l1),dist(l0, l1) < d1,

. . .

Ri(t̄i, li),dist(l0, li) < di,

¬∃t̄i+1, li+1 : Ri+1(t̄i+1, li+1),dist(l0, li+1) < di+1,

. . .

¬∃t̄n, ln : Rn(t̄n, ln),dist(l0, ln) < dn

such that literals from 1 to i are positive, and from i + 1 to n
are negated.

To reason about queries with negation, we start with a
general observation for distance queries:

Proposition 9 (Universal Query Properties). Let Q1 and
Q2 be distance queries asking for objects of the same type. Then also
Q = Q1 ∩Q2 is a distance query, and the following holds:

(i) CA(Q) = CA(Q1) ∪ CA(Q2)

(ii) cert(Q) = cert(Q1) ∩ cert(Q2)

(iii) imposs(Q) = imposs(Q1) ∪ imposs(Q2).

For a distance query Q with negation, we define its positive
subquery Q+ as the query Q+(t̄0, l0):−L0, . . . ,Li, and its neg-
ative subquery Q− as the query Q−(t̄0, l0):−L0,¬Li+1, . . . ,¬Ln.
Clearly, Q = Q+

∩Q−.
In Theorem 8 we have already seen how to compute certain

and impossible answers for positive queries. To use Proposi-
tion 9, we have to show the computation for negative queries.

Similarly to the Coor function before, we now introduce an
area Cir (certainly in range), which is defined as follows:

Given D, C, a literal L and a distance d as before, CirC,D(L, d)
contains all points such that an object satisfying L is within
distance d in the database instance D, that is:

CirC,D(L, d) = {p | dist(p, Q̃L(Di)) < d, f. a. Di
}

Because in the ideal databases, information can only be
added but never removed, the computation of Cir is straight-
forward:

Proposition 10. Let D, C, L and d be as before. Then

CirC,D(L, d) = grow(Q̃L(D), d)

Having this, we can now compute certain answers, impos-
sible answers and the completeness area for negative distance
queries.

Theorem 11. Let D andC be as before, and let Q− be a negative
distance query with n literals. Then

(i) cert(Q−) = Q−(D) ∩ Coor(L1, d1) ∩ · · · ∩ Coor(Ln, dn)

(ii) imposs(Q−) = QL0 (D) ∩ (Cir(L1, d1) ∪ · · · ∪ Cir(Ln, dn))

(iii) CA(Q−) = CA(QL0) ∪ Cir(L1, d1) ∪ · · · ∪ Cir(Ln, dn).

Due to Prop. 9 and the fact that any distance query with
negation can be split into the intersection between a distance
query containing only positive satellites and a distance query
containing only negated satellites, we now know how to com-
pute the answer categories and the completeness area for
distance queries with negation.

5.3 Count Queries
An interesting extension to distance queries are count

queries, which are queries that are counting the number of
objects satisfying a certain query in a certain area.

For such aggregate queries, one can analyse two things:
First, one can calculate the portion of area in which the query
is complete, by dividing the intersection between complete-
ness area and query area by the query area (e.g., the query is
complete for 80% of Abingdon). Since the completeness area
however can contain incomplete points (caused by possible
answers), an area which is 100% contained in the complete-
ness area still satisfies query completeness only if the number
of possible answers in the area is zero.

Independent of whether the area is 100% complete, we can
give bounds for how many of the objects, that satisfy the core
in the current database, satisfy the query in reality.

Using the relationship between certain and possible an-
swers, for any valid completion Di the bounds on the cardi-
nality of answers for the core query that answers for the full
query over the completion are:

|cert(Q) + poss(Q)| ≥ |QL0 (D) ∩Q(Di)| ≥ |cert(Q)|.

If the query area is 100% complete, the upper bound is also
an upper bound for the whole query answer in reality (Q(Di)).

Example 11. Consider again the database and complete-
ness statements as shown in Figure 5. Then for the query
QniceHotels, the completeness in the green area lies between
50% and 100%, because there is one certain and one possible
answer in that area.

5.4 Complexity
We now look into the complexity of computing the com-

pleteness area and certain, possible and impossible answers.
The input of the problem are a database D, completeness

statements C and a positive query Q.
When doing completeness assessment, there are two sources

of the complexity: The first is the computation of Coor for each
satellite literal, which is needed twice when computing CA,
and once when computing imposs.

Computing Coor requires evaluation of a simple query
(O(|D|) - check for every object whether it satisfies the selec-
tion condition of the simple query) and computation of CA
(O(|C|) - check for every completeness statement, whether

talks about objects that are the same or more general than the
ones in the literal). Both have to be done also for the core
literal, thus, computing Coor for all literals has a complexity
of |Q| ∗ (|C| + |D|).

The second source of complexity is that for computing the
completeness area, we also need to compute the possible
answers, and for that the certain answers. Computing the
certain answers requires query evaluation, which for distance
queries has the complexity |Q|∗|D|2, because naively, for every
object satisfying the core of Q, the distance to the objects
satisfying each satellite has to be calculated.

Adding the complexities of computing the Coor-areas and
the certain answers, we arrive at an overall complexity as
follows:

|Q| ∗ (|C| + |D|2).

For the subquery needed to compute the certain answers,
standard spatial indexing of the objects will speed up the
evaluation. For the retrieval of completeness statements that
are relevant for a completeness area CA, indexing on the
attributes used most often in completeness statements (e.g.
stars for hotels) could be employed.

6. EXPERIMENTS
To show the feasibility of our approach, we have imple-

mented the core reasoning using the Java Topology Suite
(JTS), a library that implements spatial object classes and
functions. In our experiments, we assume four different ob-
ject types for which completeness statements can be given.
For simplicity, we do not use any constants other than dis-
tances in the statements or queries, thus, queries and com-
pleteness statements always refer to all objects of a type. Also,
the queries are only positive. We place objects and com-
pleteness statements randomly in a 1000×1000 space, where
completeness statements are rectangles with a random edge
length between 1 and 200 (thus, the average statement covers
1% of the space), and queries use random distance constants
between 1 and 100. There are three parameters to vary:

• The number of objects (data). The results for this can be
seen in Fig. 8 (left).

• The length of the query, measured as number of atoms
in its body. The results for this can be seen in Fig. 8
(middle).

• The number of completeness statements (metadata).
The results for this can be seen in Fig. 8 (right).

Each time, we compare the runtime for completeness area
calculation plus answer classification with the runtime for
query evaluation.

As one can see, the reasoning behaves well in terms of
the size of the query, and both in terms of the query size
and the number of statements, it shows the same asymp-
totic behaviour as the query execution (linear and quadratic,
respectively).

While query evaluation is not affected by the number of
completeness statements, completeness reasoning shows again
a quadratic behaviour. As discussed in the previous sec-
tion, spatial indexing techniques for objects and complete-
ness statements could be applied in completeness reasoning
analogous as they are used in spatial query evaluation.

7. DISCUSSION
In this section we discuss practical aspects of the presented

framework.

How to use completeness information. Once knowing
about certain, impossible and possible answers, the question
remains what to do with this information. In the example
of a tourist, certain answers would be hotels that the tourist
might book a room at, possible answer would be hotels where
further investigation is needed (check the website of the ho-
tel, call the tourist information, or similar), and impossible
answers are the ones that the tourist can ignore. Also the
completeness area would tell him for which areas further
investigation will be useless.

Depending on the application, the meaning of the com-
pleteness area could be inverted. In applications where one
is interested to find information that is not yet recorded in the
database (treasure hunting illustrates that well, more realistic
applications might be e.g. real-estate agents looking for new
business opportunities), the complement of the completeness
area is the actually interesting area.

Limitations. A limitation of the presented theory is that we
have assumed that all objects are points. When objects have
an extent, the meaning of completeness statements has to be
clarified. Either an object is constrained by a completeness
statement, if it partially lies in the area of the completeness
statement, or if it lies fully in it. The latter interpretation
would however mean that we can be complete for all lakes
in the US and in Canada, and could still miss the border lake
Lake Ontario.

Also, the reasoning has to take into account the appropri-
ate interpretation of the dist predicate: Whether distances
between objects are the minimal distances between their out-
lines, or the distance between their centers.

Completeness Statements in OpenStreetMap. The state-
ments as used on the OSM Wiki (see Figure 4) are simpler
than the ones presented in this paper for two reasons: First,
they do not use any constants (there are only statements for
all hotels, but not just for hotels with four stars), but instead
just state that one out of 12 object classes is complete in a
certain area. Second, the areas for which the completeness
statements are given do not overlap, instead, the statements
are always given for disjoint areas (as opposed to stating that
four-star hotels are complete in all Abingdon and hotels with
restaurants are complete in the center of Abingdon, which
are spatially and semantically overlapping statements).

In OSM, completeness statements come in 7 different levels,
ranging from ”Unknown” to ”Completeness verified by two
persons” (see the right table in Fig. 4). In that figure the
lower table also contains a row concerning the implications
on usage ("Use for navigation"). Still, it remains difficult to
see how to interpret the levels and to know the implications
on data usage.

So far, the use of completeness statements on the OSM wiki
is sparse. More concretely, out of 26,676 pages on the OSM
wiki on 30th of June, 2014, only 1,477 (~6%) give complete-
ness statements (estimate based on the number of pages that
contain an image from Fig. 4).

Especially, at the moment completeness statements are only
given for urban areas. This may change if completeness state-

Figure 8: Comparison between query answering and completeness calculation.

ments become more frequently used.
On the technical side a challenge is to make the complete-

ness statements on the OSM wiki machine-readable. The
tables that hold the completeness statements are in princi-
ple already machine-readable, but the challenge is that at the
moment, the areas of the completeness statements are not for-
malized. The areas that are currently textually described in
the second column of the table in Fig. 3 (e.g. ”Central + Ock
St. to R. Ock”) would need to be mapped to spatial objects.

Maintenance of Completeness Statements. A separate
challenge is the maintenance of completeness statements. As
the real-world changes continuously, new objects can arise
that toggle previous completeness statements incorrect, and
objects can even disappear.

The first challenge can be addressed by regularly reviewing
completeness statement, and giving completeness guarantees
only with time stamps (“complete as of xx.yy.zzzz”). The
second challenge goes beyond the term of completeness, and
instead asks also for correctness guarantees. Mappers then
not only would have to guarantee that all information of the
real world is captured in the database, but on the contrary
also that objects in the database also exist in the real world,
and same as for the first challenge, would need to review
these statements periodically.

8. CONCLUSION
In this paper we have discussed how to assess the com-

pleteness of spatial databases based on metadata. We have
introduced the concepts of completeness area, certain, possi-
ble and impossible answers for queries. We have then shown
how these concepts can be computed for distance queries,
using a reduction to assessment of completeness of simple
queries.

We have discussed that completeness statements are al-
ready present to a limited extend in OpenStreetMap, and
have shown that these statements are even simpler than the
statements that our framework can handle. We also pointed
out the conceptual challenges regarding the maintenance and
meaning of completeness statements.

We have also built a demonstrator system, which is avail-
able at http://www.inf.unibz.it/~srazniewski/geoCompl/.

Acknowledgement
We are thankful to the user Bigbug21 for information about
the OSM community, and to the anonymous Reviewer 1 for
very helpful feedback. This work has been partially sup-

ported by the project “MAGIC: Managing Completeness of
Data” funded by the province of Bozen-Bolzano.

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

databases. In Addison-Wesley, 1995.
[2] R. H. Güting. An introduction to spatial database

systems. VLDB J., 3(4):357–399, 1994.
[3] M. Haklay. How good is volunteered geographical

information? A comparative study of OpenStreetMap
and Ordnance Survey datasets. Environment and
Planning. B, Planning & Design, 37(4):682, 2010.

[4] M. Haklay and C. Ellul. Completeness in volunteered
geographical information—the evolution of
OpenStreetMap coverage in England (2008-2009).
Journal of Spatial Information Science, 2010.

[5] T. Imieliński and W. Lipski, Jr. Incomplete information
in relational databases. J. ACM, 31:761–791, 1984.

[6] A. Y. Levy. Obtaining complete answers from
incomplete databases. In Proceedings of the International
Conference on Very Large Data Bases, pages 402–412, 1996.

[7] P. Mooney, P. Corcoran, and A. Winstanley. Towards
quality metrics for OpenStreetMap. In Proceedings of the
18th SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 514–517. ACM,
2010.

[8] A. Motro. Integrity = Validity + Completeness. ACM
TODS, 14(4):480–502, 1989.

[9] S. Razniewski and W. Nutt. Completeness of queries
over incomplete databases. In VLDB, 2011.

[10] S. Razniewski and W. Nutt. Assessing the completeness
of geographical data (short paper). In BNCOD, 2013.

[11] W. Shi, P. Fisher, and M. Goodchild. Spatial Data
Quality. CRC, 2002.

[12] T. Wang and J. Wang. Visualisation of spatial data
quality for internet and mobile GIS applications. Journal
of Spatial Science, 49(1):97–107, 2004.

[13] D. Zielstra, H. H. Hochmair, and P. Neis. Assessing the
effect of data imports on the completeness of
openstreetmap–a united states case study. Transactions
in GIS, 17(3):315–334, 2013.

