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ABSTRACT

With the proliferation of Internet-connected, location-aware mobile
devices, such as smartphones, we are also witnessing a prolifera-
tion and increased use of map-based services that serve information
about relevant Points of Interest (Pols) to their users.

We provide an efficient and practical foundation for the processing
of queries that take a keyword and a spatial region as arguments
and return the k£ most relevant Pols that belong to the region, which
may be the part of the map covered by the user’s screen. The pa-
per proposes a novel technique that encodes the spatio-textual part
of a Pol as a compact bit string. This technique extends an exist-
ing spatial encoding to also encode the textual aspect of a Pol in
compressed form. The resulting bit strings may then be indexed
using index structures such as B-trees or hashing that are standard
in DBMSs and key-value stores. As a result, it is straightforward to
support the proposed functionality using existing data management
systems. The paper also proposes a novel top-k query algorithm
that merges partial results while providing an exact result.

An empirical study with real-world data indicates that the proposed
techniques enable excellent indexing and query execution perfor-
mance on a standard DBMS.

Categories and Subject Descriptors

H.2.2 [Database Management]: Physical Design—access meth-
ods; H.2.8 [Database Management]: Database Applications—
spatial databases and GIS

General Terms
Algorithms

Keywords

Spatio-textual index, spatial keyword query, top-k query, S2 cell,
textual encoding, key-value store

1. INTRODUCTION

The proliferation of Internet-enabled, geo-positioned mobile de-
vices has created an increased demand for local information. Thus,
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we are also witnessing an increased proliferation and use of differ-
ent map-based services that serve local information. Local infor-
mation is typically organized around Points of Interest (Pols) that
may be of different types, e.g., hotels, restaurants, and parks, that
include exact locations, names, and textual descriptions.

Map-based services allow users to retrieve such different types of
Pols near them. For example, users may look for hotels or restau-
rants in neighborhoods where they are currently present or are go-
ing to be at a later time. Typical map-based functionality supports
the retrieval of relevant Pols that belong to the part of space visible
on the user’s screen. This functionality supports users who wish
to browse or explore their surroundings and is different from the
retrieval of Pols that are closest to an exact user location.

Several proposals exist that are capable of finding the most rele-
vant places that are closest to an exact location. They are typically
either R-tree based [3,7,8, 13,17, 18,20-22], grid based [15, 19],
or space filling curve based [5, 6]. The proposals either support
Boolean top-k or queries, or they support top-k queries with a rank-
ing function. However, they all suffer from two limitations: (i) they
involve the use of a special index structure, making it difficult to
leverage existing data management systems, and (ii) they focus on
finding the top-k most relevant objects, that are closest to an exact
location instead of providing the top-k most relevant objects in a
region.

Figure 1: Top-5 results for a region query (left) and a nearest neighbor
query (right)

We study a query that returns the top-k£ most relevant Pols in
a spatial region. An example is given in Figure 1, that shows the
top-5 most relevant objects for a region and the result of a nearest-
neighbor type query. The left example supports exploratory user
behavior in the region, since the top-5 most relevant objects may
be located anywhere in the region. In the example, the three best
places are near the beach. This approach is used by all of the ma-
jor providers of map-based services, including Google Maps, Bing
Maps, and Yahoo! Maps. The example to the right retrieves objects
close to the query location and is fundamentally different.

The paper makes four contributions.



e We propose and give a precise definition of a query that finds
the top-k£ most relevant objects in a spatial region with re-
spect to their textual descriptions. The query is similar to
the approach used by major providers of map-based services.
A baseline algorithm is given that modifies state-of-the-art
algorithms for nearest neighbor queries to support the pro-
posed region query.

e We propose a novel approach to the representation and in-
dexing of spatio-textual objects using standard indexes that
are widely available in data management systems such as
traditional DBMSs and key-value stores. The locations and
textual descriptions of the objects are first encoded into bit
strings with a spatial and a textual part. The spatial part is en-
coded using an existing encoding scheme, while the encod-
ing of the textual part employs a hash function. Collisions
among the bit strings that encode the text may occur, and
a parameter is introduced that controls the balance between
query execution time and space consumption. The encoding
scheme makes it possible to leverage standard indexes such
as B-trees for the indexing of the spatio-textual data.

e We present a query processing algorithm that computes ex-
act results for the proposed query. The algorithm queries the
spatio-textual objects using the indexed bit strings. Query re-
gions may overlap several grid cells, which are then merged
while guaranteeing exact query results.

e We report on an experimental study of the proposed tech-
niques using real-world data. The study suggests that the
proposed solution is capable of efficiently supporting the pro-
posed query.

The remainder of the paper is structured as follows. Section 2
covers related work. The problem definition is given in Section 3.
Section 4 presents the proposed solution, encompassing the spatio-
textual bit string encoding and indexing strategy followed by an
exact query processing algorithm. The experimental evaluation is
given in Section 5. Finally, we conclude and offer research direc-
tions in Section 6.

2. RELATED WORK

Recently, substantial research efforts on geo-textual indexes have
been reported. The proposed solutions often use a combination of
the R-tree [12] or a variant [2] for the spatial indexing and inverted
files for indexing the text [7, 13,17, 18,20, 22]. Others use bitmap
files for text indexing [3, 8, 21]. Solutions using grids [15, 19]
and space-filling-curves [5, 6] combined with inverted files have
also been proposed. The spatio-textual parts are combined in three
different ways: (i) either closely combined, with no clear separa-
tion [6-8,13,15,17,20,21], (ii) with the spatial index followed by
the text index [3,5, 19, 22], (iii) or with the text index followed by
the spatial index [18,19,22]. A comprehensive experimental eval-
uation of geo-textual indexes is also available [4].

Most of the related work targets Boolean queries and does not
return ranked results. This paper focuses on providing a ranked
result to provide a size-limited result. With the vast amounts of
data that may exist in a region, it is often not helpful to return all
objects in a region that contain a given term.

Some of the related work is able to efficiently return the top-k
most relevant nearest neigbors [7, 17, 18,20]. These works all use
the R-tree and the query processing algorithms may be modified to
find the top-k most relevant objects in a region. A baseline algo-
rithm that uses a geo-textual index is given in Section 3.2. However,

this related work uses custom index structures, while this paper
proposes a technique that may be employed with existing standard
indexing techniques. Despite the substantial research on answer-
ing spatio-textual queries, to the best of our knowledge, no existing
work addresses encoding of spatio-textual objects in combination
with existing indexing techniques.

Multi-dimensional spaces can be mapped to a one-dimensional
space in order to support the indexing of multi-dimensional points
in a standard DBMS. The mapping of multi-dimensional space into
a one-dimensional space is often done using a space-filling curve
such as a Z-curve or a Hilbert-curve [23]. The existing techniques
consider only the spatial dimension, whereas we propose a new
problem that considers both the spatial and the textual properties of
the objects.

The Google S2 Geometry Library [11] provides an open-source
implementation that maps two-dimensional objects on the Earth’s
surface to a one-dimensional representation. It encloses the Earth
sphere in a cube and imposes a quad-tree [10] type partitioning to
each of the 6 faces. The cells are encoded and decoded by means
of a Hilbert curve [14]. This provides a bit string representation of
a location; this paper leverages and extends this work.

Hash functions can map text strings of arbitrary lengths to fixed-
length hash values [16]. When two different strings produce the
same hash value, a collision occurs. As the length of the hash value
decreases, the number of collisions increases. A perfect hash func-
tions map the input to unique hash values and is thus collision-free.
Hash functions are used in the proposed solution to limit the num-
ber of textual descriptions and their lengths.

3. PRELIMINARIES

We proceed with giving a formal definition of the problem ad-
dressed in the paper followed by a baseline algorithm that modifies
state-of-the-art algorithms.

3.1 Problem Definition

Let D be a set of spatio-textual objects o = (), doc), where X is
a point location, and doc is a text document. Let Dr be the set of
objects in D that are inside the spatial region R,

A top-k spatio-textual region (TKSTR) query TkSTR = (R, key-
word, k) returns an ordered list of k objects from Dp that are the
most relevant to keyword according to a textual relevance func-
tion computed by language models similar to the one presented
in related work [7]. For ease of understanding, we use the term
frequency function tf (¢, o.doc), that returns the number of occur-
rences of term t in the text document o.doc. However, other textual
relevance functions may be applied.

Definition 1. With the above definitions, we can define the result
of the TKSTR query with arguments (R, keyword, k) as follows.
The query returns k objects from Drg, o1, ..., 0k, Where

tf (keyword, o;.doc) > tf (keyword, 0i44.doc), 1 =1,... k—1.
Further, there does not exist an object o € Dg such that

tf (keyword, o.doc) > tf (keyword, 0;.doc), i =1, ... k.

Example 1. Figure 2 describes five objects o1, . . . , 05, and Table 2
shows the document-term matrix of their documents.

Given the query @) with Q.R be the spatial region R in Fig-
ure 2, Q.keyword = pizza, and Q.k = 3 the ordered result is
(04, 02,05). No object inside R has a higher frequency than the



objects in the ordered result set. The object o3 has the highest term
frequency but lies outside Q. R.
For the same arguments but with Q.keyword = sushi the or-

dered result is (o1, 05, 02) O
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Figure 2: A Spatial Region and Five Objects

pizza  sushi  shoe

01.doc 2 5 1
02.doc 4 3 4
o3.doc 7 2 0
04.doC 5 2 2
os.doc 3 4 6

Table 2: Term Frequencies of the Objects in Figure 2

3.2 Baseline Algorithm

No algorithm has yet been proposed for the efficient computa-
tion of the TKSTR query. Thus, we consider how to modify exist-
ing techniques to process the TESTR query before we present the
proposed solution. Recent related work proposes geo-textual index
structures that aim to enable efficient computation of the top-k most
relevant nearest neighbors [7, 17, 18,20]. They all employ R-tree
based structures, which may also be used to return the result for a
region query.

Each of the related works has a parameter « that allows bal-
ancing spatial proximity and textual relevancy. The result of the
TESTR query does not depend on the spatial proximity of the ob-
jects. Therefore, v may be set to O in some studies [7,18,20] and to
1 in another study [17] in order to eliminate the spatial proximity
constraint.

The query processing algorithms from related work take a point
location as argument. In contrast, the TESTR query employs a
query region. To support a query region, we use a point location
placed at the center of the TESTR query region, and we only con-
sider objects in this region. Thus, the search is only expanded from
the point location within this region when iterating through nearest
neighbors. The query processing terminates when a nearest neigh-
bor is encountered that is further away from the query point than
the longest distance from the query point to the furthest away bor-
der of the query region. Then, all objects inside the query region
have been considered, and no additional relevant objects exist.

The query processing algorithms in related work have to consider
each nearest neighbor until the ).k most relevant objects have been
found. In the worst case, all objects inside the query region have
to be examined since the most relevant object may be located any-
where in the query region. However, the nodes of the R-trees in the
existing proposals are augmented with information about the best
term frequencies in their subtrees. This information may be used to

prune some of the R-tree nodes. Since, it is not known which and
how many objects contain the specific term frequencies, expensive
full node scans result.

The difficulty in providing an efficient baseline using existing
techniques combined with the requirement of a custom index struc-
ture being available suggests that it is relevant to consider the in-
vention of a new solution.

4. PROPOSED SOLUTION

We present a framework that encodes spatio-textual objects into
compact bit strings that may be stored in standard data manage-
ment systems and indexed using standard index structures that are
generally available in such systems. The framework encompasses
an exact query processing algorithm capable of computing TESTR
queries by using the bit strings and by combining partial results.

4.1 Spatio-Textual Bit String Encoding

We proceed to describe the encoding of the spatio-textual objects
and then provide an overview of the framework.

Modern data management systems generally have a number of
indexes that are optimized for processing queries efficiently. Stan-
dard indexes include B-trees [1] and hash tables! [16], and some
systems also support R-trees [12]. However, many queries are not
able to use these standard index structures directly, including the
TESTR query and the top-k most relevant nearest neighbor query.

We aim to develop an approach that can process the TkSTR
query by utilizing standard indexes that are available in virtually
any data management system such as a DBMS or a key-value store:
B-trees or the hash tables. To achieve this, we first encode spatio-
textual objects into bit strings that they may be readily indexed by
standard indexes. A bit string has two parts: (i) a spatial part that
encodes the location of the object being encoded and is used to de-
termine whether the object is located in the query region, and (ii)
a textual part that represents the text document of the object and
helps determine whether the object indeed contains the query term.

4.1.1 Spatial Encoding

We have the following requirements to the spatial part of the bit
string:

1. Compact representation.

2. Fast lookup of regions of arbitrary size and location.
3. Sufficiently high resolution.

4. Uniform query performance.

It is desirable to have a compact bit string to reduce the stor-
age requirements and access cost. We aim at efficiently processing
queries independently of the size and location of the query region.
Also, we aim at providing a result efficiently for even very small
query regions. Finally, the performance should not vary greatly
depending on the size or location of the query region.

The Google S2 Geometry Library [11] utilizes a quad-tree style
partitioning that yields cells of uniform area at multiple granulari-
ties. This satisfies the requirements of supporting arbitrary region
sizes and locations. A bit string is created by enclosing the Earth
by a cube and by imposing a quad-tree style partitioning on each
of the 6 faces of the cube, as illustrated in the example in Figure 3.
The quad-tree type partitioning has multiple levels, and the cells
are enumerated using a Hilbert curve [14] that makes it possible to
efficiently find any cell at any level.

The faces of the cube can be represented with 3 bits, and the 4
cells at each level in the partitioning can be encoded using 2 bits.
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Figure 3: Earth Enclosed in a Cube (left) and a Grid Index for Each of the
6 Faces (right)

With a total surface area of the Earth of 510,072,000 km?, each of
the faces covers an area of 85,012,000 km?. To provide an accuracy
of less than 1 cm?, 30 levels are required, which can be captured by
using 63-bits. We may not need this level of accuracy, and we may
reduce the number of levels, thus making the bit string more com-
pact while still providing sufficient resolution. The experimental
evaluation studies the impact of different numbers of levels. This
fulfils our requirement of achieving a compact bit string.

Example 2. Consider the object o; in Figure 3. It is on the first
face of the cube which is represented by 3 bits: 000. By following
the Hilbert curve in the grid tree, we find that object o is in the cell
with position 1 at the first level, which is represented by the bits
01. At the second level, it is in the cell with position 4, which us
represented by 00. The complete encoding of the level 2 bit string
of 01 is then 0000100. O

With this approach, we are able to encode the spatial locations of
objects as compact bit strings. The resulting bit strings can be in-
dexed using standard indexes. We proceed to extend this approach
with a textual bit string representation.

4.1.2 Textual Encoding

Large amounts of Pols that cover all countries in the world are
maintained by providers of map-based services. Thus, the textual
descriptions may be in any language, resulting in a large vocabu-
lary. We have two requirements to the textual part of the bit string:

1. Compact representation.
2. Limited number of bit strings.

Having a compact bit string representation instead of string with
characters in any language reduces the storage requirements. Since
standard indexing techniques like B-trees and hash tables are af-
fected by the number of indexed objects, it is important to have a
known and limited number of bit strings. Therefore, we aim at pro-
viding a limited number of compact bit strings that may be used for
direct lookup in a standard index.

The TkSTR query takes the argument keyword, which is a term,
e.g., "pizza" or "sushi." By encoding each term in the object doc-
ument, o.doc, we may use the bit strings to produce a result for
the TESTR queries. To encode a term into a bit string of a fixed
length, we propose to use the hash value of each term in the textual
description. By using a one-way hash function, we achieve both of
the above requirements. First, the length of the bit string may be
set to be sufficiently short by the choice of the hash function. Sec-
ond, a hash function produces a fixed number of hash values. Next,
it is possible to use any hash function and to use truncation of the
hash values to obtain a limited number of compact bit strings. In
the experimental evaluation, we study the use of different lengths
of the hash values.

Hash functions may introduce collisions, which occur when two
or more input text strings produce the same output hash value. An
example is shown in Figure 4 where the terms "pizza" and "sushi"
both hash to the same value "00".

Input Hash
Function

Figure 4: Two Input Strings Produce the Same Output Hash Value

Output

When the hash function produces a small number of output hash
values or when the hash values are truncated, it is more likely to
see more collisions. However, by increasing the amount and length
of the output hash values, the storage requirements and the time to
perform indexing and lookups also increase.

By encoding the terms as compact bit strings, we may concate-
nate these with the spatial bit strings to achieve a single, compact
bit string. The resulting compact bit strings hold information about
the locations and the textual descriptions of the objects they repre-
sent.

Example 3.  Consider the object o; in Figure 3 and the term
frequencies in Table 1. With the hash function in Figure 4, the
combined bit string with level 1 spatial resolution for the terms
"pizza" and "sushi" is 0000100, while "shoe" encodes to the string
0000110. d

4.1.3 Handling Collisions

The text documents of objects that are located in the same spa-
tial grid cell may contain the same terms, resulting in identical bit
strings. We call this a bit string collision. Also, objects located
in the same cell, but with different terms, may be encoded to the
same bit string since we use one-way hash functions that produce
collisions. We call this a term collision. To be able to provide exact
result for the queries, we need to be able to distinguish between co-
located objects that share the same terms. We proceed to present
techniques for handling objects with the two types of collisions: bit
string collisions and term collisions.

Bit String Collision Multiple objects may exists in the same
grid cell, resulting in the same bit string. This is more likely at
the first levels of the grid since they cover larger areas. With the
large amounts of data, any grid cell may contain numerous objects.
These objects are also contained in grid cells at the lower levels.
We want to avoid the duplicate storage of these large amounts of
objects.

According to Definition 1, the TkSTR query returns Q.k objects
with the highest term frequency. Therefore, in order to provide an
efficient and exact result for any given grid cell, it is only necessary
to store the ).k objects with highest term frequency. The remain-
ing objects will not be used to answer queries with a region that
exactly matches the size of a grid cell. We propose to set a maxi-
mum value, targetedK > Q.k, for the number of objects to store
in each cell. Thus, we can reduce the storage requirements and
process all queries with Q.k < targeted K without using any cells
from the lower levels. Naturally, the value of targeted K should be
set sufficiently high in order to provide a useful number of objects
in the result set.

The query region may not have the same size of the grid cell and
thereby contain the ).k objects. The query region may be smaller



than the grid cells and even smaller than the grid cells at the lowest
level. To support queries with such regions, we store all objects
at the lowest level. Thus, the lowest-level grid cells do not only
store targeted K objects, but store all objects that are located in the
regions of the cells. Since we store all objects at the lowest level,
no information is lost, and an exact result may be provided for any
query region.

Term Collision By using hashing, we get a limited number of
compact bit strings that may reduce storage requirements and the
amount of identifiers to index. However, this may introduce colli-
sions as shown in the example in Figure 4. We propose a method
that handles the term collisions such that it may be employed using
any key-value store.

The grid cells may describe up to targeted K objects for any
given term. For the cells at the lowest level, the number may exceed
targetedK . The mapping of a term to the actual objects can easily
be done when there are no term collisions. The hash value simply
serves as a unique identifier for the specific term, and it may point
directly to a bucket with the objects. Consider Figure 5 where the
same input and output as in Figure 4 are used and targetedK is set
to 2. The input term "shoe" encodes to "10" and points directly to
objects 05 and o2 from Figure 3 ordered by the term frequencies
from Table 1.

Hash Value Bucket

pizza(3,4), sushi(1,5)

0

H!?

0 (5,2)

Figure 5: Buckets with Collisions

However, when term collisions occur, we propose to store a sep-
arate chain of terms in a bucket since the hash value no longer
uniquely identifies the terms. Each of these stored terms identifies
the corresponding objects. In Figure 5 both of the terms "pizza" and
"sushi" encode to "00." Therefore, the bucket contains both terms
along with the corresponding objects. With this approach, we can
distinguish between objects that are located in the same grid cell
and have the same terms.

4.1.4 Framework Overview

We proceed to give an overview of the framework. First, the data
is preprocessed such that each term of the object documents is han-
dled with the proposed spatial and textual encoding techniques as
illustrated in Figure 6. The result is a bit string for each term of
the object documents. The bit string is then stored and indexed in a
standard data management system using a standard indexing tech-
nique. A detailed description of the storing of objects is provided
in the following section.

The query processing is shown in the lower part of Figure 6 and
is covered in detail in Section 4.3. First, the query region and key-
word are preprocessed such that the spatial and textual parts of the
query are encoded into a bit string. This bit string is then used to
perform a lookup in data management system used, which yields
a number of objects. Lower levels of the grid structure may have
to be searched in order to produce an exact result. Therefore, the
bit string is refined and used to perform additional lookups. When
enough objects necessary to answer the query have been retrieved,
the result is returned.

(=

? Refine Y

Lookup ] Result

Figure 6: Framework Overview with the Spatial and Textual Encoding (two
left figures) and a Standard Data Management System (right figure)

Bit String
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4.2 Storing Objects in a Key-Value Store

Existing DBMS and cloud database technologies all support key-
value stores with standard indexing techniques such as B-trees and
hash tables. We propose a method that works with all key-value
store indexing techniques. The proposed method encodes an object
to a bit string that may be represented by data types such as integers
or strings, depending on the types available in the system used.
When storing the objects, each term of the object documents is
encoded into a bit string. To apply the proposed techniques to a
key-value store, we store the bit strings as the key. By having an
index on the key, we are able to perform lookups of the bit strings
efficiently.

Since the query region may be of arbitrary size, we store a bit
string for each level of the grid, as seen from the key column in
Table 3 that describes all objects from Figure 3. If we only stored
objects at the finest levels, a large number of cells would have to be
fetched to provide a result for queries with large regions.

Without term collisions, any key will at most map to targeted K
object references. A standard page of size either 4 or § KB can hold
32 bit integer references to 1,000 or 2,000 objects, respectively. To
avoid fetching each object when performing query processing, we
propose to store the term frequency in a 16 bit integer along with
a 32 bit integer for both the latitude and longitude for each object.
Thus, the object representation will have the following structure:

id(INT32)tf (INT16)lat(INT32)Ing(INT32).

In total, 14 bytes are required to store this object reference. A page
of size 4 or 8 KB can hold approximately 300 or 600 objects, re-
spectively. We assume that .k will be much smaller than this
number, and we thus also assume that targeted K will be similarly
small.

With these storage requirements, we propose to store all object
references directly as the values, as illustrated in Table 3. The table
describes the objects from Figure 3 ordered by the term frequencies
from Table 1. To simplify, we only give the identifier of the object
and not the full object representation.

key value

00000 pizza(3,4), sushi(1,5)
00010 shoe(5,2)

0000000 | pizza(5), sushi(5)
0000010 | shoe(5)

0000100 | pizza(3,1), sushi(1,3)
0000110 | shoe(1)

0001000 | pizza(4), sushi(4)
0001010 | shoe(4)

0001100 | pizza(2), sushi(2)
0001110 | shoe(2)

Table 3: Key-Value Database with targetedK set to 2

When objects produce term collisions, we lose the direct map-
ping from bit string to a term. The term of a stored object is



required in order to detect when a term collision occurs. There-
fore, we also store the terms along with the object representations
to avoid fetching the complete textual descriptions of the objects.
Term collisions may eventually occur, which is why we store the
terms pro-actively for all values. The storing of terms requires more
space depending on the number of term collisions. The experimen-
tal evaluation provides insight into the storage requirements.

All objects are stored in sorted order with regard to the term fre-
quencies. The insertion algorithm is given in Algorithm 1, which
takes a dataset of spatio-textual objects and a grid level as argu-
ments. With no bit string collision, an object can be inserted di-
rectly, as shown in Line 10 since no other object with the term
exists. When a term is creating a term collision for the first time,
the same applies. If the cell contains less than targeted K objects
for a given term, the object is inserted, since there is room for it;
see Line 13. All objects are inserted in cells at the lowest level.

Algorithm 1: Insert(Dataset D, GridLevel gl, Boolean

lowest)
/* Global variables: */

1 db < Key-Value Store ;

2 targeted K < max obj. ref. stored in DB ;
/* Local variables: */

3 bs < empty bit string ;

4 foreach o € D do

// conf. param.

5 foreach ¢ € o.doc do

6 bs < spatialEncode(gl, 0.));

7 bs < bs U termEncode(t) ;

8 value < db.1lookup(bs) ;

9 if value is empty \V value does not contain t then

10 L db.insert(o); // no objects with ¢ exists
11 else if value contains t then

12 if lowest V |value| < targetedK then

13 L db.insert(o); // there is room
14 else if #f(t,0.doc) > value.mintf then

15 L db.sortAndUpdate(o) ; // more relevant

Because we store the term frequency as part of the object rep-
resentation, dynamic updates are supported without fetching the
actual objects. This is seen from Line 14 where the term frequency
of the new object is compared with the lowest term frequency of
already existing object representations in the cell. Therefore, we
do not need to fetch already inserted objects in order to maintain
the targeted K most relevant objects of a cell.

4.3 Query Processing

We proceed by giving an exact query processing algorithm for
the TESTR query. The query takes 3 arguments: a region, a key-
word, and the desired number of result objects. In order to use the
bit strings for query processing, we first encode the query region to
match a relevant grid cell. Any cell describes at most targeted K
objects except the finest-level cells. For each face of the cube, the
query region may be equal to or smaller than a grid cell, which
yields three different scenarios:

1. @.k or more of the objects described by the cell are in the
query region.

2. Fewer than @Q.k of the objects described by the cell are in
the query region, and the cell contains fewer than targeted K
objects.

3. Fewer than ).k objects described by the cell are in the query
region, and the cell contains targeted K objects.

When Q.k objects are described by the cell and they are all in
the query region, they can be returned as the result because the
objects described by the cell are sorted by term frequency and no
object can be more relevant. With fewer than targeted K objects in
the cell, the objects in the query region can be returned as a result
because no more objects can exists at any lower level. However,
with targeted K objects in the cell, more objects may exist at lower
levels, and an exact result cannot be provided without considering
lower cells.

Since a cell that covers the query region provides an exact result
in the first two scenarios, we initially encode the query region as
the smallest grid cell that covers it. More cells have to be exam-
ined when the initial cell cannot provide a result, as seen from the
third scenario. The query processing procedure is described in Al-
gorithm 2. The first two scenarios are covered by Lines 5-9. When
the result set contains @).k objects, the loop in Line 10 is not entered
because there are no candidate cells, and the result set is returned.
With a result set smaller than Q.k, the result is only returned if the
cell contains fewer than targeted K objects.

The third scenario is covered by Line 10. In each iteration, the
cells from the lower level are fetched until no better object can ex-
ist in lower cells. Only cells from the next level that are overlap-
ping @Q.R are examined, as seen in Line 13. Lower levels for cells
that contain targeted K objects may have to be fetched, as shown
in Line 17. Cells with fewer than targeted K objects cannot have
lower cells with new objects and are therefore not refined. Thus,
dense cells with a large number of objects may be examined to the
finest level, whereas lower levels of sparse cells may not be fetched.

All objects in Q. R are added to the result set in Line 16. Notice
that the result set is ordered and maintains only @).k objects. Lower
levels are fetched for cells with targeted K objects when the result
set contains fewer than ).k objects. When the result set contains
Q.k objects, there may exist better objects in a lower cell. Consider
the example in Figure 2, where the most relevant object is outside
the query region. In the case where the targeted K most relevant
objects are outside the query region, there may still exist objects
that can enter the result set. Therefore, lower levels are fetched
until no better object can exists in the query region, as shown in
Line 20, or until the lowest level has been examined.

The query processing algorithm iterates through all objects in a
cell before continuing to the next cell in the candidate set. The
Q.k most relevant objects may be found be combining the first few
objects of a number of cells. In this special case, Algorithm 2 has a
computational overhead of examining objects that are not relevant
in order to provide the result. The algorithm may be modified to
process the candidate cell in a parallel fashion similar to how the
Threshold Algorithm [9] functions. With this approach, the cell
with the most relevant objects is considered first, resulting in fewer
computations. The pseudo-code is omitted due to space limitations.

Example 4. Consider the two queries 1 and Q2 with Q1.k =
2, Q1. keyword = "pizza’,Qa2.k = 2,Q2.keyword = " shoe”
and with the query regions in Figure 7: Q1.R = R; and Q2.R =
R>. We first run Algorithm 2 using the database from Table 3 and
query Q1:

Fetching key: 00000

R: (3,4)

No object can exists in any cell with a better term frequency since
Q.k objects are inside the query region (Line 8). The result of the
algorithm is (3,4).

Next, we run the algorithm with the same settings for the query Q2:



Algorithm 2: STRQuery(Database DB, Query Q)

/* Global variables: */
targeted K <— max obj. ref. stored in D B;
/* Local variables: */
R < result set with ).k objects ordered by term frequencys;
minCell < smallest cell that covers Q).R ;
candCells < empty set of candidate cells ;
foreach Object 0 € minCellq. keywora do
/I objects are sorted - most relevant first
if o is inside O.R then
L R+ RUo;

[

// conf. param.

L7 T U 8

=N &

// can only be the best

8 if |[R| < Q.k A |minCellg. keywora| = targeted K then
L candCells < minCell ; // more objects may exists

10 while candCells # 0 do

11 lowerCells < empty set of cells ;
12 foreach cCell € candCells do
13 foreach cell inside cCell N overlapping Q.R do
14 foreach Object o € cellg.keyword do
15 if o is inside Q.R then
16 | R<RUo;
17 if |cellQ keyword| = targeted K then
// more objects may exist
18 if |R| < Q.k then

L // provide Q.k objects

19 lowerCells + lowerCells U cell ;

20 else if cellg.keywora-mint f > R[Q.k].tf then
L // something better may exist

21 lowerClells < lowerCells U cell ;

2 | c;ndCells <« lowerCells ;

23 return R ;

L I.OQ, - | |
°
00 O4] R4
| |
°
| Ry @9

Figure 7: Querying.

Fetching key: 00010
R: (5) (object 2 is outside Q. R)

Since the result set is smaller than ).k and the cell contains targeted K

objects, more relevant objects may exist (Line 8).

Fetching keys: 0000010 and 0000110 (overlap with Q). R)

R: (5,1)

Both cells have less than targetedK cells. Thus, no more objects
may exist (Line 17). The result of the algorithm is (5,1). O

S. EXPERIMENTAL EVALUATION

We proceed to evaluate the proposed solution. We first present
the experimental setup and then describe the datasets. Finally, we
report on a number of experiments.

5.1 Experimental Setup

All experiments are performed on a commodity machine with a
64-bit quad-core Intel 15-2520M (2.5 GHz) processor with 8 GB of
main memory. We use a standard installation of PostgreSQL ver-
sion 9.3.4 with an 8 KB page size. All data is loaded into a table
with two columns (key, value), where the key column is set to be
primary key. The primary key is indexed as default with a B-tree.
The storage mode of the value column is set to external to prevent
compression when the data cannot fit into an 8 KB page. The pro-
posed solution is implemented in a single-threaded Java application
that executes SQL commands using JDBC for database communi-
cations. The data is read from disk, and no data is maintained in
main memory by the Java application. We employ the default hash-
ing function provided by the Java Framework.

We perform two sets of experiments. The first reports on the
properties of the data stored in the PostgreSQL database when vary-
ing targetedK , the number of grid levels, and the hash value length
using two datasets. The second evaluates the query processing al-
gorithm when varying on the query arguments, dataset, and storage
parameters.

5.2 Datasets

We collected all world-wide geo-tagged messages from the pub-
lic Twitter Streaming API during February 2013. For this study, we
create two datasets from these messages. The first dataset (termed
GPCAT) simulates Google Places by filtering the Twitter messages
with the 95 categories used by Google Places'. The first 100,000
messages that contain any of the category names in their textual
description are added to the dataset GPCAT. The resulting dataset
contains messages with 47 of the categories. Thus, the number of
terms to encode to a bit string is 47. Since many users make use of
services such as Foursquare that automatically reports on the loca-
tion of a user, e.g., at restaurants, parks, and airports, this dataset
may reflect many of the actual POIs provided by Google Places.

The second dataset (termed FULL) is created by taking the first
100,000 messages from the Twitter dataset without filtering the tex-
tual descriptions. This dataset contains textual descriptions in any
language containing any terms. In total, it contains 53,247 unique
terms.

With dataset GPCAT, we may see a large number of bit string
collisions since the messages are filtered by 95 categories in En-
glish. The dataset FULL may provide a large number of unique
bit strings since terms may exist in any language from anywhere in
the world. Therefore, the two different datasets are used to explore
the properties of the indexing and query processing when the data
varies.

5.3 Storing Objects

In the first set of experiments, we evaluate the performance of
the proposed storage and indexing technique. Also, we report on
the properties of the stored data. We vary different aspects in the
experiments.

5.3.1 Varying the Number of Grid Levels

We aim at storing data such that reasonable sized query regions
are supported efficiently. The number of grid levels to consider in
encoding the bit string influences the effectiveness. Therefore, we
vary on the number of maximum grid levels such that we store both
datasets GPCAT and FULL with a maximum number of grid levels
that results in the finest cell being approximately 10, 100, and 1,000
meters. This corresponds to grid levels 21, 18, and 14, which are

"http://developers.google.com/places/documentation/supported_types
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Figure 9: Storage Statistics for the FULL dataset

represented by 45, 39, and 31 bits, respectively.

5.3.2  Varying the Hash Value Length

The dataset GPCAT contains many objects that share terms, which
may result in bit string collisions. The amount of bit string colli-
sions vary with the length of the hash value. We propose to fit
all bit strings into 64 bits, which matches the supported memory
addresses of our CPU. With the above-mentioned maximum grid
levels, we have 19, 25, and 33 bits available for the textual part of
the bit string. This provides a reasonable number of possible hash
values considering the properties of the two datasets.

5.3.3 Varying targetedK

The parameter targetedK, which also depends on the setting
of @.k, determines the number of objects to store for each term in
each cell, and it influences the effectiveness of the query processing
algorithm. We store the two datasets with targeted K set to 50, 100,
150, 200, and 250.

5.3.4 Collisions

In the first experiments, we insert the datasets into the DBMS
and report on the number of collisions. When a bit string represen-
tation of the location and the term of an object is to be stored, it may
already exists since another object in the same cell may contain the
same term. The larger the cell, the more likely it is that another
object exists with the same term. This is seen from Figures 8a and
9a that show the number of bit string collisions in both datasets.

For dataset GPCAT that contains only a few terms, we see almost
100,000 collisions at grid level 0 because the objects with the same
term in each of the cells have the same bit string representation. As
the cells becomes smaller, the number of collisions decreases for
both datasets. Notice that each of the three maximum levels has a
different hash value length, but for dataset GPCAT, the levels have
the same number of collisions. This is because GPCAT contains
very few terms, resulting in no term collisions as seen in Figure 8b.
This means that each unique term results in a unique hash value for
all three hash value lengths.

Dataset FULL produces different numbers of bit string collisions

for the three maximum levels since the length of the hash value
varies. As seen in Figure 9a, there are many more collisions when
the hash value is 19 bits compared to 25 and 33 bits. This is be-
cause the number of unique hash values increases with the number
of bits available. Figure 9b describes the number of term collisions
for dataset FULL, i.e., when different terms are hashed to the same
value. With 25 bits hash values (maximum grid level 18), we al-
ready see a relatively low number of term collisions compared to
the number of bit string collisions. Therefore, increasing the num-
ber of bits for the textual part of the bit string does not provide a
large improvement in the number of term collisions for these set-
tings.

Dataset GPCAT contains many more bit string collisions than
dataset FULL, as seen in Figures 8a and 9a, because of the textual
filtering. The filtering enforces a limited number of English terms,
and therefore the objects are more likely to be located in same parts
of the world compared to dataset FULL.

5.3.5 Storage Requirements

The object representations stored for each bit string may occupy
more space than the page size of 8 KB. Figures 8c and 9c report on
the space consumption for dataset GPCAT and FULL. The lower
part of the bars reports on the amount of storage necessary to store
data that fits inside a single page. The upper part of the bars re-
ports on the amount of data that did not fit into a single page. As
expected, less data in total is stored for small values of targeted K
and for a low number of levels. With large values of targetedK,
we see an increase in overflown pages for dataset GPCAT because
more objects are stored for each term. Dataset FULL creates very
few overflown pages because there are few bit string collisions.
Dataset GPCAT has many collisions, which results in more over-
flown pages. As seen from Figure 8c, the number of overflown
pages increases with targetedK . This occurs because more objects
have to be stored in each cell.

The number of tuples required to store the datasets at each of the
maximum grid levels is listed in Table 4. The dataset FULL con-
tains many more tuples than dataset GPCAT because it has fewer
collisions. This increases the number of unique bit strings.



Dataset | Level 21 Level 18 | Level 14
GPCAT | 860,655 628,138 333,766
FULL 1,783,060 | 1,516,271 | 1,133,870

Table 4: Number of Tuples for the Datasets

5.3.6  Storage Time

In this experiment, we examine the time to store the objects. As
seen from Figures 10 and 11, the storage time increases with the
number of levels to store; this is because more tuples have to be
created. In Figure 10, we also see an increase in the storage time
for dataset GPCAT when targetedK is increased; this is because
it takes more time to store the additional objects. The dataset pro-
duces a large number of collisions, resulting in more objects to store
for each bit string.

Level Index Size (MB)

21 35
18 25
14 13

50 100 150 200 250
targetedK

Fig. 10 & Table 4: Storage Time and Index Size for GPCAT

In Figure 11, the storage time for dataset FULL is more constant
because there are fewer collisions, making it less sensitive to the
size of targeted K. Overall, it is faster to process the FULL dataset
even though it contains more tuples. This is due to the fewer colli-
sions that increase the time to sort and update the order of the most
relevant objects.
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Fig. 11 & Table 5: Storage Time and Index Size for FULL

5.3.7 Index Size

The size of the indexes does not vary with the value of targeted K
because only the bit strings are indexed. Therefore, only the num-
ber of bit strings to index influences the size of the index, as seen
from Tables 4 and 5. The index sizes for the two datasets follow
the number of rows seen in Table 3, as expected.

5.4 Query Processing

In this set of experiments, we study the performance of the query
processing algorithm. We employ both datasets and design two
query sets for each dataset. For both query sets, we create 1,000
queries for each parameter value, and we vary Q).k and targetedK .
Also, we randomly choose a term for Q).keyword from the bag
of all terms. Thereby, we query frequent terms more often. We
randomly choose a query region that may have a size between that
of grid level 0 and 1 cm®.

5.4.1 Dataset GPCAT

For the dataset GPCAT, we make all query regions cover New
York City, USA in order to ensure we use a region with a large
number of objects that contain terms from the Google Places cat-
egories. As seen in Figure 12a, the query runtime increases when
Q.k is close to targetedK; this occurs because more cells have
to be fetched to produce a result. The number of fetched cells is
shown in Figure 12b, where the number of cells required to answer
the query decreases when targetedK increases. The query runtime
increases as expected with .k because more objects have to be
examined. When the value of ).k equals targetedK, the query
runtime increases because more cells have to be fetched in order to
produce a result.
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Figure 12: Query Runtime for Dataset GPCAT

5.4.2 Dataset FULL

We allow the query region for the dataset FULL to be located
anywhere in the world. As seen from Figure 13a, the query runtime
varies little regardless of the values of .k and targetedK. Only a
single cell lookup is required for all queries, as seen in Figure 13b.
This is either because of the few collisions that result in cells with
fewer than targeted K objects stored for most bit strings or because
the query region may find an empty region.
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Figure 13: Query Runtime for Dataset FULL

5.4.3  Varying Maximum Number of Levels

In the next experiment, we study dataset GPCAT and use the
same query sets as before, but fix targeted K at 250 and vary the
starting grid level. We force a query to start at a given grid level
and evaluate the runtime and number of fetched cells. As seen in
Figure 14a, the query runtime increases when the starting grid level
approaches 0. This is because of the large number of collisions at
these grid levels, as seen in Figure 8a. The same applies to the
number of fetched cells, as seen in Figure 14b. Almost the same
number of cells is fetched when varying @Q.k because targeted K
is sufficiently large. Therefore, even though @Q.k varies, the query
may be answered with the same number of cells. This was also
verified in the experiment shown in Figure 12b. There is a small
computation overhead when ).k increases because more objects
must be examined; this is seen in Figure 14a. At grid level 10, it is



seen that a single cell is sufficient to answer the queries since few
collisions exists at this grid level. We omit coverage of the same
study for dataset FULL because the result can be returned with a
single cell at any grid level, as seen in Figure 13b.
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Figure 14: Query Runtime for Dataset GPCAT

6. CONCLUSIONS AND RESEARCH
DIRECTIONS

We present a new framework for the processing of top-k spa-
tial keyword queries, which take a keyword and a query region as
arguments, against sets of spatio-textual objects. The framework
leverages standard indexes that are available in DBMSs and key-
value stores, and it requires no new index structures for its opera-
tion. Specifically, spatio-textual objects are encoded as compact bit
strings that may be stored and indexed using a standard index such
as a B-tree. The spatial part of a bit string is obtained using an ex-
isting, multi-layered grid-structure, and the textual part is obtained
using hashing. To reduce the storage requirements, only a limited
number of objects are stored in each intermediate grid cell. Query
processing works by combining objects from multiple grid levels
until an exact result can be returned.

An experimental study with real data offers insight into the prop-
erties of the stored objects and the performance of query process-
ing. The study demonstrates that the framework is capable of ef-
ficiently offering query results using an existing DBMS, and for
different datasets.

Several directions for continued research exist:

Support for queries with more than one keyword. While sup-
porting single keywords in some sense generalizes approaches that
only support retrieval based on categories, it is relevant to also sup-
port multiple keywords. Solutions that “combine” the results of
single keyword queries or ones that combine terms in bit strings
may be explored.

Support for deletion. Several directions may be considered, in-
cluding tombstoning deleted objects until a given threshold is reached,
at which point the objects must be deleted physically. Deletions
may be accommodated by fetching object from lower cells until
targeted K objects are again maintained.

Experiments with larger datasets. It is of interest to see how the
proposed solution perform with even more data.
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