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ABSTRACT

Recording mobility data with GPS-enabled devices, e.g.,
smart phones or vehicles, has become a common issue for
private persons, companies, and institutions. Consequently,
the requirements for managing these enormous datasets have
increased drastically, so trajectory management has become
an active research field. In order to avoid querying raw tra-
jectories, which is neither convenient nor efficient, a symbolic
representation of the geometric data has been introduced.

A comprehensive framework for describing and querying
symbolic trajectories including an expressive pattern lan-
guage as well as an efficient matching algorithm was pre-
sented lately. A symbolic trajectory, basically being a time-
dependent symbolic value (e.g., a label), can contain names
of traversed roads, a speed profile, transportation modes,
behaviors of animals, or cells inside a cellular network. The
quality and efficiency of transportation systems, targeted
advertising, animal research, crime investigation, etc. may
be improved by analyzing such data.

The main contribution of this paper is an improvement of
our previous approach, featuring algorithms and data struc-
tures optimizing the matching of symbolic trajectories for
any kind of pattern with the help of two indexes. More
specifically, a trie is applied for the symbolic values (i.e.,
labels or places), while the time intervals are stored in a
one-dimensional R-tree. Hence, we avoid the linear scan
of every trajectory, being necessary without index support.
As a result, the computation cost for the pattern matching
is nearly independent from the trajectory size. Our work
details the concept and the implementation of the new ap-
proach, followed by an experimental evaluation.

Categories and Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems]: Pat-
tern Matching; H.2.8 [Database Applications]: Spatial
Databases and GIS; H.3.1 [Content Analysis and Index-

ing]: Indexing Methods
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1. INTRODUCTION
Due to the abundant use of position recording devices

such as smart phones, automotive navigation systems, or
other GPS sensors, the amount of daily generated mobility
data has become tremendous. Similarly, the requirements
for storing, managing and querying the so-called trajectories
have increased.

A trajectory represents the movement of an entity, e.g., a
person, a vehicle, or an animal, during a certain period of
time. It can be considered as a sequence of time-stamped
geographic positions or, abstractly, as a continuous function
from time into two-dimensional space, denoted as moving
point [9]. In order to discover any kind of interesting phe-
nomena from such movement data, it is suitable to associate
meanings to trajectory parts, depending on the purpose of
the analysis. For instance, the observation of animals may
be more effective if the trajectories contain labels like “at
home range”or“at feeding station”instead of raw geographic
coordinates. In addition, such a semantically annotated tra-
jectory usually is much shorter than its spatial equivalent.
Besides research fields like animal behavior or healthcare,
the possible scope of application covers commercial purposes
(e.g., logistical optimization, customer behavior, targeted
advertising) as well as urban planning, private use, or crim-
inal investigation.

The research field of moving objects databases has been
very active in the last 15 years [10, 29]. The first definition
of a conceptual trajectory model, based on the key concepts
of stop and move, is given in [20], followed by generalized
variants [1, 27, 17] of this model. However, since they are
focused on the conceptual level, issues of data management
remain unsolved. In [11], a comprehensive framework for
the generalized representation of movement in a symbolic
space is introduced. It is integrated into the data model
of [9], available in moving objects database systems such as
Secondo [8, 3] or Hermes [18]. It is also embedded into the
Secondo implementation of the model of [9]. The approach
comprises four data types for different kinds of symbolic
trajectories and an expressive and fully implemented pattern
matching language. A demonstration is conducted in [21].

Since a symbolic trajectory is related to a sequence of



strings, it seems natural to employ regular expressions for
a pattern language and thus finite automata [13, 16] for
pattern matching algorithms on symbolic trajectories. The
authors of [5, 6] present a pattern language for trajectories
defined in a discrete symbolic space and a pattern match-
ing algorithm based on an NFA. They define an object’s
trajectory as a sequence of symbols denoting the successive
zones visited by the object. However, their language does
not allow conditions on variables or precise temporal speci-
fications. In [23, 24, 25], an expressive pattern language for
geometric trajectories including variables and conditions is
presented. Its drawback is the limitation to symbolic trajec-
tories containing names of areas inside a partitioned space.
A contribution for detecting frequently occurring patterns
from a set of semantic trajectories is given in [28], where
similar places (regarding spatial, semantic, and temporal as-
pects) are grouped together.

In order to realize faster searches and pattern matching
algorithms on trajectories, it is convenient to apply index
structures. Several publications explore index structures for
spatial trajectories, e.g., the 3DR-tree [22], the TB-tree [19],
or the TMN-tree [2]. In [26], an index structure for discov-
ering similar multidimensional trajectories is detailed. Our
previous work [11] comprises an index for symbolic trajecto-
ries with restricted usability. To our knowledge, the uncon-
strained usage of a symbolic trajectory index has not been
explored yet.

In this paper, we introduce a two-part index structure for
collections of symbolic trajectories on the basis of an R-tree
[12] and a trie (prefix tree) [4] as well as a suitable fully
implemented pattern matching algorithm. The latter filters
a collection of symbolic trajectories according to a specified
pattern. In the first phase, we prune the trajectories that
do not occur in the indexes for certain pattern elements’
contents, before performing the exact matching on the re-
duced dataset. While applying the NFA transition function
generated from the pattern, matching information as well
as index retrievals are held and updated inside an efficient
data structure. Everytime a trajectory is known to either
match or mismatch the pattern, it is removed from the com-
putation and, in the first case, inserted into the result set.
Without index support, a trajectory in general has to be
scanned completely for a matching decision. In the present
approach, the computation cost is independent from the tra-
jectory length, except for the number of index retrieval re-
sults that may increase with the number of symbolic values.
With the help of the database benchmark BerlinMOD [7],
we created a representative data set, on which we conducted
a series of experiments.

The remainder of this paper is organized in the follow-
ing way: After providing some preliminary information, i.e.,
above all, an overview of symbolic trajectories and our pat-
tern language in Section 2, in Section 3 we introduce the
index structures applied for the matching. Section 4 details
the accelerated pattern matching approach. An experimen-
tal evaluation is conducted in Section 5, and Section 6 con-
cludes the paper.

2. PRELIMINARIES
In this section, we first mention basic notations before re-

viewing some of the results of [11], focusing on the defined
data types and the pattern language. In addition, we intro-
duce an extension to the latter, making it more convenient

to define relations between value sets in a pattern. Finally, a
fairly complex pattern is detailed, and we discuss the mean-
ing of an NFA with regard to the pattern language.

2.1 Basic Notations
We conceive a trajectory collection as a database relation

with an attribute of one of the data types mlabel , mlabels,
mplace, mplaces . Hence, symbolic trajectories can be stored
along with their underlying geometric trajectories or any
other information. Each of the relations’ tuples has an id
which is needed for indexing the contents of the symbolic
trajectory. Since we later use a tuple id to fast access a
certain vector slot, and since the tuple ids are in general
not necessarily consecutive, we first map them onto a set
{1. . . . , n} for the whole computation (the tuple id 0 does
not exist; the value 0 is used otherwise). The result of the
main algorithm is a vector of the tuple ids of the matching
symbolic trajectories, thus we have to map that set back
onto the original tuple ids. In the remainder of this paper,
we refer to a tuple id as if they were in consecutive order,
beginning with 1.

In contrast to the tuple ids, the components of a pattern
P and of a symbolic trajectory M start at position 0 and are
addressed by P [i] and M [j], respectively (precise definitions
follow). The number of components of M is denoted by |M |,
while a trajectory collectionM contains |M| trajectories.

2.2 Symbolic Trajectories
This subsection, as well as the following one, largely refers

to [11]. Basically, a symbolic trajectory is a function from
time into a set of symbolic values, e.g., character strings. In
this paper, we focus on objects of the type mlabels , repre-
sentable as a sequence 〈u1, . . . , un〉, where each unit uj is a
pair (ij , lj) of a time interval and an arbitrarily large set of
labels. The time intervals must be disjoint and ordered by
time. The following three symbolic trajectories, containing
labels that represent names of rivers, districts, institutions,
cinemas, and places of interest inside Berlin, serve as a con-
tinuous example for the remainder of this paper.

M1 = < ( [2014-05-02-10:25 2014-05-02-10:40)
{"Havel", "Hbf"} ),

( [2014-05-02-10:40 2014-05-02-11:00)
{"Havel", "Tegel"} ) >

M2 = < ( [2014-05-03-15:30 2014-05-03-17:20)
{"Alex", "BKA", "BMF"} ) >

M3 = < ( [2014-05-17-20:00 2014-05-17-20:47)
{"Havel"} ),

( [2014-05-17-21:02 2014-05-17-21:50)
{"Havel", "Yorck"} ),

( [2014-05-17-21:50 2014-05-18-05:30)
{"Yorck"} ) >

The brackets and parentheses around the time intervals
represent closed and open interval limits, respectively, which
is relevant since the intervals must not overlap but may be
adjacent. Instead of labels, a unit can also comprise places.
A place is a label combined with an integer (e.g., a reference
to a spatial database object). Consequently, the data types
mplace and mplaces are available.

2.3 The Pattern Language
From a symbolic trajectory M and a pattern P entered as

a text, the corresponding pattern matching algorithm com-



putes a boolean value, which is true iff P matches M . We
denote the simple example pattern

A [(2014-05 {"Havel", "Hbf"}) | (_ {"Hbf"})]+ B *

as P ′

0. A pattern essentially is a regular expression over the
set of atomic pattern elements, abbreviated as atoms. An
atom of the form (T L), where T is a set of time specifications
and L is a set of labels, matches one trajectory unit (ij , lj)
iff ij ⊂ t ∀ t ∈ T and lj ⊂ L. The sets T and L may also be
replaced by an underscore, meaning that any time interval or
label set of a unit (respectively) is matched. The wildcard
atoms + and * match an arbitrary sequence of trajectory
units, whose length has to be at least 1 for the former.

For instance, the unit M1[0] matches the atom P ′

0[0] =
(2014-05 {"Havel", "Hbf"}), since its time interval and its
labels are covered by the specifications. Neither M2[0] nor
M3[0] match one of the atoms inside the regular expression.
The final atom P ′

0[2] = * matches M1[1]. Hence, P ′

0 matches
only the trajectory M1.

As an extension to the language’s expressiveness, the use
of conditions is enabled. That is, the user may assign the
pattern elements (i.e., atoms outside of regular expression
structures, or whole regular expressions) to variables and
append any number of constraints, formulated as boolean
expressions, that have to be fulfilled (e.g., B.labels contains

"Alex" for P ′

0). In case of a matching, each variable is as-
signed a sequence of trajectory units, and in each condition,
any attribute of such a sequence (the label set, the start or
end time, the number of units, etc.) can be compared with
others. Also database objects and any operation available
in the DBMS can be applied here. With the mentioned con-
dition, P ′

0 does not match M1, since the unit M1[1], which
is bound to B, does not contain the label "Alex".

2.4 Pattern Language Extension
In addition to the pattern language detailed above, in this

paper we introduce the concept of different set relations.
As described, for a successful matching of a trajectory unit
uj and an atom P [a], the value set lj inside uj has to be
a subset of the label set L provided in P [a]. In order to
further increase the flexibility of the language and to make
the specification of patterns more convenient, we added the
following set relations:

set relation name uj matches P [a] iff

disjoint lj ∩ L = ∅

superset lj ⊃ L
equal lj = L
intersect lj ∩ L 6= ∅

This extension can be applied by writing the name of the
set relation directly in front of the desired set, for instance,
(_ equal{"Havel", "Hbf"}), matching a trajectory unit with
exactly the same values. Note that the notation without set
relation keyword has the described meaning, i.e., uj matches
P [a] iff lj ⊂ L. All set relations are applicable to any kind
of symbolic trajectory, for example, mlabels.

In the following, we denote the pattern

X * Y (2014-05 intersect{"Havel", "Tiergarten"})
Z [(2014-05-17-20:00~2014-05-17-23:55 "Yorck") |

(_ superset{"Havel"}) (_ superset{"Tegel"})]+
// X.card = Z.card

as P0. It contains five atoms P0[0], . . . , P0[4], where the first
two are preceded by the variables X and Y , respectively. Af-

ter P0[0] = * matches a sequence of arbitrarily many units
of a trajectory, a unit occurring in May 2014, whose la-
bels set intersects the set {"Havel", "Tiergarten"}, has to
be matched. This unit is then bound to Y , while all its
predecessors are associated to X. The third variable, Z, is
assigned to a regular expression (denoted by [...]+) contain-
ing the atoms P0[2] to P0[4]. Either the subsequent trajec-
tory unit must have the label set {"Yorck"} (or no label at all)
and occur on May 17, 2014, between 8 p.m. and 11:55 p.m,
or (the symbol | separates alternatives) the next two units
need to contain subsets of {"Havel"} and {"Tegel"}, respec-
tively. Due to the symbol +, this alternative matching can
be repeated any number of times. However, since P0 ends
here, the final repetition needs to match the last unit of the
symbolic trajectory. Beyond that, according to the condi-
tion, the number of units bound to the variable X has to
equal the number of units associated to Z.

2.5 NFA Creation and Meaning
Except for the conditions, a pattern is converted into an

NFA transition relation δ. Each transition of such an NFA,
i.e., an element t ∈ δ, consists of a source state tsource, a
trigger tatom (corresponding to the position of an atom in
the pattern) and a target state ttarget. The pattern match-
ing algorithm from [11] loops over the units of a trajectory,
constantly updating the set of active NFA states. It reports
a match iff a final state is active after the last unit. If con-
ditions are used, the whole matching history is required to
be kept for the condition evaluation in Secondo.

The NFA created from P0 is depicted in Figure 1. Note
that the transitions represent the atom positions inside the
pattern, e.g., P0[3] is abbreviated by 3. The NFA states are
consecutively numbered and have no further meaning.
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Figure 1: The NFA computed from P0

3. APPLIED DATA STRUCTURES
In the first two subsections of this section, we detail the

data structures used for the symbolic trajectory index, con-
sisting of a structure for text values and another for time
intervals. Subsequently, we present the efficient storage of
index retrievals. The final subsection is dedicated to a struc-
ture that supports the exact matching process.

3.1 Symbolic Value Index
All symbolic values from a trajectory collection are stored

into a single trie (prefix tree) [4] along with the desired po-
sition information. Secondo provides a corresponding alge-
bra including operators for inserting and retrieving values.

During the insertion process, each label (or place) of the
trajectory collection is stored together with the tuple id of
the trajectory and the position of the unit containing it. If



the trajectory type is mplace or mplaces , the place reference
is memorized in addition. Since the value index construction
requires a complete scan of every trajectory, this operation
is expensive.

The retrieval of a text from a trie is highly efficient. When
a text (in this context, either a label value or a place name)
is successfully retrieved from the trie, an iterator is returned
that loops over the result set, such that all occurrences of
the value are found. In the negative case (and after passing
the final search result), the iterator points to zero. If a
value occurs in the index, the retrieval cost is linear in the
length k of the entered text plus the number of query results.
Otherwise, the search is aborted after less than k steps.

Figure 2 depicts the trie that represents the mlabels col-
lection from our continuous example.

3.2 Time Interval Index
In addition to the symbolic value index, we apply an index

for time intervals. For every trajectory from the collection,
we consider the time intervals of all units. The applied data
structure is a one-dimensional R-tree [12], where every in-
terval is stored along with the corresponding tuple id and
unit position. The related implementation is a component
of Secondo.

During the preprocessing and the exact matching, this
index structure is applied to identify the trajectories and
unit positions matching a time interval from an atom. The
retrieval cost is logarithmic in the number of inserted in-
tervals, being equivalent to the total number of units inside
the trajectory collection. Hence, the time interval index for
{M1,M2,M3} contains six intervals.

3.3 A Container Holding Index Results
Every result from one of the indexes (i.e., a tuple id and

a unit position, hence, a pair of integers) is stored in a spe-
cialized structure, in order to avoid repeated scanning of
irrelevant findings. For example, if a trajectory has already
passed (or failed) the exact matching process, its tuple id
may still be retrieved from the indexes. As both indexes al-
ways iterate over all retrievals, this would cause unnecessary
computation cost.

Consequently, everytime an atom P [a] is considered for
the first time, we store the results for every trajectory that
is active (what exactly this means is detailed later) in a slot
of a vector R. Each slot of R contains a set units of integers
representing the unit numbers found in the indexes for this
trajectory. In addition, there are two integers pred and succ

pointing to the previous and next tuple id that is active and
occurs in the index results for the contents of P [a]. Note
that R[0].succ indicates the first active position, since 0 is
not a valid tuple id.

Since it is not exactly a matter of the pattern matching
algorithm, we detail here how the slots of R are populated.
Consider an atom of the form (T rV), with a non-empty
set T of time specifications, a non-empty set V of values,
and a set relation r. First, both indexes are queried with
all elements of T and V , respectively, each yielding a set of
integer pairs (id, u) referencing a tuple id and a unit position
(inactive tuple ids are neglected). Then the sets related
to time intervals are intersected, and the set relation r is
applied to the sets corresponding to elements of V . Hence,
we obtain two sets of integer pairs, one satisfying the time
specification and one fulfilling the value specification. The

intersection of these sets is the set of references for (T rV).
Finally, we iterate over this result set and insert each unit
position u into the set R[id].units. At the same time, the
pointers pred and succ are defined as described before.

If either T contains no indexable element or V is empty,
the related index does not need to be queried. Also the final
intersection is skipped.

For every considered atom P [a] (either in the preprocess-
ing or in the exact matching), the vector R is computed once
and stored into another vector indexResult at the position
indexResult[a]. This structure allows us to insert, retrieve,
and deactivate contents in constant time. Moreover, an iter-
ation over all components applying pred and succ comprises
only the relevant ones. If a tuple id id is deactivated during
the preprocessing or the exact matching process, we have to
make sure that an iteration over a vector indexResult[a] ig-
nores id. Hence, for each position a, we set the reference succ
of the predecessor of id to id’s successor, and vice versa. In
addition, the set of unit positions indexResult[a][id].units
is cleared.

3.4 A Structure for the Exact Matching
In order to encapsulate the data required for an efficient

matching process, we created the structure IndexMatchInfo,
which we call IMI from now on. An IMI instance contains
an integer next (for the position inside the trajectory that
is supposed to be matched in the following step), a boolean
named range (indicates whether the last considered atom for
this IMI instance was a wildcard; if it is true, next or any of
its successors may be matched by an atom in the subsequent
step; otherwise, next is the only possible match), a mapping
binding from a string to a pair of integers (representing the
current binding of variables to a sequence of trajectory units
in case of a pattern with conditions), and a string lastV ar

(standing for the current variable in the binding).
The set of IMI instances for one trajectory is stored in a

vector slot whose number represents the trajectory’s tuple
id. Again, we apply two references pred and succ for a fast
access to every active slot. Since each of these vectors of
IMI sets depends on the current NFA state, they are held
in the vector indexMatching, or iM , for short, where the
position represents the state. Since the automaton is the
basis of the computation of the exact matching, it is conve-
nient to have a fast access to the IMI instances depending on
the currently active state(s). Figure 3 depicts the structure
iM for {M1,M2,M3} after the preprocessing, where M2 is
deactivated (details follow in Section 4).
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Figure 3: The Data Structure indexMatching

4. ALGORITHMS
In the following, we introduce the algorithms that are ap-

plied for index-supported pattern matching on a collection
of symbolic trajectories. The matching process is divided
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Figure 2: The trie corresponding to the collection {M1,M2,M3}

into two main steps: First, we filter the trajectory collection
and produce a set of candidates, and second, we perform the
exact matching only on the candidates.

4.1 Preprocessing
The purpose of this efficient step is to reduce the number

of trajectories that have to be processed subsequently. As
detailed in the Sections 6.1 and 6.2.1 of [11], a pattern is
converted into an NFA whose transition triggers represent
atoms. In order to apply the index for a filtering step, we
first identify the transitions that are mandatory for the au-
tomaton to reach any of the final states. We denote them
as crucial transitions from now on. The contents of the cor-
responding atoms are retrieved from one (or both) of the
indexes, and only the resulting tuple ids are passed to the
exact matching step.

4.1.1 Identifying an NFA’s Crucial Transitions

Before determining the crucial transitions of an NFA, we
have to guarantee its number of possible paths to a final
state to be finite, otherwise the subsequent algorithm would
not necessarily terminate. Hence, we need to eliminate the
symbols + and * from the pattern, since they are the cause for
loops. If they represent wildcard pattern elements, they can
be simply neglected since they carry no information relevant
for an index operation. For a regular expression of the form
[...]+, only the repetition symbol is deleted, since the term
has to be traversed at least once for a matching. However,
a regular expression followed by a *, not necessarily being
traversed, is completely omitted. After these manipulations,
a simplified NFA is computed from the modified pattern.

Regarding the pattern P0, the abovementioned method
results in the following pattern P ′

0 without loops:

Y (2014-05 intersect{"Havel", "Tiergarten"})
Z [(2014-05-17-20:00~2014-05-17-23:55 "Yorck") |

(_ superset{"Havel"}) (_ superset{"Tegel"})]

The automaton resulting from this simplified pattern is
shown in Figure 4. Note that the transition numbers remain
unchanged compared to the complete NFA.

In the following phase, we detect every path through the
simplified NFA leading to a final state. The number of such
paths is finite due to the previous manipulation.

Algorithm 1 collects all paths leading from the initial state
0 to any of the final states. Each element of Paths is a tu-
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Figure 4: The Simplified NFA Computed from P ′

0

ple consisting of a set pelems and a state pstate. Every set
pelems represents a path through the NFA – more exactly, a
sequence of transition triggers, which is equivalent to a se-
quence of atoms. The iteration continues as long as there are
non-final states in Paths, in other words, it finishes when
all paths have reached their destination. Note that without
the second while loop condition, the loop would not be exe-
cuted. Finally, the intersection of all paths pelems results in
a set containing exactly the transitions that were executed
in each of the found paths. Hence, we computed the set of
atoms that are necessary for a successful matching.

Algorithm 1: findCrucialElements

Input: a loop free NFA δ and a set Γ of final states;
Output: a set of integers representing the crucial

elements
1 let Paths = {(∅, 0)};
2 while {pstate | p ∈ Paths} 6⊂ Γ ∨ Paths = {(∅, 0)} do
3 foreach p ∈ Paths do // loop over current paths

4 foreach t ∈ δ(pstate) do // loop over transitions

5 q ← p;
6 qelems ← qelems ∪ {tatom};
7 qstate ← ttarget;
8 Paths← Paths ∪ {q};

9 return
⋂

p∈Paths
pelems;

We now apply Algorithm 1 to the automaton created from
the simplified pattern P ′

0. Initially, only state 0 is active,
and there is only one transition leading to state 1, which
is triggered by the atom P0[0]. Hence, after the first it-
eration of the while loop, the set Paths equals {({1}, 1)}.



From state 1, there are two possible transitions, resulting in
Paths = {({1, 2}, 2), ({1, 3}, 3)} after the second while loop.
Subsequently, Paths is updated to {({1, 2}, 2), ({1, 3, 4}, 4)},
so the while loop terminates, since 2 as well as 4 are final
states. The returned set is the intersection of {1, 2} and
{1, 3, 4}, i.e., {1}. This means, the atom P0[1] is the only
one that has to be matched by any trajectory to enable a
complete match.

If P [a′] is non-crucial, i.e., if there is a path through the
NFA not including P [a′], we must not use it to filter the
trajectory collection. No trajectory may be deactivated due
to index results for P [a′], since it could match along another
path that does not contain P [a′].

4.1.2 Filtering the Trajectory Collection

Subsequently, we iterate over the set of crucial elements
and apply the indexes wherever possible. That is, for each
non-empty crucial element P [a] with indexable contents, the
vector indexResult[a] is filled according to Section 3.3. At
the same time, we update a boolean vector A indicating
which tuple ids are still present. For example, if a tuple id
has index results for P [a] but not for P [a′], it is removed
from earlier results and, with the help of A, excluded from
further consideration. As no exact matching was performed,
false positives cannot be avoided in this phase. However,
this method ensures that we process only trajectories whose
tuple id occurs in the index results for the crucial pattern
elements, so it remarkably reduces the dataset.

Regarding our continuous example pattern P0, we identi-
fied P0[1] to be the only crucial atom. Therefore, we first re-
trieve the two labels "Havel" and "Tiergarten" from the trie.
The label "Havel" yields the tuple ids 1 and 3. The search
for "Tiergarten" is canceled without result after reading the
character "i", since after the first character "T", there is only
a branch for "e". Due to the set relation intersect, at least
one of the labels has to match at least one of the labels from
a trajectory unit. Hence, the tuple ids resulting from the
symbolic value index are computed by ∅ ∪ {1, 3} = {1, 3}.

In a second filter step, the time intervals of the crucial
atoms are looked up in the interval tree. Concerning P0, we
search for the trajectory units (including tuple ids) whose
time interval lies in or overlaps the period of May 2014. The
R-tree yields all existing units from the trajectory collection,
so there is no further filtering, and the tuple ids 1 and 3 are
the result of the preprocessing.

The vector indexResults[1] containing the index search
results induced by the atom P0[1] has the following form:

slot / tuple id 0 1 2 3

units ∅ {0, 1} ∅ {0, 1}
pred 0 0 - 1
succ 1 3 - 0

4.2 Exact Matching
As stated before, our main challenge consisted in extend-

ing the index-supported pattern matching with simplified
patterns (no regular expressions, no conditions) as men-
tioned in Section 6.2.8 of [11], to a general approach that
processes all kinds of patterns. The use of regular expres-
sions increases the complexity of the computation, since the
number of paths traversing the NFA is not limited to 1 but
can be infinite. Moreover, if the pattern contains conditions,
further information have to be stored, and Secondo must
be used to evaluate the corresponding queries.

The matching of a pattern P with a trajectory collection
M requires a parallel traversal of a path from the start state
to a final state of the NFA for P as well as the sequence of
units of everyM ∈M. Hence, during the process, we always
hold a set of active NFA states and have read (conceptually,
not physically) an initial subsequence U of the units of each
M . Such a state of scanning M is exactly represented by an
IMI instance, which expresses U in terms of the next unit
to be read. In case of a preceding wildcard transition in the
NFA, the next unit is only a lower bound (range = true in
this case). For each M , several ways of matching P may
exist. Therefore, for each trajectory at a given NFA state,
multiple IMI objects must be maintained, each representing
one possible matching. Initially, the only NFA state is 0,
and for every M (if active after the filtering phase), the
subsequence U is empty, so the next unit to be read is 0.

In the following, we present the algorithms for the match-
ing process in execution order, as far as possible, before they
are applied to the continuous example.

4.2.1 Initialization

For every tuple id id that passes the filtering detailed in
Section 4.1.2, an instance of the class IMI is created and
inserted into the vector slot iM [0][id]. Note that the first
position indicator represents the NFA state, and initially,
the only active state is 0. The IMI attributes are initial-
ized as follows: next is set to 0, range equals false, and the
other two variables remain empty. At the same time, an in-
teger activeTuples, holding the number of currently active
trajectories that equals 0 initially, is incremented. If a tra-
jectory matches the pattern, its tuple id is inserted into the
set success of integers, which is empty in the beginning.

In terms of the trajectory collection from our continuous
example, two IMI instances are created and inserted into the
slots iM [0][1] and iM [0][3], respectively, see Figure 3. The
value activeTuples is set to 2.

4.2.2 Applying the NFA

The subsequent algorithm performs a loop over the NFA,
as long as there are still trajectories that have not been com-
pleted. In contrast to our previous approach, Algorithm 2
does not process trajectories in a linear way. Instead, it it-
erates over the automaton and applies its transitions if the
index results fit the previously saved matching information
from iM ′. At the same time, the new IMI data is stored into
iM , the result set success is extended if a match occurs, and
activeTuples is decremented after every matching decision.

For each currently active state s ∈ States, the algorithm
tries to apply every possible transition that originates from
s. More precisely, such a transition t ∈ δ(s) can be executed
iff the corresponding atom tatom matches at least one of
the IMI instances of iM ′[tsource]. This is verified in the
procedures invoked in lines 10 and 12, respectively, updating
iM , success and activeTuples. The set of active states is
refreshed accordingly. As soon as activeTuples equals 0,
the algorithm stops. According to line 9, further processing
depends on the contents of P [tatom].

The purpose of the data structure from Section 3.4 is to
hold all necessary information for each of the possible match-
ing paths. Specifically due to the use of regular expressions
that allow steps backwards in the NFA, it is required to en-
able multiple IMI instances for every NFA state and every
trajectory. The structure is crucial for the matching deci-



Algorithm 2: applyNFA

Input: a pattern P ;
an NFA δ with a set Γ of final states;
an integer activeTuples;
iM , see Section 3.4;

Output: a set success of integers, initially empty;
1 States← {0};
2 while activeTuples > 0 do

3 States′ ← States;
4 States← ∅;
5 iM ′ ← iM ;
6 clear iM ;
7 foreach s ∈ States′ do // loop over current states

8 foreach t ∈ δ(s) do // loop over transitions

9 if P [tatom] has indexable contents then
10 if indexMatch(iM , iM ′[tsource], . . . )

then States← States ∪ {ttarget};

11 else

12 if nonIndexMatch(iM , iM ′[tsource], . . . )
then States← States ∪ {ttarget};

13 return success;

sion: The trajectory M with tuple id id matches the pattern
P while a final state s is active iff there exists an IMI ob-
ject in the set iM [s][id] which is finished, i.e., whose range

value is true or where next = |M | holds. Finally, we call an
instance exhausted if next = |M | is true during a non-final
state, meaning that a match is not possible anymore. When
the exact matching process deactivates a tuple id, we apply
the same strategy as described at the end of Section 3.3.
Just replace indexResult by iM , and clear the set of IMI
instances instead of the unit positions. In the following, the
algorithms indexMatch and nonIndexMatch are detailed,
before we show that Algorithm 2 always terminates.

First, we turn towards the algorithm nonIndexMatch

that is invoked in case the atom related to the currently con-
sidered transition is a wildcard (1), that is, * or +, or empty
(2), i.e., (_ _), or non-empty but containing no indexable
data (3), for example, ({monday, june} _). For processing
one of these elements, we have to iterate over all existing
IMI instances stored in iM ′[tsource]. Since (1) and (2) guar-
antee a match with any trajectory unit, every IMI instance
has to be updated. In case of (3), a positive matching test of
the atom against the respective trajectory unit is required
for the update. More specifically, if range is false, next is
incremented by 1 and range is set to true for (1) and re-
mains false for (2) and (3). If the range flag is originally
true, i.e., if any unit u having u ≥ next inside the trajectory
could match P [tatom], we only increment next by 1 for case
(1). Otherwise, for every unit u ≥ next, a new IMI instance
having range = false and next = u + 1 is created (for (3),
this happens only if u matches P [tatom]). The algorithm
returns true iff at least one updated has been conducted.

On the other hand, indexMatch is invoked if Algorithm 2
processes an atom with index-relevant contents. If P [tatom]
is considered for the first time, we have to retrieve and to
store the index results for it in the structure indexResult,
as detailed in Section 3.3. Afterwards, we iterate over the
active slots (tuple ids) of indexResult[tsource], finding a set
of unit positions u in each slot id. For each u, it is checked

whether a matching IMI instance exists in iM ′[tsource][id].
That is, if range is false, next needs to equal u. Otherwise,
it suffices if next ≤ u holds. In both matching cases, a new
IMI object with range = false and next = u+1 is created. A
further check is required if P [tatom] includes non-indexable
time specifications. If there is a mismatch with the unit at
position u, no IMI instance is generated.

After any update or creation of an IMI object, it is manda-
tory to determine whether it is finished or exhausted. The
former means that the trajectory with tuple id id matches
the pattern, so we deactivate id (see Sections 3.3, 3.4), in-
sert id into the set success, and ignore the finished IMI
instance. Beyond that, activeTuples is decremented by 1.
An exhausted IMI object is also neglected. If none of the
constraints holds, it is inserted into the set iM [ttarget][id].

Hence, we deduce that Algorithm 2 terminates after no
more than max{|M | |M ∈ M} iterations of the while loop.
However, this bound only has a theoretical meaning.

For the sake of efficiency, iterations over the set of active
states as well as over the respective transition set are con-
ducted in reverse order, i.e., we start with the highest active
state (l. 7) and with the transition having the highest tatom
value (l. 8). Causing an earlier decrementation of the value
activeTuples, this technique increases the probability of a
faster matching decision.

4.2.3 Condition Processing

If the pattern includes conditions, further information has
to be held in each instance of the class IMI. The attribute
binding is necessary for an evaluation of the conditions by
Secondo (see Section 6.2.3 of [11] for details), while lastV ar

is used to keep track of the binding variable that was changed
most recently, in order to extend the binding correctly.

When an IMI instance is created or updated (except for
the initialization), the attribute binding from the source in-
stance is extended, depending on the variable var of the cur-
rent atom and lastV ar, the previously updated variable. We
consider two (non-exclusive) cases: (1) For equal and non-
empty variables var and lastV ar, the binding of lastV ar

is extended until next − 1, which is the last unit that was
matched. (2) Now assume var 6= lastV ar. Unless lastV ar

is empty, we extend the binding of lastV ar to next − 2
(one unit before the most recently matched one). More-
over, if var exists (meaning no contradiction to the previous
case), the mapping position binding(var) is assigned the pair
(next − 1, next − 1). In any case, the attribute lastV ar in
the new instance is assigned the current variable var.

If the IMI object is finished and belongs to a final state
(i.e., a match in the condition-free version), the current bind-
ing is passed to the condition evaluation, where the second
value of binding(lastV ar) is extended to |M | − 1 if range
is true, i.e., if the matching was completed with a wildcard
element. If the binding fulfills every condition, we treat the
IMI instance and the tuple id like in the condition-free case.
Otherwise, the IMI object is not processed anymore.

4.2.4 Working with the Continuous Example

In Table 1, we show the application of the presented tech-
nique to the continuous example, i.e., to the situation at the
end of Section 4.2.1, using the following notation: The val-
ues true and false are abbreviated by t and f , respectively.
A vector indexResult[e] is denoted as a sequence of a tuple
id and a set of units. An IMI instance is expressed in tuple



Table 1: Applying Algorithm 2 to the Continuous Example

After initialization: States = {0}, iM active at {1, 3}, success = ∅, activeTuples = 2

Transition indexResult[tatom]; Tuple No. of Source IMI New IMI Instance Abbrev. /
id: set of units Id Units Instance Explanation

0
1
−→ 1 1 : {0, 1}, 3 : {0, 1} 1 2 (0, f,∅,−) (1, f, {Y 7→ [0, 0]}, Y ) (1)

3 3 (0, f,∅,−) (1, f, {Y 7→ [0, 0]}, Y ) (2)

0
0
−→ 0 none 1 2 (0, f,∅,−) (1, t, {X 7→ [0, 0]},X) (3)

3 3 (0, f,∅,−) (1, t, {X 7→ [0, 0]},X) (4)

After first iteration: States = {0, 1}, iM active at {1, 3}, success = ∅, activeTuples = 2

1
3
−→ 3 1 : {0, 1}, 3 : {0, 1} 1 2 (1) (2, f, {Y 7→ [0, 0], Z 7→ [1, 1]}, Z) exhausted

3 3 (2) (2, f, {Y 7→ [0, 0], Z 7→ [1, 1]}, Z) (5)

1
2
−→ 2 3 : {2} 1 2 (1) none mismatch

3 3 (2) none mismatch

0
1
−→ 1 1 : {0, 1}, 3 : {0, 1} 1 2 (3) (2, f, {X 7→ [0, 0], Y 7→ [1, 1]}, Y ) exhausted

3 3 (4) (2, f, {X 7→ [0, 0], Y 7→ [1, 1]}, Y ) (6)

0
0
−→ 0 none 1 2 (3) (2, t, {X 7→ [0, 1]},X) exhausted

none 3 3 (4) (2, t, {X 7→ [0, 1]},X) (7)

After second iteration: States = {0, 1, 3}, iM active at {3}, success = ∅, activeTuples = 1

3
4
−→ 4 none (id 1 deactivated)

1
2
−→ 2 3 : {2} 3 3 (6) (3, f, {X 7→ [0, 0], Y 7→ [1, 1], Z 7→ [2, 2]}, Z) match

After third and final iteration: States = {2}, iM completely inactive, success = {3}, activeTuples = 0

form. If there is a match, the new or updated IMI object
either is assigned a number in parentheses, or it is dropped
due to exhaustion or a complete match.

In the first line of Table 1, due to the transition, the con-
sidered atom is P0[1]. The index(es) yield the tuple ids 1
and 3 with the units 0 and 1 for each of them. Regarding
id 1, in iM ′[0][1] we find the initially created IMI instance
(0, f,∅,−), matching the unit 0. Hence, next is set to 1, the
binding contains the assignment of Y to the interval [0, 0],
and lastV ar now equals Y . We insert this new IMI instance
into iM [1][1], for the target state 1 and the tuple id 1. The
tuple id 3 is processed similarly. At the bottom line of Ta-
ble 1, we have next ≥ size for tuple id 3, meaning that the
IMI instance is finished, and state 2 is final (bold font). For
a pattern with conditions, the current binding has to fulfill
them for a complete match. Each of the variables X and
Z is bound to one trajectory unit, hence both cardinalities
amount to 1, and the equation is fulfilled.

5. EXPERIMENTAL EVALUATION
In the following, we present the evaluation of our proposed

model by means of a dataset based upon the BerlinMOD [7]
data generator and a variety of patterns. All experiments
were carried out on an AMD Phenom II X6 3.3 GHz proces-
sor with 8 GBytes of main memory, running openSUSE 12.3.
From this environment, Secondo was assigned one proces-
sor core and half of the available memory.

5.1 Dataset Generation and Properties
Our goal was to create a dataset being representatively

large as well as comprehensible, in order to provide a com-
prehensive evaluation of our work. Hence, we chose to apply
the BerlinMOD generator with a scale factor of 1.0, yielding
145,000 non-stationary raw trajectories (mpoint objects in
Secondo). Each of them was transformed into a symbolic
trajectory of type mlabels similarly to Section 7.2.2 of [11],

with the help of Parallel Secondo [14, 15].
In the mentioned approach, each unit u of a trajectory

had been labeled with the name of the street closest to the
raw unit’s centroid cu. Now, for each cu, beyond the name of
the closest street, we computed the nearest river, restaurant,
cinema, bar, natural area, body of water, place of interest,
metro station, and train station along with their distances to
cu. Each name with a distance of less than 1 km was added
to the symbolic unit. If the sets of names were equal for a
sequence of units, the existing symbolic unit’s time interval
was extended instead of adding new units. All the applied
categories are included in BerlinMOD as separate relations,
containing (among others) the name and the geometry for
each object (type region or line). Employing an R-tree for
each category, this process was fulfilled in roughly 11 hours
on a 12 disk cluster, resulting in 145,000 symbolic trajec-
tories containing 13 million units with 89 million labels in
total. The number of units per trajectory ranges from 1 to
400, with an average of almost 100. Although the symbolic
trajectories contain strings with additional information from
numerous relations, they occupy 2.6 GBytes of disk space,
compared to 10.8 GBytes for the original raw trajectories.

5.2 Evaluation Results
The experiments focus on the effects of a growing number

of queried trajectories as well as of an increasing trajectory
size. Moreover, we apply patterns with different levels of
complexity and selectivity. The precise query runtimes are
displayed in Table 2, while the patterns are listed below:

P1 = (2007-06-11~2007-06-13 superset{"Kolk"}) *

P2 = A + B (~2007-06-20 intersect{"Sonnenallee"})
C + D (_ intersect{"Neukölln"}) E + //
get_duration(A.time) <
get_duration(C.time) + get_duration(E.time)

P3 = [(2007-06-01~2007-06-12 intersect{"BKA",
"Liebesinsel", "Tegel"}) |
(2007-06-02~ superset{"Kottbusser Tor"})] *



Table 2: Precise Runtimes and Selectivities of the Experiments

Growing Trajectory Collections Different Trajectory Sizes

Runtime (sec.) / Selectivity Runtime (sec.) / Selectivity
|M| P1 P2 P3 avg. |M | P1 P2 P3

0 0.003 – 0.004 – 0.003 – 1 0.013 0 0.024 0 0.075 0
10,000 0.023 0.1% 0.163 0.47% 0.215 1% 50 0.02 0.03% 0.478 1.34% 0.157 1.1%
20,000 0.044 0.11% 0.402 0.58% 0.412 0.99% 100 0.027 0.1% 0.178 0.14% 0.263 1.2%
30,000 0.062 0.1% 0.553 0.57% 0.606 0.95% 150 0.026 0.11% 0.137 0.17% 0.286 0.86%
40,000 0.08 0.08% 0.671 0.54% 0.803 1.02% 200 0.045 0.32% 0.081 0.24% 0.233 0.76%
50,000 0.1 0.1% 0.833 0.56% 1.013 0.98% 250 0.034 0.07% 0.058 0.02% 0.341 0.98%

5.2.1 Growing Trajectory Collection Sizes

In order to generate a suitable data, six subrelations with
cardinalities ranging from 0 to 50,000 are randomly taken
from the main dataset. Hence, the average trajectory size
per subset is nearly constant and equals almost 100. The
trajectory collections are queried with patterns of different
selectivities (0.1 % for P1, 0.5 % for P2, and 1 % for P3).
The corresponding results are depicted in Figure 5.

Figure 5: Runtimes caused by a growing number of

trajectories

The graphs illustrate that the index-supported pattern
matching is linear in the number of considered trajectories.
Certain patterns cause sublinear runtime curves (as slightly
hinted by the graph of P2). However, due to the initializa-
tion of the vectors indexResult and iM as well as further
auxiliary vectors for the retrieval of index results, the lin-
ear computation cost is inevitable. As expected, a higher
selectivity induces a steeper curve, since more trajectories
remain active, thus more vector slots have to be considered.
Note that the condition of P2 requires Secondo query exe-
cutions and, most probably, additional matching attempts,
thus also increases the slope.

5.2.2 Different Trajectory Sizes

For the subsequent test series, we created subrelations
from the original dataset with equal cardinalities (10,000
trajectories each) but with different trajectory sizes. Fig-
ure 6 shows the computation time graphs for this experi-
ment, applying the same patterns as in the previous series of
experiments. Note that the number of units per trajectory,
displayed on the abscissa, is not an exact value (excluding
the value 1). The respective figure represents the average of
the trajectory sizes, allowing a deviation of 10 percent.

As stated before, the maximal number of iterations of the

Figure 6: Runtimes depending on different trajec-

tory sizes

main loop in Algorithm 2, which equals the size of the largest
of the processed trajectories, is merely a theoretical limit. If
a useful pattern is applied, the computation cost is inde-
pendent from the number of units per trajectory, except for
the effect of a higher number of index results that have to
be considered. Since the queried trajectory collections are
completely different to those from Section 5.2.1, the applied
patterns yield other selectivities (see Table 2 for details).
Given a constant number of trajectories, the runtime does
not depend on the trajectory size anymore, meaning a major
improvement compared to the results of [11].

5.3 Advantage over Previous Approach
In order to measure the efficiency gains compared to the

pattern matching approach without index support, all above-
mentioned experiments were conducted with the operator
matches from [11]. These runtimes were divided by the
runtimes from Sections 5.2.1 and 5.2.2, respectively. As a
result, the queries involving the pattern P2 caused the high-
est difference (up to 700 times faster), since the wildcard at
its beginning ensures a complete scan of every trajectory in
the non-index-supported case. On the other hand, for P3

the advantage is less impressive (down to 2) due to the high
number of index retrievals for the specified labels.

When different numbers of trajectories are queried, as in
Section 5.2.1, the performance gain is more or less constant
(approx. 25 for P1, 90 for P2, and 4 for P3). However, for
the second series of experiments, the quotient increases with
a higher number of units per trajectory (11 to 33 for P1, 16
to 700 for P2, and 2 to 3 for P3). This reflects the fact that
the performance bottleneck caused by the linear trajectory
scan has been removed.



6. CONCLUSIONS
In [11], a comprehensive framework for a general represen-

tation of movement in a symbolic space was introduced. It
included an expressive pattern language for symbolic trajec-
tories and a pattern matching implementation. However, the
use of an index structure was restricted to patterns without
conditions and regular expressions, and the index enabled
solely the storage of labels, i.e., text items.

Beyond an extension of the pattern language, the contri-
bution of this paper comprises the design and the imple-
mentation of a new pattern matching algorithm based on
the use of two different index structures, one for symbolic
values, i.e., labels or places, and one for time intervals. Our
method avoids the expensive linear scan of the considered
trajectories that was required before. Compared to our pre-
vious work, in most of the cases the computation cost has
been reduced by more than an order of magnitude. The
new approach is applicable to all kinds of patterns that are
valid according to our pattern language. To our knowledge,
there is no comparable work using a double index for pattern
matching on symbolic trajectories.

Future work will focus on privacy issues related to sym-
bolic trajectories. In this context, we will analyze whether
and how the raw movement data can be computed from sym-
bolic trajectories containing different types of information.
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