
Eddy: An Error-bounded Delay-bounded Real-time Map
Matching Algorithm using HMM and Online Viterbi Decoder

Guanfeng Wang and Roger Zimmermann
School of Computing, National University of Singapore

Singapore 117417

{wanggf,rogerz}@comp.nus.edu.sg

ABSTRACT

Real-time map matching is a fundamental but challenging
problem with various applications in Geographic Informa-
tion Systems (GIS), IntelligentTransportation Systems (ITS)
and beyond. It aims to align a sequence of measured lati-
tude/longitude positions with the road network on a digital
map in real-time. There exist a number of statistical match-
ing approaches that unfortunately either process trajectory
data offline or provide an online solution without an infi-
mum analysis. Here we propose a novel statistics-based on-
line map matching algorithm called Eddy with a solid error-
and delay-bound analysis. More specifically, Eddy employs
a Hidden Markov Model (HMM) to represent the spatio-
temporal data as state chains, which elucidates the road
network’s topology, observation noises and their underlying
relations. After modeling, we shape the decoding phase as a
ski-rental problem, and an improved online-version Viterbi
decoding algorithm is proposed to find the most likely se-
quence of hidden states (road routes) in real-time. We re-
duce the candidate routes search range during the decoding
for efficiency reasons. Moreover, our deterministic decoder
trades off latency for expected accuracy dynamically, with-
out having to choose a fixed window size beforehand. We
also provide the competitive analysis and the proof that our
online algorithm is error-bounded (with a competitive ratio
of 2) and latency-bounded. Our experimental results show
that the proposed algorithm outperforms widely used exist-
ing approaches on both accuracy and latency.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS ; F.2.2 [Analysis of Algorithms

and Problem Complexity]: Nonnumerical Algorithms
and Problems—Pattern matching

Keywords

GIS; trajectory data; map matching; Hidden Markov Model;
online Viterbi decoding; competitive analysis; real-time sys-
tem

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).

SIGSPATIAL ’14, November 4–7, 2014, Dallas/Fort Worth, TX, USA.

ACM 978-1-4503-3131-9/14/11.

http://dx.doi.org/10.1145/2666310.2666383.

1. INTRODUCTION
Recently, an increasing number of real-time positioning

data are collected – a trend that is driven by the ubiqui-
tous availability of localization sensors attached to moving
objects such as vehicles and pedestrians. This type of data
is continuously acquired and effectively utilized by a broad
range of applications. Locations not only provide a pair of
longitude/latitude coordinates, but also indicate the spatial
context of the moving objects or mobile devices if a sur-
rounding geographic information database is available. Sys-
tems including Geographic Information System (GIS), In-
telligent Transportation System (ITS) and Location-based
Services (LBS) have widely employed such context to cus-
tomize profile settings, optimize complex operations, etc. To
better interpret these useful contexts, a map matching al-
gorithm that integrates the positioning data (from GPS or
other sensors) with the spatial road network data plays a
fundamental role [20].

The input of a typical map matching algorithm is a tempo-
ral sequence of location points, i.e., a trajectory. In practice,
most raw location information provided from sensors is not
highly accurate or not easily interpretable due to two main
reasons: (a) the inherent errors and noise generated by the
localization sensors, and (b) the sampling methods employed
by the embedded systems [16]. The accuracy issue of various
sensors, such as GPS, WiFi and cellular signal measurements
(e.g., GSM), has been extensively studied. Generally, GPS
offers good accuracy to the level of around 10 meters and
is available world-wide. Other techniques are feasible in ur-
ban environments, but their accuracy deteriorates in rural
areas [7]. Although the standard deviation of GPS location
inaccuracy can be quite low, serious deviations are observed
due to varying surrounding environmental conditions, e.g.,
tree covers, high buildings, and other problems [6]. In addi-
tion, the use of low-cost, consumer-grade sensors in current
mobile devices or vehicles is another inevitable reason for
the accuracy degradation. Therefore, a map matching algo-
rithm is desirable to help improve the positioning accuracy
if the respective digital map is reliable, and to associate the
coordinates with the surrounding spatial entities seamlessly.

The map matching problem is illustrated in Figure 1. The
red dots such as r1, r2 and r3 are the measured raw location
coordinates. The task of map matching is to find the true
roads that the moving object is on. As illustrated, it could
be a challenging problem since either the green-dots trajec-
tory (p′1, p

′
2 and p′3) or the blue-dots trajectory (p̂1, p̂2 and

p̂3) can be the actual driving path, and it is impossible to tell
by only analyzing separate samples. A number of statistics-

r
1

r
2

r
3

p’
1

p’
2

p’
3

1

2

3

Figure 1: Illustration of the map matching problem.

based map matching algorithms were proposed and devel-
oped in recent years. They employed statistical models to
solve various map matching problems and distinctly showed
the ability to cope with noisy GPS measurements effectively.
Particularly, algorithms based on a Hidden Markov Model
(HMM) and its variants have been adopted due to their
capabilities of concurrently evaluating multiple hypotheses
during the mapping procedure [16, 27, 18, 8]. They have also
been proven to be tolerant against highly noisy observations,
e.g., the location fingerprints from GSM towers [23], and the
accuracy degradation owing to the increase of a trajectory’s
temporal sparseness [18, 16].

In the context of Markov information sources and hid-
den Markov models, the Viterbi algorithm, a dynamic pro-
gramming algorithm, is widely used for decoding such mod-
els. This algorithm finds the most likely sequence of hidden
states for the given observation sequence [25]. It computes
a forward pass over the input sequence to compute proba-
bilities, followed by a reverse pass to compute the optimal
state sequence. Therefore, all the data must be obtained be-
fore any of the hidden states can be inferred. The result of
the underlying state chain is called a Viterbi path. However,
when applied to a real-time or an interactive system, one
noticeable disadvantage of the Viterbi algorithm is that the
optimal state sequence cannot be computed until the entire
input has been observed.

For latency-sensitive applications such as route navigation
and traffic incident detection, it is unacceptable to receive
map matching results, e.g., on which road arc the truck
is driving, after the whole itinerary is finished. In HMM-
based map matching, the key input and output of a tra-
ditional Viterbi decoder are the location observations (e.g.,
GPS measurements) and the most likely road trajectory of a
moving object. Conceptually, the input observation stream
could be extremely long, or even infinite, which leads to
a significantly longer latency than a timely response that
systems may require. Therefore, the traditional Viterbi de-
coder is not suited for real-time applications where there are
strong latency constraints.

Meanwhile, accuracy is also another crucial factor for most
location-based applications. To shorten the mapping delay,
a system has the freedom to match raw location measure-
ments greedily, mapping each sample immediately as an ex-

treme case, without waiting for enough future observations.
However, it is undesirable to give up the accuracy increase
gained by map matching techniques or even worse, pick an
incorrect road path as output. The risk of selecting a false
road may cause serious issues in real system such as inci-
dent detection. Any inaccurate output also raises the ex-
pected monetary cost in some enterprise services, e.g., logis-
tics truck monitoring, fleet scheduling and others. Thus, an
intelligent algorithm which understands and wisely practises
the balance between accuracy and latency is desirable.

Here we propose Eddy, a novel real-time HMM-based map
matching system by using our advanced online decoding al-
gorithm. We take the accuracy-latency tradeoff into design
consideration. Our algorithm chooses a dynamic window to
wait for enough future input samples before outputting the
matching result. The dynamic window is selected automati-
cally based on the current location sample’s states probabil-
ity distribution and at the same time, the matching output
is generated with sufficient confidence. Our contributions in
this work include:

• An improved real-time HMM-based map matching sys-
tem is presented which is novel with respect to its
tradeoff analysis and dynamic window selection algo-
rithm during the decoding phase.

• A competitive analysis and proof illustrating that our
online decoding algorithm is error-bounded (with com-
petitive ratio of 2) and latency-bounded.

• Accuracy evaluation and latency comparison between
our map matching system results and existing online
decoding algorithm outputs.

The rest of this paper is organized as follows. Section 2
provides a survey of related work. The preliminaries and
formal definitions related to HMM-based map matching are
presented in Section 3. Section 4 contains a brief summary
of existing online Viterbi decoders. The detailed description
of the proposed online decoding algorithm and its compet-
itive analysis are also reported in this section. Section 5
presents the experimental evaluation and provides illustra-
tions of map matching accuracy and latency improvement.
Finally, Section 6 concludes the study and discusses open
issues.

2. RELATED WORK
A number of map matching algorithms have been pro-

posed by researchers using different techniques such as ge-
ometric analysis, topological analysis, probabilistic theory
and so forth. The geometry-based map matching algorithms
utilize the shape of the spatial road network without consid-
ering its connectivity [2, 26], so that the map matching result
is greatly affected by measurement errors. The topology-
based map matching algorithms make use of the geometry
as well as the connectivity and contiguity of the road arcs in
the road network [10, 21, 5]. They leverage the topological
information to reduce the candidate matches for each loca-
tion sample, and develop a weighting system to measure the
similarities between the geometry of a portion of the trajec-
tory and candidate road arcs to find the most likely road
arcs. However, this category of algorithms is very sensitive
to an increase of the sampling interval. A graph-based map
matching algorithm considers the entire trajectory as a pure

Figure 2: System overview of Eddy.

graphical curve and looks for a path in the road network
that is as close as possible to the curve [1, 5]. However, it
is usually a global matching procedure and has difficulty to
generate arcs in real-time. A comprehensive review of 35
map matching algorithms for navigation applications since
1989 is presented by Quddus et al. [20].

Statistics-based map matching algorithms take advantage
of statistical models, such as Kalman Filter [12, 19], parti-
cle filters [14], HMM [3, 18, 24], etc., to solve various map
matching problems. These algorithms are able to cope with
noisy location measurements effectively. However, only a
few studies have focused on the real-time decoding issue of
the HMM model. Goh et al. proposed a variable sliding
window scheme to provide an online solution while the de-
lay bound of road arc generation is not guaranteed [9]. Ad-
ditionally, the tradeoff relation between the accuracy and
latency from online decoding strategies has not been exten-
sively studied yet.

3. HMM-BASED MAPMATCHING
We first give the preliminaries and the formal definitions

of the map matching problem using HMM.

Definition 1 (Road Network) : A road network G(V,E)
represents a finite street system which consists of a set of
one-way or two-way road curves, called road arcs, in 2D
Euclidean space. Each road arc ei (ei ∈ E) is assumed to be
piecewise linear and can be characterized by a finite sequence
of points Ai = (ai1, a

i
2, ..., a

i
m). The end points here ai1 and

aim are nodes and belong to the vertex set V . Other points
in the middle are referred to as shape points and each ei has
some properties such as speed constraints.

Definition 2 (Location Trajectory) : A location trajec-
tory L = {l1, l2, . . . , ln} is a sequence of measurements from
localization sensors (such as GPS) according to the time se-
quence T = {t1, t2, . . . , tn}. Each position measurement li
consists of a coordinate, i.e., longitude xi and latitude yi.
We further denote the ground truth of the position sequence
data as Gl = {g1, g2, . . . , gn} and their belonging road arcs
Ge = {γ1, γ2, . . . , γn}, Ge ∈ E.

Definition 3 (Match Point) : The match point mj
i of

a location measurement sample point li on a road arc ej
is the point that mj

i = argmin
∀m

j

k
∈Ajdist(m

j
k, li), where

dist(mj
k, li) returns the great circle distance between li and

any point on Aj , including end points and shape points.

Problem Statement : Given the road network G(V,E),
and the trajectory information L and T , find the most likely
path P = {p1, p2, . . . , pn}, where ai−1

m = ai1 and P ⊂ E,
which is a subset of connected road arcs from G, along with
each pi’s mapping output time T ′ = {t′1, t′2, . . . , t′n}.

Figure 2 illustrates the system overview of Eddy. It takes
the location measurements and road network databases as
input. The positioning data should be instantly uploaded
since we focus on the latency-sensitive applications and ser-
vices in this study. Eddy results in a real-time streaming of
road arcs with guaranteed accuracy and latency level.

Our system consists of two parts. We first present the road
arc traveling problem as a hidden states transition model.
Based on the framework of HMM, the random variable et
and lt are a hidden state and an observation at time t, re-
spectively (see the state transition flow in Figure 3). In the
context of the map matching problem, we model every road
arc ei as a hidden state and each location measurement lt
as an observation emitted by the hidden state. Two types
of arrows in this figure (horizontal and vertical arrows) indi-
cate two important parameters in the model. The horizontal
arrow represents the transition probability between two con-
secutive hidden states. It quantifies the likeliness that a
vehicle is moving from road et−1 to road et. Each vertical
arrow represents the emission probability between the hid-
den state and the observation. It represents how likely the
measurement lt can be observed if the vehicle is driving on
a certain road arc.

The second part is the online Viterbi decoding algorithm
(see the trellis in Figure 3) which is improved based on our
quantitative accuracy-latency tradeoff analysis. During the
decoding phase, candidate arc paths are sequentially gen-
erated and evaluated on the basis of their likelihoods. Our
goal is to find the maximum likelihood path over the Markov
chain that has the highest joint emission/transmission prob-
abilities and still holds the latency bound.

Formally, the map matching problem is modeled by tran-
sition, emission and initial probability :

λ = (T ,M, π)

The state set is E and the observation set is L. In our model,
the initial probability πi of being in state ei is defined as the
emission probability at this state. The emission probabil-
ity Mi(lt) of observation lt from state ei is obtained by
modeling the positioning measurement noise as a Gaussian

Figure 3: Illustration of state transition flow and Viterbi
decoding algorithm.

distribution [17]:

Mi(lt) = IP(lt|pt = ei) =
1

σ
√
2π
e

dist(ei,lt)
2

2σ2

where σ is the standard deviation of the positioning mea-
surements. For example, when the input location obser-
vations are a sequence of GPS collected points, we use a
standard deviation of 10 meters to estimate the noise dis-
tribution [13]. dist(ei, lt) represents the shortest distance
from lt to the candidate road arc ei, which is the great cir-
cle distance on the surface of the earth between lt and its
corresponding match point mi

t.
We also utilize the distance differences between the ob-

servation pairs and match point pairs to estimate the tran-
sition probabilities based on the study from Newson and
Krumm [18]. Given two measurements lt−1, lt and their
match points mi

t−1, m
j
t , the transition probability of mov-

ing from ei to ej is:

T ij
t = IP(pt = ej |pt−1 = ei) = βe−β‖dl−dm‖

where dl is the great circle distance between two location
measurements and dm is the shortest route distance from
mi

t−1 to mj
t .

Within a dynamic window size, this model is later de-
coded by our improved online algorithm and outputs pt =
{ek, ek+1, . . . , ei}, where {ek, ek+1, . . . } is the route path be-
tween ei−1 and ei determined by the selected state transition
path. This subset of candidate road arcs are generated as
the most likely path for given observation lt. It guaran-
tees that the output paths are connected. In the following
descriptions, we omit the {ek, ek+1, . . . } part in equations

while we actually keep track of these connecting paths in
the real system.

4. IMPROVED ONLINE DECODING
The aim of decoding is to discover the hidden state se-

quence that is most likely to have produced a given obser-
vation sequence. In the context of map matching, our algo-
rithm needs to find the road arc sequence that is most likely
to generate the collected location measurements. The tra-
ditional Viterbi decoder is a trellis algorithm (see Figure 3)
defined as:

δt(i) = max
p1p2...pt−1

IP{p1, p2, . . . , pt−1, pt = ei, l1, l2, . . . , lt−1|λ}

which gives the highest probability that partial observation
sequence and state sequence up to time step t can have,
when the current state is i. The initialization and recursion
step of the decoding phase are defined as:

δ1(i) = πiMi(l1)

δt(j) = max
1≤i≤N

[δt−1(i)T ij
t]Mj(lt)

where N is the cardinality of candidate state set S, S ⊂ E.
Usually the scale of the road network in modeling, card(E),
is relatively large, which leads to inefficiency in decoding.
Eddy narrows down the set of candidate states within S to
accelerate the processing. We will elaborate on the details
of downsizing later.

In each time step, we normalize the probability distribu-
tion to ensure

∑N

j=1
δt(j) = 1. The backtracking pointer of

the selected hidden state in each step is as follows:

ψt(j) = argmax
1≤i≤N

[δt−1(i)T ij
t]

It terminates when the last observation is received and de-
coded by this procedure. The optimal path can be obtained
by backtracking from the last matching result:

pT = argmax
1≤i≤N

[δT (i)]

pt = ψt+1(pt+1)

However, this traditional type of decoder is not suited
for real-time systems since the optimal state sequence can-
not be computed until the entire input has been observed.
Thus, some HMM-based frameworks have proposed several
localizing strategies to fulfill the online output functionality.
We first briefly summarize two widely used online decoding
techniques and their limitations.

Fixed Segment/Sliding-Window

One simple and straightforward approach is to divide the
trajectory into fixed-sized sequences and handle them inde-
pendently. Given a desired latency Dd, the system simply
fixes the segment size or window size as ω ≤ Dd and applies
the Viterbi decoder to each segment/window to bound the
maximum system delay.

For algorithms using a fixed segment (FS), the decoder
waits for a segment-length of observations before decoding
on the time slice from t to t+ ω − 1. In the sliding window
method (FSW), the decoder considers only one new obser-
vation and moves the window forward one step a time. In
the example illustrated in Figure 4, given ω = 2, FS first

Figure 4: One example of the online Viterbi decoding pro-
cess.

reads measurements from t1, t2 in order, and generates the
output path, say P = {e4, e4}. The next observation input
of FS is from t3. Thus, the matching output delays for the
observations within the same segment are different. FS out-
puts the result for l1 with 1 time step delay (to wait l2 to
fill the segment size) while the matching delay of l2 is 0 (we
do not add the client-server transmission time and matching
processing time into the delay calculation since we focus on
the decoding delay in this study). Differently, given ω = 2,
FSW takes l3 as input right after generate the matching
result of l1, by sliding the window from [t1, t2] to [t2, t3].
The matching delay for all observations from this method is
constant (except for the last ω location measurements since
there is no future room to slide forward).

Usually, a larger window size leads to a more accurate
matching result but a longer output delay, and vice versa [16,
27, 22]. In the previous example, given ω = 3, the FS/FSW
decoder can generate an arbitrary path for segment/window
[t1, t3]. One plausible path could be P ′ = {e4, e4, e4}, illus-
trated as a lattice-pattern circle sequence. However, when
the decoder receives l4 , it would have enough knowledge to
recognize that P ′ is not a possible output. Although this
example is only an undesirable case and may not be trig-
gered frequently in real scenarios, it illustrates the tradeoff
we need to carefully deal with between the accuracy and
latency. This accuracy degradation occurring from the sub-
optimal path generation may arise due to certain pre-defined
segment- or window-size settings. Therefore, a decoding al-
gorithm which can intelligently choose a dynamic window
size is preferred.

Convergence State Discovery

Some HMM-based applications adopted another technique
named Convergence State Discovery (CSD, also called fusion
point finding), which is capable of finding the optimal path
before the entire trajectory is received [4, 9]. The basic
idea in this algorithm is to delay the label generation until
encountering a converging state like e2 at t3 in Figure 4.
When CSD reads the input observation l4 and calculates
related probabilities, it sees that all backtracking pointers
point to the same state, e2. It is easy to prove that all

t
1

t
2

t
3

t
4

e
1

e
2

e
3

e
4

Figure 5: Illustration of the state probability recalculation
after future location observations are received.

future surviving paths will contain the same sub-path before
this convergence state. Thus at time t4, CSD can output the
matching result for observations l1, l2 and l3, P = {e2, e2, e2}
(the dot-filled circle chain).

This algorithm has the advantage of holding the promise
that the generated output path is identical to the result
from the original Viterbi decoder. However, a serious issue
that this algorithm may encounter is the absence of a fusion
point in some real problems or some pre-defined probability
normalization rules. The matching delay is prolonged if the
convergence state comes late, and may persist to the end of
the observation sequence if no such point exists. In other
words, CSD is not delay-bounded and in the worst case de-
generates to the original Viterbi algorithm. Therefore, for
most latency-sensitive applications, this decoding algorithm
is unfit.

4.1 Improved Online Decoder based on Ski-
rental Model

To better interpret the tradeoff between the map matching
accuracy and latency, we model the online decoding phase
as a ski-rental problem in this study. The ski-rental model,
also known as “rent or buy” dilemma, is one of the funda-
mental problems in online algorithms. This problem was
first abstracted by Karlin et al. and used in a communi-
cation minimization algorithm [11]. In a classic ski rental
problem, a skier may rent skis for R per day or buy them
for B dollars. At the end of any day, the skier may break his
legs along with the skis, or in some other way irrevocably
finish skiing. The goal is to develop an online strategy min-
imizing the cost spent on skiing, where the cost is compared
to the cost of an optimal offline strategy for the same input.
The worst-case ratio between these two amounts is called
competitive ratio.

Inspired by one of its variants,“Multislope Ski Rental”[15],
we use a generalized model with a inconstant buying price
Bt that changes over time in our case. Obviously, the total
cost of skiing is

Cs = Bt̂ +R × t̂ (1)

where the skier decides to buy the skis in the evening of the
t̂th day.

Similarly, in our scenario, we model the accuracy penalty
and latency penalty as the buying price and rental rate, re-
spectively. We need to decide whether to stay in the current
decoding state and pay a certain amount of latency cost
per time unit, or output the present matching result and
pay some large accuracy penalties but with no further delay
penalty. Without loss of generality, we assume the loca-
tion observation l0 measured at t0 has been matched to the
road network and l1 from t1 is under the decoding phase
currently. The future information up to t̂ is observed and
transferred to the decoding system to help the joint proba-
bility computation. Moreover, the decoder decides to output
the matched result p1 at time t̂. Straightforwardly, the delay
of decoding l1 is t̂ − t1, which is similar to the rental rate
that a skier has to pay before a buying decision. Meanwhile,
to better estimate the accuracy of the matching roads, we
leverage the probability distribution δt1,t̂(j) which indicates
the likelihood of each state ej being the matching road. No-
tably, this is different from δt1(j) since the system involves
future information into the inference chain. We first calcu-
late δt1(j) considering that the matching result p0 for the
observation l0 has been generated already,

δt1(j) = max
1≤i≤N

[δt0(i)T ij
t1
]Mj(l1)

δt0(i) =

{

1, if p0 ∈ ei.
0, otherwise.

where the distribution of δt0 is determined. With all the
future observations we waited and received from t1 to t̂, we
afterwards obtain,

δt1,t̂(j) =

N
∑

i=1

δt̂(i)

if ψt1,t̂
(i) = j

where ψt1,t̂
(i) is the backtracking function from time frame

t̂ to t1

ψt1,t̂
(i) = ψt1(ψt2(...ψt̂−2(ψt̂−1(i))))

Thus, δt1,t̂(j) is the sum of δt̂(i) where ej at time step t1 and

ei at time step t̂ are on the same candidate path connected
by standard Viterbi backtracking pointers. As illustrated
in Figure 5, the probability that e1 is the output matching
result is the sum of δt4(e1), δt4(e2) and δt4(e3) when com-
puting at time t4. For each ej ∈ S, δt1,t̂(j) presents the
probability that l1 should be matched to ej after future ob-
servations up to t̂ are considered into the HMM framework.

Intuitively, if only one state is calculated with a signifi-
cantly high probability and the other states’ likelihoods are
near zero, we can deduce confidently that this state is the
matching road and generate this road arc as the output la-
bel. To better describe the distribution characteristics and
incorporate this into our decoding procedure, we use the
information entropy of δt1,t̂(j) as a proxy of the accuracy
penalty.

H(t1, t̂) = −
N
∑

j=1

δt1,t̂(j) log δt1,t̂(j)

The entropy H(t1, t̂) is a logarithmic measure of the num-
ber of states with significant probability of being occupied,

which indicates the degree of uncertainty at time step t1 af-
ter receiving future observations up to t̂. According to the
definition of entropy function, the larger the value H is, the
higher the uncertainty of this outcome state could be. The
highest entropy outcome is achieved when δt1,t̂(j) is evenly
distributed among all candidate states. On the other hand,
if H is close enough to zero, it means that one state is ex-
tremely outstanding within the candidate space. This plays
the same role as the buying price Bt in the ski-rental model.
Therefore, in accordance with Equation (1), we derive our
objective cost function as the sum of the accuracy and delay
penalties,

C(t1, t̂) = H(t1, t̂) + γ(t̂− t1)
where γ is the parameter to control the tradeoff between
accuracy gain and delay cost. If the real-time system is
extremely sensitive to the latency, a larger value of γ should
be chosen. By contrast, if the monetary cost of false road
matching is expensive, a small γ should be considered to
penalize more on the accuracy part.

Similar to the ski-rental model, whose ultimate target is
to determine the buying date, here we need to provide a
strategy to decide at which t̂ we should stop delaying and
output the matching result argmaxj [δt1,t̂(j)]. Thus, our on-
line system needs to choose an appropriate label generation
time t̂ to minimize the cost C.

Clearly, the delay cost accumulates linearly like a mono-
tonically increasing function. If the accuracy penaltyH(t1, t̂)
changes arbitrarily over time, its sum C is difficult to be min-
imized or even analysed. Thus, here we assume that given
t1, H is a monotonically decreasing function of variable t̂.
The physical meaning of this assumption is that we believe
the uncertainty of the state outcome at a certain time step
would decrease as a growing number of future observations
are analysed within the decoding procedure. We will show
in experimental section that our assumption is reasonable
across the entire test dataset.

Thereby, we need to minimize the sum of a decreasing
function and an increasing function. In the ski-rental model,
the break-even algorithm is known as the best deterministic
algorithm for this set of problems [11]. We adopt a similar
idea and choose the time point t̂ when H(t1, t̂) is equal or
less than the value of γ(t̂− t1), to output the matching road
result. The intuition behind this algorithm is to adaptively
adjust the window size based on the uncertainty of the state
matching. If the uncertainty degree is high, the algorithm
should extend the window size to absorb more future loca-
tion observations before generating the road arc label. Con-
versely, if the initial H value is low enough or the function
H drops rapidly, the window should become smaller and the
matching output will be generated soon.

The pseudo-code for general cases is detailed in Algo-
rithm 1. The “+” operator on line 10 means to attach a
new output to the global sequence. P and T ′ can be im-
plemented as a pipe with capacity of 1, so that once a new
output pi is generated, it can be consumed by an upstream
real-time application immediately, and the latency is exactly
t′i − ti.

4.2 Accuracy and Latency Analysis
To better illustrate the advantage of our improved online

decoding algorithm, here we present a theoretical compet-
itive and upper-bound analysis for accuracy and latency,
respectively. First we provide the competitive ratio of our

Algorithm 1: Improved Online Viterbi Decoding

Input: A location trajectory L = {l1, l2, . . . , ln}, and
its according time sequence T = {t1, t2, . . . , tn},
both of which could be infinite. A set of
candidate road arcs (hidden states)
E = {e1, e2, . . . , eN}.

Output: A sequence of path P = {p1, p2, . . . , pn},
where P ⊂ E, and each pi’s mapping output
time T ′ = {t′1, t′2, . . . , t′n}.

1 P ← {∅}, T ′ ← {∅}
2 t̂← t1
3 foreach ti ∈ T do

4 if ti ≥ t̂ then
5 t̂← t̂+ 1

6 while ti < t̂ do
7 if H(ti, t̂) ≤ γ(t̂− ti) then
8 t′i ← t̂
9 pi ← argmax1≤j≤N [δti,t′i(j)]

10 P ← P + pi, T
′ ← T ′ + t′i

11 tk ← ti + 1

12 while tk ≤ t̂ do
13 foreach ei ∈ E do

14 update δtk(ei)
15 update φtk(ei)

16 leave loop

17 else

18 t̂← t̂+ 1
19 foreach ei ∈ E do

20 update δti,t̂(ei)

decoder, which is the worst-case ratio between the cost of
the solution found by our algorithm and the cost introduced
by an optimal solution. Assume for a given li received at ti,
Eddy generates the according road arc label at time t. Two
situations need to be considered when analyzing the worst
case — one is that the actual optimal output time step To

is earlier than t, and the other is To > t. The cost of the
optimal solution is H(ti, To) + γ(To − ti). If To < t, it indi-
cates that, even with more measurements adopted, the cost
decrease from the accuracy penalty H does not make up for
the cost increase caused by the latency penalty. In other
words, the concentration expectation of the state distribu-
tion based on future observations is not achieved. The worst
case in this situation is that H(ti, ti) = H(ti, t) + ǫ where ǫ
is a real number approaching zero (it cannot be zero since
H is a monotonically decreasing function), and the optimal
output is To = ti. The optimal solution outputs the map
matching result immediately since the future observations
benefit nothing to the decoding process in order to involve
no latency penalty to the cost function,

C(ti, To) = C(ti, ti) = H(ti, ti)
Since our algorithm generates a road arc result at t, not t−1,
we have

H(ti, t) < γ(t− ti)

H(ti, t− 1) > γ(t− 1− ti)

Also, H(ti, t)−H(ti, t− 1) < ǫ < γ, so we obtain

γ(t− 1− ti) < H(ti, t) < H(ti, ti)
Thus, the cost of our method is,

C(ti, t) = H(ti, t) + γ(t− ti)
= H(ti, ti) + γ(t− 1− ti) + ǫ+ γ

< C(ti, To) + C(ti, To) + ǫ+ γ

= 2C(ti, To) + ǫ+ γ

If To > t, the worst case is that To = t+1 and H(ti, To) =
0 because this is the lowest value pair for both two penalties
and all other cases would achieve a higher C(ti, To). Thus
the cost of the optimal solution is,

C(ti, To) = C(ti, t+ 1)

= H(ti, t+ 1) + γ(t+ 1− ti)
= 0 + γ(t− ti) + γ

>
γ(t− ti) +H(ti, t)

2
+ γ

>
C(ti, t)

2

Thereby, we proved that the cost of our algorithm C(ti, t)
is no more than 2 times of the cost introduced by all the
other solutions plus a constant, and thus our improved online
decoder is a 2-competitive algorithm.

Next, we illustrate that our improved online decoding
is latency-bounded. Assume at time t, the algorithm has
not generated the road arc output for a given measure-
ment li. Since we adopt the break-even condition, we have
H(ti, t) > γ(t − ti). In addition, H is a monotonically de-
creasing function and of course t > ti because we cannot
perform map matching without receiving the measurement.
Thus, we have H(ti, t) < H(ti, ti). Clearly, by the transi-
tive property of inequalities, we obtain γ(t− ti) < H(ti, ti).
Therefore, the upper-bound of map matching delay of li is
H(ti, ti)/γ + ti, which is only determined by the charac-
teristic of distribution δti . The matching process of every
incoming observation would terminate for sure even if the
entire measurement input is infinite.

4.3 Candidate State Space Reduction
To make the decoding process more efficient, we narrow

the range of candidate states card(S) in our HMM model.
Due to the fact that the vehicles usually drive at a lim-
ited speed during the time interval between two consecutive
sample measuring locations, it is very likely that all candi-
date road arcs of the current location observation fall into
a small area around the previous sample point. Therefore,
we employ the radial search method proposed by Fang and
Zimmermann [8], to find the candidate road arcs of a lo-
cation measurement point instead of using the traditional
range query.

5. EXPERIMENTAL EVALUATION
To evaluate our Eddy system, we implemented the other

two online Viterbi decoding strategies, FS and FSW, as
comparisons. As previously described, the CSD strategy al-
ways generates the optimal solution (identical to the offline
decoder’s result) but does not guarantee any delay upper-
bound, which usually involves a long latency (in the order
of minutes) and is not applicable to real-time services [9].

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10

In
fo

rm
a

ti
o

n
 E

n
tr

o
p

y

Time Step

Location Measurement 1
Location Measurement 2
Location Measurement 3
Location Measurement 4
Location Measurement 5
Location Measurement 6
Location Measurement 7
Location Measurement 8
Location Measurement 9

Location Measurement 10

Figure 6: Information entropy trends of 10 example location
measurements.

Thus we did not compare our algorithm with CSD in this
study.

In our experiments, we adopt the public real-world dataset
collected in Seattle provided by Newson and Krumm [18],
including the relevant road network, GPS trajectory data,
and ground truth. The road network comprises more than
150,000 road arcs. The raw GPS trajectory data is a 50-mile
route in Seattle which is sampled at 1 Hz and took about 2
hours to drive, giving 7,531 time-stamped latitude/longitude
pairs. The ground truth contains a sequence of road arcs
with the directions in which the vehicle actually travelled.
Since it is impossible for us to know the exact actual location
of the vehicle in the road network corresponding to each GPS
sample point, only the path taken by the vehicle is viewed
as the ground truth. We also adopt the underlying HMM
model parameters, σ and β, which have been tested and
verified in their study [18].

We focus on two evaluation aspects, accuracy and latency,
in these experiments. First, we compute the actual trends
of information entropy H for all the location measurement
points from the dataset. We show that our assumption is
reasonable that it is a monotonically decreasing function of
variable t̂ . Afterwards, we apply our method and two base-
line algorithms to the whole dataset to compute and visual-
ize the tradeoff between accuracy and latency.

Our improved online decoding algorithm and the other
two comparison methods are all implemented in C# and
connected with a lightweight in-memory database, SQLite.
Since we focus on the road arc label generation delay in-
stead of thye real processing time, this database is com-
pletely stored and processed in RAM.

5.1 Accuracy Penalty Trend
We utilize the radial search method to reduce the candi-

date set of road arcs, and we set the candidate state size
parameter α = 1.8 in our experiments, which has been em-
pirically tested earlier [8]. This leads to the property that
only a small set of candidate states ei share the matching
probability and thereby the distribution concentrates more
quickly than in the case where we use the whole road net-
work as the candidate set. We calculate the information en-
tropy, which is considered as the accuracy penalty proxy in
our algorithm, for every location measurement in the scope

of the whole trip. For each measurement li, we record and
update its entropy value changes when future observations
li+1, li+2, . . . , ln are received.

Figure 6 illustrates 10 example trends of the location mea-
surement’s information entropy as the time elapses (one new
observation received at every time step). As shown, the
value of entropy function H is relatively high when only the
current measurement is received and no future observation
is incorporated into the model. It indicates the difficulty
of generating the matching result immediately. As the time
step increases, H turns to be a monotonically decreasing
function as we hypothesized.

If the value of H increases as the time step moves forwards
for a given li, we judge that this entropy function is not a
monotonically decreasing function, and we also record the
time step where the entropy value increases as the increas-
ing point. Among the entire trajectory dataset, we find that
91.53% of the measurements’ entropy function is monoton-
ically decreasing. Moreover, in the remaining part of this
dataset, 5.52% of functions’ increasing point appears after
receiving more than 400 future observations. It is very likely
that the system has already passed the break-even point be-
fore seeing such a large number of future observations. In
other words, 97.05% of functions are actually decreasing if
the delay of a system is limited to less than 400 seconds,
which is a reasonable setting in the context of a real-time
system. Additionally, if the real-time system only considers
future observations within the range of 50 samples, 100%
of H satisfies our assumption. This result intuitively makes
sense because of the underlying logic in that the more future
observations are incorporated into the decoding model, the
more confidently we can determine which road the vehicle is
driving on.

5.2 Error and Delay
To illustrate the tradeoff between the matching accuracy

and latency, we apply our system and two comparison al-
gorithms to the Seattle trajectory dataset with different γ
values and window sizes w. Different sampling periods are
considered in our experiments as well to show the robustness
of our algorithm under different location measuring rates.
We adjust the γ value from 0.01 to 2 to tune the tradeoff
between the road arc mismatch rate and delay time. The
parameter w varies according to the change of the location
measurement sampling intervals. For example, in order to
obtain an accuracy change from no delay at all to a latency
of 120 seconds, we tune the w value from 0 to 120 for FSW,
and from 1 to 241 for FS, with a sampling period of 1 sec-
ond. The reason is that FS generates labels for all location
observations within the current window at once (when the
window is full), so that the location measurements in the
second half of the window have lower effective latency than
the measurements in the first half. Clearly, the road arc la-
bel of the last location observation tucked into the window
will be matched and generated by FS immediately without
any latency no matter how large the window size is. Thus,
we consider the average effective latency among the observa-
tions within the same window, (w−1)/2∗(sampling period),
as the average latency. Similarly, when the sampling period
becomes 10 seconds, we evaluate the w value from 0 to 12
for FSW, and from 1 to 25 for FS, respectively, to compute
the mismatch percentage trend from no delay to a latency
of 120 seconds.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Average Matching Latency (seconds)

FS
FSW

EDDY

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Average Matching Latency (seconds)

FS
FSW

EDDY

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Average Matching Latency (seconds)

FS
FSW

EDDY

(c)

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Average Matching Latency (seconds)

FS
FSW

EDDY

(d)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100 120

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Average Matching Latency (seconds)

FS
FSW

EDDY

(e)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Average Matching Latency (seconds)

FS
FSW

EDDY

(f)

Figure 7: The accuracy (in RMF) and latency (in seconds) of map matching results on different location measurement sampling
intervals: 1 observation sample (a) per second, (b) every 2 seconds, (c) every 3 seconds, (d) every 5 seconds, (e) every 10
seconds, (f) every 15 seconds.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 2 4 6 8 10

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Location Measurement Sampling Period (seconds)

FS
FSW

EDDY

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 2 4 6 8 10 12 14 16

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Location Measurement Sampling Period (seconds)

FS
FSW

EDDY

(b)

Figure 8: The comparisons of map matching results’ accuracy for different location measurement sampling intervals under
fixed latency constraints of: (a) 10 seconds and (b) 15 seconds.

The matching accuracy is measured by the Route Mis-
match Fraction (RMF). This fraction is the total length of a
false positive route in P and a false negative route in Ge di-
vided by the length of the original route. We report RMF in
percentage for each experiment and a higher RMF result in-
dicates more erroneous road arcs are generated by the online
map matching algorithm.

As illustrated in Figure 7, we report the map matching ac-
curacy trend from immediate label generation to a latency
of 120 seconds, under different measurement sampling pe-
riods. First, all figures show an overall declining trend of
road arc mismatch fraction, which is sensible in that less er-
ror results are generated if more future location observations
are analyzed within the HMM model. Second, the output
quality of the FS algorithm is much less stable than the

other two. Although the general trend of FS is descending
as well, more fluctuations arise when the latency increases.
By contrast, FSW and our algorithm are more stable, which
means the matching results are confidently expected to be
more accurate if more future information is provided. Most
importantly, it is also observable that the curve of Eddy
is mostly below FS and FSW. It indicates that our Eddy
map matching system outputs better results in most cases
with respect to two aspects: a) under the same latency con-
straints, the RMFs of Eddy are mostly the lowest one, and
b) under the same accuracy constraints, Eddy is able to
achieve the shortest latencies.

Figure 8 illustrates the online map matching accuracy im-
provements under the same latency constraints, 10 seconds
and 20 seconds respectively. As shown, when applying our

algorithm to the location measurement datasets with differ-
ent sampling rates, our matching result almost always out-
performs the other two methods with less error erroneous
generations.

Moreover, we also notice from the experiments that the
RMF value of Eddy stably reaches 0 much earlier than FS
and FSW (under different sampling rates shown in Figure 7).
It means that our system is able to achieve a stable 100% ac-
curacy of the road arc generation results with a much shorter
latency.

6. CONCLUSIONS
We presented a real-time HMM-based map matching sys-

tem, Eddy, based on an improved online Viterbi decoding
algorithm. Our method analyzes the tradeoff between the
map matching accuracy and latency, and incorporates a ski-
rental model and its best-known deterministic algorithm to
solve the online decoding problem. Therefore, our system is
capable of dynamically selecting the window size according
to characteristics of the candidate state probability distribu-
tion. The experimental results demonstrate the advantages
of our approach on both accuracy and latency aspects. In
our future work we plan to explore the possibility of in-
volving nondeterministic algorithms into the online decod-
ing phase to yield a better map matching accuracy and a
shorter label generation delay.

Acknowledgements

This research has been supported by the Singapore National
Research Foundation under its International Research Cen-
tre @ Singapore Funding Initiative and administered by the
IDM Programme Office through the Centre of Social Media
Innovations for Communities (COSMIC). We would also like
to thank Paul Newson and John Krumm for making their
dataset publicly available.

7. REFERENCES

[1] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching Planar
Maps. In 14th Annual ACM-SIAM Symposium on Discrete
Algorithms. Society for Industrial and Applied
Mathematics, 2003.

[2] D. Bernstein and A. Kornhauser. An Introduction to Map
Matching for Personal Navigation Assistants. 1998.

[3] R. Billen, E. Joao, and D. Forrest. Dynamic and Mobile
GIS: Investigating Changes in Space and Time. CRC
Press, 2006.

[4] J. Bloit and X. Rodet. Short-time Viterbi for Online HMM
Decoding: Evaluation on A Real-time Phone Recognition
Task. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2008.

[5] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
Map-Matching Vehicle Tracking Data. In 31st International
Conference on Very Large Data Bases, 2005.

[6] S. S. Chawathe. Segment-based Map Matching. In IEEE
Intelligent Vehicles Symposium, 2007.

[7] I. Constandache, S. Gaonkar, M. Sayler, R. R. Choudhury,
and L. Cox. Enloc: Energy-efficient Localization for Mobile
Phones. In IEEE Conference on Computer
Communications (INFOCOM), 2009.

[8] S. Fang and R. Zimmermann. Enacq: Energy-efficient GPS
Trajectory Data Acquisition based on Improved Map
Matching. In 19th ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, 2011.

[9] C. Y. Goh, J. Dauwels, N. Mitrovic, M. Asif, A. Oran, and
P. Jaillet. Online Map-matching based on Hidden Markov
Model for Real-time Traffic Sensing Applications. In 15th
International IEEE Conference on Intelligent
Transportation Systems (ITSC), 2012.

[10] J. S. Greenfeld. Matching GPS Observations to Locations
on A Digital Map. In Transportation Research Board 81st
Annual Meeting, 2002.

[11] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D.
Sleator. Competitive Snoopy Caching. Algorithmica, 1988.

[12] W. Kim, G.-I. Jee, and J. Lee. Efficient Use of Digital Road
Map in Various Positioning for ITS. In Position Location
and Navigation Symposium. IEEE, 2000.

[13] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower,
I. Smith, J. Scott, T. Sohn, J. Howard, J. Hughes,
F. Potter, et al. Place Lab: Device Positioning Using Radio
Beacons in the Wild. In Pervasive Computing. Springer,
2005.

[14] L. Liao, D. J. Patterson, D. Fox, and H. Kautz. Learning
and Inferring Transportation Routines. Artificial
Intelligence, 2007.

[15] Z. Lotker, B. Patt-Shamir, and D. Rawitz. Rent, Lease or
Buy: Randomized Algorithms for Multislope Ski Rental.
SIAM Journal on Discrete Mathematics, 2012.

[16] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and
Y. Huang. Map-matching for Low-sampling-rate GPS
Trajectories. In 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, 2009.

[17] A. Mohamed and K. Schwarz. Adaptive Kalman Filtering
for INS/GPS. Journal of Geodesy, 1999.

[18] P. Newson and J. Krumm. Hidden Markov Map Matching
Through Noise and Sparseness. In 17th ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, 2009.

[19] O. Pink and B. Hummel. A Statistical Approach to Map
Matching Using Road Network Geometry, Topology and
Vehicular Motion Constraints. In Intelligent Transportation
Systems, 2008.

[20] M. A. Quddus, W. Y. Ochieng, and R. B. Noland. Current
Map-Matching Algorithms for Transport Applications:
State-of-the Art and Future Research Directions.
Transportation Research Part C: Emerging Technologies,
2007.

[21] M. A. Quddus, W. Y. Ochieng, L. Zhao, and R. B. Noland.
A General Map Matching Algorithm for Transport
Telematics Applications. GPS Solutions, 2003.

[22] R. Šrámek, B. Brejová, and T. Vinař. On-line Viterbi
Algorithm and Its Relationship to Random Walks.
arXiv:0704.0062, 2007.

[23] A. Thiagarajan, L. Ravindranath, H. Balakrishnan,
S. Madden, L. Girod, et al. Accurate, Low-Energy
Trajectory Mapping for Mobile Devices. In 8th USENIX
Conference on Networked Systems Design and
Implementation, 2011.

[24] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden,
H. Balakrishnan, S. Toledo, and J. Eriksson. VTrack:
Accurate, Energy-Aware Road Traffic Delay Estimation
Using Mobile Phones. In 7th ACM Conference on
Embedded Networked Sensor Systems, 2009.

[25] A. J. Viterbi. Error Bounds for Convolutional Codes and
an Asymptotically Optimum Decoding Algorithm. IEEE
Transactions on Information Theory, 1967.

[26] C. E. White, D. Bernstein, and A. L. Kornhauser. Some
Map Matching Algorithms for Personal Navigation
Assistants. Transportation Research Part C: Emerging
Technologies, 2000.

[27] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun. An
Interactive-voting based Map Matching Algorithm. In 11th
IEEE International Conference on Mobile Data
Management (MDM), 2010.

