
Spatial Indexing and Analytics on Hadoop 
Randall T. Whitman, Michael B. Park, Sarah M. Ambrose, and Erik G. Hoel 

Environmental Systems Research Institute (Esri) 
380 New York Street 

Redlands, California 92373 
1-909-793-2853 

{rwhitman, mpark, sambrose, ehoel}@esri.com 

 

 

ABSTRACT 
Effective processing of extremely large volumes of spatial data has 

led to many organizations employing distributed processing 

frameworks. Hadoop is one such open-source framework that is 

enjoying widespread adoption. In this paper, we detail an approach 

to indexing and performing key analytics on spatial data that is 

persisted in HDFS. Our technique differs from other approaches in 

that it combines spatial indexing, data load balancing, and data 

clustering in order to optimize performance across the cluster. In 

addition, our index supports efficient, random-access queries 

without requiring a MapReduce job; neither a full table scan, nor 

any MapReduce overhead is incurred when searching. This 

facilitates large numbers of concurrent query executions. We will 

also demonstrate how indexing and clustering positively impacts 

the performance of range and k-NN queries on large real-world 

datasets. The performance analysis will enable a number of 

interesting observations to be made on the behavior of spatial 

indexes and spatial queries in this distributed processing 

environment. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Spatial 

databases and GIS, C.1.3.4 [Processor Architectures]: Parallel 

Architectures – Distributed architectures, H.3.1 [Information 

Storage and Retrieval]: Content Analysis and Indexing – Indexing 

methods. 

General Terms 
Algorithms, Management, Performance. 

Keywords 
Hadoop, MapReduce, HDFS, spatial indexing, analytics, k-NN, 

quadtree, distributed processing. 
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1. INTRODUCTION 

Improved performance of both visualization and spatial statistical 

analysis on large volumes of data stored in Hadoop were the 

motivation behind designing a spatial index on Hadoop. When 

indexing and organizing data on Hadoop, there are two models that 

must be supported. In the first model, users are willing to trade the 

overhead of copying and clustering the source data for additional 

query performance. Along with building the index, copying the 

data in the same spatial order as the partitioned spatial index allows 

greater levels of locality of reference. This results in increased 

query performance, particularly when the query involves proximity 

analysis (e.g., k-NN). 

The second model arises in situations where either the volume of 

source data is too large (e.g., petabyte scale), or the user is 

unwilling to allow the source data to be copied and reorganized. In 

this case, the source data remains unaffected. However, spatial 

analytical operations will be slower than in the first case due to 

additional network traffic and lower levels of locality of reference. 

The observed performance differences on real world data will be 

highlighted later in this paper. 

In addition, the spatial index supports pan and zoom in ArcGIS 

desktop (for reasonable zoomed-in extents) by performant range 

query without MapReduce overhead – if every range query required 

a MapReduce job, frequent pan and zoom operations would 

overwhelm the Hadoop cluster. 

It is important to note that a key aspect of this problem space relates 

to having more traditional volumes of data (e.g., tens to hundreds 

of millions of spatial objects), and very large computational 

problems (big computation). For example, this would include 

computing an all pairs shortest path or a k-NN query for all objects 

in the dataset. 

The rest of this paper is organized as follows. Section 2 reviews 

related work in this domain. Section 3 describes our algorithm for 

construction of a PMR quadtree using the Hadoop MapReduce [6] 

framework. In addition to constructing a PMR quadtree, we present 

details of how to further optimize the data and index by 

reorganizing the source data to correspond to the ordering found 

within the index. Section 4 details two fundamental spatial 

operations, a range query and a k-NN query that have been 

implemented on Hadoop. We focus on how they differ from their 

traditional sequential counterparts. Section 5 presents some 

detailed performance analyses of the PMR quadtree build 

operation, as well as large analytic operations that perform range 

and k-NN queries in parallel across the cluster. Concluding remarks 

are contained in Section 6. 
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2. RELATED WORK 

Over the past two years, there has been significant research interest 

in the topic of indexing and performing analytics on spatial data 

within the Hadoop framework. At a high level, many approaches 

seem similar, though closer analysis reveals important differences 

both algorithmically as well as at a capability level. In addition, 

each approach differs from a query processing standpoint. Some of 

the more notable recent examples are discussed below.  

Hadoop++, HAIL, and LIAH provide 20X to 50X faster queries on 

Hadoop, via various indexing techniques [7]. However, none of 

these projects provide a spatial indexing capability. Cary et al. [4] 

discuss building an R-Tree index with Hadoop MapReduce, but do 

not discuss querying. 

Hadoop-GIS/RESQUE [1] provides spatially-aware query 

planning and optimization for Hive (an infrastructure built on top 

of Hadoop that supports a SQL-like language for querying the data 

[23]). Hadoop-GIS is designed for efficient spatial joins, motivated 

by use-cases related to medical pathology imaging. It uses a global 

index of rectangular-tile partitions and a local R*-tree [3] index 

within each tile. The on-demand indexing is not persisted, 

facilitating multiple queries on the same data. Focusing on the 

familiarity and usability of a query-language interface, it is not clear 

that Hadoop-GIS would be suitable for custom MapReduce 

applications. Finally, Hadoop-GIS requires deployment of a 

customized Hive open-source implementation (it has been offered 

as a contribution to Apache Hive). 

SpatialHadoop [8] provides an open-source spatial extension 

framework to Hadoop that can be used in custom MapReduce 

applications (note that SpatialHahoop utilizes the open source GIS 

Tools for Hadoop geometry API [10]). SpatialHadoop employs a 

two-level indexing scheme. The global index determines which 

partitions need be searched for the query – the disjoint spatial 

partition regions having been chosen by STR bulk-loading a sample 

of the data into a uniform grid or a single-level R+-tree. A local R+-

tree index is used in each of the blocks of each partition. In addition 

to a range query, a k-NN query, and a spatial join, several 

computational geometry operations are implemented [9]. The 

researchers claim up to a two order of magnitude speedup when 

performing spatial queries over non-indexed data on Hadoop and 

have published results with 1.7 billion points from OpenStreetMap 

[20]. SpatialHadoop runs a MapReduce job for every query; it does 

not appear to be designed to perform multiple spatial searches (each 

with separate spatial criteria parameters) within the same 

MapReduce job. SpatialHadoop avoids the cost of random seeks in 

HDFS by storing a complete copy of the data inline in the index. 

With SpatialHadoop, the spatial index is not incrementally 

maintained as an indexed dataset grows in size. 

GeoMesa [11] offers indexed spatio-temporal range queries, and 

claims one-second response time for most range queries, on 

GDELT (an open spatio-temporal dataset of a quarter billion 

geolocated human events dating back to 1979 [19]). GeoMesa 

builds upon Accumulo [5] indexing; for the key in Accumulo, 

GeoMesa interlaces 35-bit geohashes [13] with ISO-8601 date 

strings. Focused on load-balancing, GeoMesa does not attempt to 

enhance the spatial locality of data – rather, it distributes the data 

spatio-temporally (using a random prefix) to ensure load balancing. 

Data ingest is handled natively by Accumulo. GeoMesa does not 

support the k-NN query. Finally, as it requires Accumulo, GeoMesa 

is not applicable for general MapReduce applications on data stored 

directly as files in HDFS. 

The key distinction when querying our spatial index on Hadoop is 

that the index allows efficient, random-access queries. This does 

not require a MapReduce job to handle the volume of the 

data. Neither a table scan, nor any MapReduce overhead, is 

incurred when searching. Thus, a search can be performed for every 

record processed in the Map and/or Reduce function of a 

MapReduce application – in one single MapReduce job. In this 

manner, the spatial index supports spatial statistical analysis. 

3. SPATIAL INDEXING 

Our spatial indexing technique relies upon the PMR quadtree 

spatial index [21]. The PMR quadtree exhibits several important 

characteristics that make it well suited to parallel or distributed 

processing environments [18]. Most significantly, it is a regular 

disjoint decomposition of space. The regularity property facilitates 

the straightforward mapping of the structure to a collection of 

processing elements (note: in this work, we employ a linearized 

quadtree [12] where only the leaf nodes are represented). The 

disjoint decomposition property is useful in minimizing problems 

associated with processing spatial data contained in multiple 

overlapping regions of space (e.g., R-trees). 

3.1. Building the Quadtree 

The basic process of building the PMR quadtree in parallel across 

a collection of Hadoop processing elements consists of the 

following five basic steps: 

1. Split the unorganized source data into equal sized collections, 

physically distributing one collection to each processing 

element in the cluster. 

2. On each processing element, build a partial quadtree 

incorporating the local data in the collection. 

3. Assign and distribute each quadrant in each partial quadtree 

to a processing element for later assembly of the complete 

quadtree. 

4. On each processing element, combine the received and sorted 

overlapping quadrants into a locally consistent quadtree. 

5. Combine the locally consistent quadtrees into a complete 

global PMR quadtree, persisting the index as files in HDFS. 
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partition

 

Figure 1: Example highlighting the splitting of the source data 

into equal sized collections (step 1) and the partial quadtrees 

being built on each processing element. 

The native splitting capability of the Hadoop system is used to split 

the unordered source data into equal sized collections (step 1). We 



are able to accept as input, datasets for which a tabular schema has 

been defined in the Hive metadata. We support the following 

formats: delimited text, JSON, and a Hadoop sequence file (a flat 

file consisting of binary key/value pairs). The number of collections 

is not constrained to be equal to the number of processing elements 

in the cluster. Within Hadoop, clients have limited control over the 

number and size of the collections. 

Using the Hadoop MapReduce framework, we chose to build a 

PMR quadtree during the Map phase on each processing element 

(step 2). This is done for each collection independently, resulting 

in a set of partial quadtrees, one for each collection. In contrast to 

the typical MapReduce pattern where zero or more output records 

are emitted after receiving and processing a single input record, we 

instead accumulate multiple input records and build a partial 

quadtree. If the partial quadtree exceeds memory capacity, it is 

locally paged to disk. After the Map task inserts all input records in 

the collection into the partial quadtree, all the entries in the partial 

quadtree are emitted. The entries emitted by the Map task have a 

composite key consisting of a Peano key of the quadtree node, and 

the node depth. Note that input objects whose bounding rectangle 

intersects more than one quadrant are referenced by multiple entries 

in the index (similar to the R+-tree). Therefore, the possible 

presence of duplicate entries in the spatial index must be accounted 

for in the implementations of the analytic operations. 

Partial 

quadtree per 

partition

Sorted partial 

quadtrees  

Figure 2: Sorted partial-extent quadtrees resulting from the 

custom partitioner and the sort, in step 3. 

A custom partitioner is defined whose purpose is to assign each 

entry in a partial quadtree to the processing element that will 

combine the quadrants of the partial quadtrees into subtrees of a 

complete quadtree index (step 3). The partitioner assigns the entry 

to the partition for which the Peano key of the entry lies within the 

partition boundaries – the partition boundaries having been chosen 

by a pre-calculation that sampled the input (see Figure 2). A 

partition corresponds to a subsequence of entries in the linearized 

PMR quadtree; note that the space corresponding to a partition may 

contain disjoint parts (see Figure 5). 

The MapReduce framework sorts records by key between the Map 

and Reduce phases. For the key type emitted by the Mapper, used 

by the Partitioner, and received by the Reducer, we define a 

composite key consisting of the Peano key and quadrant depth. This 

results in the MapReduce framework sorting all entries in the 

quadtree by Peano key and depth. 

Entries from all the partial quadtrees are combined into a complete 

global linear PMR quadtree (step 4), using a quadtree-aware 

streaming merge sort. The streaming and sorting (at the end of step 

3) are done using the built in capabilities of the MapReduce 

framework. The quadtree-aware merge (i.e., where merging may 

result in subdividing a quadrant), is accomplished in the Reduce 

phase of the MapReduce job. In the Reducer, we build a partial 

quadtree – this time not data-partial with respect to a non-spatial 

split – but rather the complete data for one quadrant or subtree out 

of the whole tree (see Figure 3). Because the Reducer receives the 

entries in sorted order, the subtree for one quadrant is completed 

and can be emitted before starting the next one. This is conceptually 

analogous to the flushing step in bulk-loading quadtrees [16]. 
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Figure 3: Example showing subsets of the partial quadtrees 

being distributed and merged on the collection of processing 

elements. The final combined result (the complete quadtree) is 

also shown. 

Persisting the index in index-portion files in HDFS (step 5), is an 

outcome of Reducer output getting written to files in the 

MapReduce framework. Due to the quadtree-compatible 

partitioning by Peano key (step 3), the logical concatenation of the 

index-portion files constitutes the complete global quadtree index. 

Each segment of the index is stored in Hadoop map file format – an 

indexed key-value store. The key type is the composite key of 

Peano key and quadrant depth, packed into 58 bits and 5 bits 

respectively. The value type holds the bounding rectangle of the 

geometry, as four doubles – except that for point datasets the point 

is stored as two doubles. The value also contains a row locator that 

specifies which file, and the position within the file. The row 

locator facilitates the lookup of the full object/row during query 

processing. The record format is shown in Figure 4. A Hadoop map 

file is chosen for the following properties: index-segment files can 

be built in isolation in separate reduce tasks; files are written 

append-only; capability to seek a random key for ensuing queries; 

and splittable as the input to a MapReduce job. 

quadtree record

value

record locator

key

Peano 

key
depth

bounding 

rectangle file offset

Figure 4: Quadtree index record format. 

It is important to note that the PMR quadtree can be readily 

optimized when one realizes that much of the data in the “big data” 

space is generated by sensor, moving objects, etc. (polygonal data 

in this space is rare, other than in the filtering role). Essentially, 

these produce objects with point geometry. Because of this, it is 

possible to further optimize the quadtree index record to utilize a 

point geometry rather than a bounding rectangle as part of the 

value. Not only does this save space, but it also removes the 

necessity to perform secondary filtering when resolving spatial 



queries as the index contains the full geometry of the indexed 

objects. 

Strictly speaking, it would be possible for the Reduce task (step 3), 

to build a quadtree portion without the interim quadtree (step 1) 

having been built beforehand, but in the interest of performance, 

we obviate much of the potential paging to disk in the Reducer, by 

this interim quadtree which provides a first-pass approximation to 

the depth at the entry will lie in the final, complete quadtree. 

3.2. Ordering and Clustering 

In the case of the first model, besides construction of a PMR 

quadtree, it is possible to further optimize the data and index by 

reorganizing the source data to correspond to the ordering found 

within the index. The process of building a spatially-ordered copy 

of the data and indexing it can be completed by a sequence of five 

MapReduce jobs. These five jobs correspond to the following: 

1. Choose spatial partitions based on sampling the input. 

2. Make the spatially-ordered and partitioned copy. 

3. Build buffer regions. 

4. Build a quadtree index on the main, complete data. 

5. Build quadtree index on buffer region data. 

As in the description of the quadtree build (see Section 3.1), the 

preliminary MapReduce job to choose partitions samples the data 

in order to balance the size of data in partitions. This is done for 

load balancing of both the build as well as subsequent querying. 

For each sample object, we calculate the Peano-key address, 

consistent with the quadtree to be built. We bucket the samples into 

quadtree quadrants of a certain, generally shallow, partitioning 

depth. Then we essentially distribute 2𝑑𝑝 uniform ordered 

rectangular blocks (in subsequences) among the desired number of 

partitions (where dp is the partitioning depth). In contrast to the 

rectangular partitioning of SpatialHadoop [8] and Hadoop-GIS [2], 

we allow the partition regions to have jagged shapes and to contain 

multiple disjoint pieces. An example of a disjoint partition region 

is depicted in Figure 5, labeled region 7. The list of partitions is 

stored, by starting Peano-key address, in the table metadata (by 

augmenting the table properties in the Hive metastore). 
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Figure 5: Quadtree containing nine partition regions. 

The optional spatially ordered copy trades disk space and pre-

computation in order to optimize searches by reducing the number 

of blocks that need to be read from disk in complete-row lookup. 

In step 3, a MapReduce job loads and transforms the original data 

into the spatially ordered copy. The Map function calculates the 

Peano key for the geometry of each row. For depth, it uses the 

maximum depth of the quadtree to be built, so the ordering of the 

complete ordered data is compatible with the ordering of its index. 

The custom partitioner for building the ordered copy, partitions 

based on Peano key using the pre-calculated partition boundaries; 

it is the same partitioner used by the MapReduce application that 

builds the quadtree index. Each partition is stored in a key-value 

sequence file in HDFS, where the key is null (as typical when a 

tabular schema is defined in Hive) and the value is the complete 

row. Hadoop sequence files are chosen for the following properties: 

they are splittable, for use as input to MapReduce jobs; it is possible 

to look up rows one-by-one after index search; they are compact 

and performant; and finally, they handle various data formats 

including binary formats. 

For spatially-ordered tables, a MapReduce job is necessary to build 

a buffer region around each partition. The buffer region contains 

spatial objects outside the partition region that are within a user-

specified buffer radius, which is to be chosen based on the expected 

size of proximity queries. The buffer region is designed to avoid 

reading from multiple partitions for proximity queries near partition 

boundaries. This applies to a range query with a query range 

overlapping a second partition by less than the buffer radius. It also 

applies to a k-NN query where some of the k objects nearest to the 

query location are in a partition neighboring the partition 

containing the query center, but distant from the partition boundary 

by at most the buffer radius. For each input row, the Map function 

determines whether the spatial object needs to be in any buffer 

regions - by inflating the bounding rectangle of the spatial object. 

If the spatial object will be in any buffer regions, the Mapper then 

determines the distance to the neighboring partitions. For each 

partition at a distance of at most the buffer radius, it emits a record 

of which the key is the partition number of the partition that needs 

to include the spatial object in its buffer region, and the value is the 

row annotated with a row identifier. The row identifier is needed 

for de-duplication during queries. The partitioner simply returns the 

partition number from the key, and the reducer is trivial. The 

storage is a sequence file whose value is the complete row 

annotated with the row identifier information. 
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Figure 6: Example highlighting the relationship between data, 

index, buffer, and the shard. 

The same MapReduce application that builds the quadtree index on 

unordered data is used to build the quadtree index on the spatially 

ordered derived table. The same partitioner, based on Peano keys, 

is used for building both the spatially ordered copy and the quadtree 

index. This results in the entries of one index partition 

corresponding to the rows of one partition of the complete ordered 

data. 

Finally (step 5), a quadtree index is built on the buffer region data 

in each partition. The one difference, when building the quadtree 

index on the buffer region data – rather than on the main data – is 

that the partitioning phase is done by already-determined target 

partition number, rather than by Peano key. This also implies that 



the buffer region indices are a separate index per partition, and do 

not constitute a global index of buffer regions across partitions. 

4. SPATIAL ANALYTICS 

Spatially indexing datasets, while an interesting topic, is a means 

to an end - most notably, providing the ability to improve the 

performance of spatial queries against the indexed dataset. Users 

typically do not care whether a dataset is indexed – they instead 

focus on what can be done with the data; what queries can be 

answered, what they can learn from their data. 

Utilizing our PMR quadtree implementation on Hadoop, we have 

implemented the traditional range and k-NN queries – without 

requiring a MapReduce job for every search parameter. These can 

be considered building blocks in the implementation of more 

sophisticated and useful queries in the future.  

4.1. Range Query 

The design of the spatial index allows searching with near-standard 

random-access range query techniques. The key differences 

between standard implementations of range queries on a PMR 

quadtree and ours are the following: 

1. The index is partitioned into multiple files. 

2. The buffer-region index is used along with the main index, in 

the case of spatially-ordered derived files. 

3. Optimizations are made for the common case of point data. 

As the quadtree index consists of multiple segments (i.e., separate 

files in HDFS for each partition), a query region may intersect with 

the multiple partitions of the index. The partition boundary list from 

the table metadata is used – as it is in the Partitioner phase of the 

MapReduce job that built the index – to determine the range of 

partitions in which to search. The lowest partition is the one 

containing the low-coordinate corner of the search MBR, and the 

highest partition is the one containing the high-coordinate corner of 

the search range. Only those partitions of the index that are within 

this range are opened during the search. 
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(b) Buffer advantageous, 

one partition

(c) Ignore buffer, 

two partitions

Figure 7: Example highlighting the interplay between the query 

region and partition buffers. The optimizations shown in (a) 

and (c) are only applicable to point data. 

The buffer region may be used to avoid searching in multiple 

partitions of the index when the query region is near the boundary 

of a partition region. If the query region overlaps a second partition 

region by a distance less than the buffer radius (see Figure 7b), the 

buffer region index is utilized in order to avoid reading from the 

second partition. However, when the query region overlaps a 

second partition region by more than the buffer radius (see Figure 

7c), the buffer region provides no such advantage – the buffer 

region is read only for the purpose of including a line or polygon 

that was assigned to a non-participating partition, but overlaps one 

(or more) of the participating partitions.  

When the spatially ordered copy is used, we expect rows that are 

close to each other spatially will also usually be stored near each 

other in the data file. Thus, we minimize the number of blocks that 

need to be read from disk when looking up the complete rows. 

Point data is, in our experience, by far the most common geometry 

type of spatial data in the Big Data domain. In the case of point 

geometry, two numbers (floating point doubles) suffice to store the 

full geometry of the spatial object as an entry in the quadtree, rather 

than the more common four doubles to represent the bounding 

rectangle or higher dimensional line or polygon data. Storing two 

doubles for a point, rather than four doubles for bounding rectangle, 

allows the size of the index to be reduced by about 30%. Not only 

is it desirable to reduce storage space, but also we expect less 

frequent occurrence of the need to read across disk blocks when 

reading the index, for same-size query regions, when the index 

records are shorter. 

Unlike lines and polygons (where the full geometry must be read 

out of the complete data file in order to refine the intersection test), 

with point data, the full geometry is obtained directly from the entry 

in the quadtree index. Thus, for queries that require only the 

geometry (without attributes – e.g., when drawing to the screen of 

the client application), we can read from the index without having 

to open the file of complete data. However, when symbolizing or 

analyzing on any attribute, it is necessary to read the full data (the 

complete feature is not being stored inline in the index). 

Another optimization for point geometry is applicable when buffer 

regions are present, i.e., in the case of a spatially-ordered derived 

table. With line and polygon data, it is necessary to include the 

buffer-region index in all queries because we assign each row to 

only one partition, even if it overlaps multiple partition regions. In 

the case of point data, in the worst case, the point can lie on the 

partition boundary. Thus, if the query region is fully contained 

within a partition region, we do not need to open the buffer index 

file (nor the buffer-region complete data file – see Figure 7a). 

Furthermore, in the case of a range query that overlaps a second 

partition region by more than the buffer radius, once it is already 

necessary to search in multiple partitions, we do not need to search 

in the buffer region when it offers no advantage (see Figure 7c). 

4.2. k-NN Query 

The design of the spatial index facilitates implementation of a k-

NN query using the standard incremental k-NN algorithm [15]. 

This is due in part to being able to support random reads into a 

spatial index file – without requiring a MapReduce job for every 

search parameter. The key differences between our implementation 

on Hadoop, and the standard algorithm, are the following: 

1. The index is partitioned into multiple files, and we search 

only one partition. 

2. The buffer region index is used along with the main index. 

For k-NN queries, we search only in the partition containing the 

query center. The partition containing the query center is 

determined by the Peano key of the query center and the partition 

boundary list from the table metadata. When a quadrant is dequeued 

from the incremental k-NN priority queue and the quadrant 

overlaps more than one partition, we know that the quadrant 

corresponds to an implicit internal node in the quadtree of actual 



data. This is the case because the quadtree index was constructed 

such that every leaf quadrant is fully contained within a partition of 

the index. The determination that a quadrant is an implicit internal 

node allows us to enqueue its subquadrants, without having to read 

from disk. As a consequence, we avoid reading from any other 

partition, despite top-down tree traversal for enqueueing. 

To support k-NN query around an arbitrary query center – including 

a query center that may happen to lie near a partition boundary – 

requires using the spatially-ordered copy of the data, which 

provides the buffer region. With the buffer region, k-NN queries 

are supported where the distance to the kth-nearest object is at most 

the buffer radius. 

The buffer region of spatially-ordered derived tables allows 

performing a k-NN query while reading from only one partition, 

even when the query center is near a partition boundary. When a 

quadrant is dequeued from the incremental k-NN priority queue, 

one of three conditions holds: (1) the quadrant overlaps multiple 

partition regions; (2) the quadrant is within the query partition; or 

(3) the quadrant is outside the query partition. In case (1), as 

explained above, the quadrant is an internal node. For case (2), the 

quadrant inside the partition, we search in the main index and not 

the buffer region index. Symmetrically, for case (3), the quadrant 

outside the query partition, we search in the buffer region index but 

not the main index. Furthermore, a quadrant outside the query 

partition, is discarded before reading from disk, if the distance from 

the quadrant to the query region is greater than the buffer radius. 

As for point geometry type, the benefits of smaller storage size of 

the index, apply to k-NN as well as to range query. Likewise, 

queries that request the geometry only, can read from the index 

only, and not from the complete data, for Point data. However, no 

additional algorithmic optimization is made for Point data with k-

NN query. 

 

Figure 8: Buffer data and index size (in GB) for various 

partition counts. 

5. PERFORMANCE COMPARISON 

In order to test the performance (wall clock and disk I/O) as well as 

the storage requirements, we selected a recently available public 

dataset – the New York City Taxi and Limousine Commission’s 

2013 taxi tripsheet dataset [25]. It consists of over 170 million 

records, detailing both trip and fare data for every taxi trip recorded 

in the seven boroughs of New York City in 2013. The data is 

available for download as a collection of 24 CSV files (~50GB 

uncompressed). The trip data contains information such as hack 

license, pickup date/time, dropoff date/time, passenger count, trip 

duration, trip distance, and pickup and dropoff latitude/longitude. 

The fare data contains hack license, pickup date/time, fare, tip 

amount, tolls, and total trip cost. 

Performance tests were run on a 20 node Hadoop cluster. Each node 

in the cluster was a garden variety desktop PC containing either 4 

or 8 cores. Each desktop was outfitted with 16GB RAM, and 2.5TB 

of reasonably fast disk. Each machine was running CentOS 6.5 

Linux and Hadoop 2.2. 

5.1. Indexing 

The data footprint was measured for a collection of different 

partition sizes, with the count of partitions ranging between 16 and 

256. The source data required 28.7 GB of storage; the PMR 

quadtree occupied an additional 7.2 GB. Both were constant across 

all partition counts. What did vary by partition count was the 

amount of storage required for the buffer regions and their indexes. 

Not surprisingly, the more partitions, the more storage overhead 

was required. These values are shown in Figure 8. 

 

Figure 9: Build times (in minutes) for various partition counts. 

Build times for the PMR quadtrees were relatively unaffected by 

partition count (i.e., 19.2 – 19.7 minutes for partition counts 

between 16 and 256 as shown in Figure 9). This is somewhat 

unexpected given that the size of the buffer data and index storage 

grows from 1.3 GB (partition count 16) to 6.2 GB (partition count 

256). Persisting the larger volume of buffer data and index to HDFS 

will take more time; however, this is offset by having more 

Mappers (and opportunities for parallelism) participating in the 

process. 

For comparison purposes, we observed that on a single-node 

computer, indexing the data using a regular grid (a far simpler 

spatial index), took approximately two hours. 

5.2. Analytics 

When analyzing the performance of both range queries and k-NN 

queries on Hadoop, there are a number of interesting dimensions to 

the problem. We first considered the impact of sequential and non-

sequential reads of the index and data when resolving the queries. 

As shown in Figure 10, the range query performance times varied 

by PMR quadtree splitting threshold. The performance curve is 

reminiscent to observed performance curves in the sequential 

environment where optimal performance does not correspond to the 

minimal splitting threshold [17]. In our test cases, the threshold of 

1024 was the best performing. By superimposing the number of 

random reads, it is clear that performance is governed in large part 

by I/O. 
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Figure 10: Range query times (in milliseconds) and non-

sequential reads for different splitting thresholds. 

We also examined the impact of ordering the source data following 

construction of the spatial index on query performance. We 

observed that ordered data has a very significant impact upon the 

range query performance, and less of an impact on k-NN query 

performance. 

In Figure 11, we highlight the impact of unordered data and the 

accompanying non-sequential reads for the range query. The range 

query on unordered data took more than twenty times as much time 

(55.9 seconds versus 2.4 seconds). In addition, the unordered data 

resulted in roughly eight times more non-sequential reads. 

 

Figure 11: Range query times (in milliseconds) and non-

sequential reads, comparing ordered and unordered data.  

The k-NN query implementation also demonstrated the impact of 

ordered data, though to a far smaller extent than was observed with 

the range query. Using our New York City taxi data, we saw that a 

k-NN query (where k was large – e.g., 1000), the query on 

unordered data took roughly twice as much time as the same 

collection of query points on the ordered data (16.2 seconds versus 

8.4 seconds). However, the difference in non-sequential reads was 

not as great – 1000 versus 878 with the ordered data. This accounts 

for much of the more similar query performance. 

Another interesting question that warranted experimentation 

involved the MapReduce programming model and the utility of 

spatially indexing the data. As is often the case with MapReduce 

jobs, full scans of the data are sometimes performed. This is 

common with certain classes of analytic functions that rely upon 

global statistics gathered on the source data – e.g., hot spot analysis. 

We tested two implementations of a range query, one based upon a 

MapReduce-based full scan of the non-indexed data, and the 

second our implementation as described previously. 

In Figure 12, three performance curves are plotted. The nearly 

horizontal line represents the query time required for the naïve 

MapReduce implementation (triangle data points). Given that the 

implementation requires examination of all data across the Hadoop 

cluster, it is not surprising that the query times vary a small amount, 

regardless of the number of records returned by the range query. 

 

Figure 12: Range query times (in seconds) using both naïve 

MapReduce full scan implementation and the PMR quadtree-

based algorithm.  

The second line depicted is the dark gray line (diamond data 

points); it corresponds to the time required to return the point 

locations of all features intersecting the various query regions. As 

was discussed in Section 3, the PMR quadtree implementation is 

optimized for point data. If only the points are required (e.g., for 

rendering to a display) without the associated attributes, high levels 

of performance may be obtained. The third line depicted (light gray, 

square data points) corresponds to the time required to return the 

completed features (geometry plus all attribution).  

It is interesting and significant to note the break even points 

depicted in Figure 12. If the client requires only the point 

geometries of the features when answering the range queries, it 

appears that when the volume of features returned exceeds roughly 

65 million (~40% of our test dataset), the naïve MapReduce range 

query implementation will outperform the PMR quadtree based 

implementation. This reflects the increased complexity and 

computational costs of the quadtree implementation on a per feature 

basis. However, the quadtree implementation offers better 

selectivity and avoids the need to examine all features in the 

dataset. 

Finally, when the client requires both the point geometries and the 

attributes of the features, when the volume of returned features 

exceeds approximately 15 million (~10% of the dataset), the 

MapReduce implementation offers superior performance. Figure 

12 shows that the index performs better when the range is small 

enough to return a small subset of the data, but that when a 

substantial portion of the data is returned, a full scan with 

MapReduce completes faster. Another significance of this test is to 

show that for certain classes of problems, utilizing a spatial index 

is not necessarily optimal from a performance standpoint. 

Another important consideration when designing a spatial index 

and query algorithms for use with a real-time user interface is to 

minimize the amount of time necessary between query invocation 

and the first result being returned to the client application for 

rendering. Figure 13 depicts the time between query invocation and 

first results for various range query sizes (note that range queries 

are used when rendering features to the user interface). In the 

figure, times are shown for range query result sizes varying from 3 

to nearly 90 million features. At the lower end (which would 
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correspond to even a prohibitively large volume of features being 

displayed in a user interface – e.g., more than 3 million points), the 

observed times between query invocation and the first feature being 

returned were less than 400 milliseconds. 

 

Figure 13: Time (in milliseconds) to return the first feature (i.e., 

latency) for various range query result sizes.  

A complementary metric to the latency between query invocation 

and the first returned result record is the rate by which results are 

returned to the client. Figure 14 depicts the observed rates for the 

same range queries as depicted in Figure 13. When returning only 

the point geometries (which are contained in the spatial index), we 

are observing upwards of 900,000 records being returned for larger 

result sizes (depicted as the dark line in the figure). When 

measuring the number of geometries and associated attributes, the 

rate is considerably smaller – nearing 200,000 records per second. 

This performance difference is attributable to the need to process 

both the spatial index as well as the sorted attribute records. 

 

Figure 14: Number of records returned per second for various 

range query result sizes.  

6. CONCLUSION AND FUTURE WORK 

In this paper we have detailed a MapReduce-based implementation 

of a PMR quadtree that runs in a distributed manner across a 

Hadoop cluster. In addition, we described two key spatial queries 

(range and k-NN) that were implemented which consume the PMR 

quadtree. Differing from the quadtree build algorithm, these two 

queries were not implemented using a MapReduce programming 

model. This provides the benefit of allow simultaneous execution 

of large numbers of these queries against a dataset. 

Performance analysis was performed against the quadtree index 

and query implementations using several “big data” scale datasets 

on a 20 node Hadoop cluster. We measured performance relative to 

various parameters or metrics. These included: 

1. Index built time by partition count, 

2. Buffer index and data overhead by partition count, 

3. Range query performance by splitting threshold, 

4. Range query times on ordered and unordered data, 

5. Range query times using both naïve MapReduce and spatial 

index based algorithms,  

6. Latency between invocation of a range query and the first 

result record being returned, and  

7. The rate at which records are returned by range query size. 

These performance tests led to a collection of observations 

regarding the performance of spatial indexes, range, and k-NN 

queries in a MapReduce/Hadoop environment: 

1. Build times are relatively unaffected by partition count, 

2. Buffer overhead increases with partition count, 

3. PMR quadtree splitting thresholds impact query 

performance, much as they do in the traditional sequential 

environment, 

4. Ordered data can lead to significant increases in spatial query 

performance as compared with unordered data, 

5. As range query result sizes grow to a significant fraction of 

the dataset size, a simple MapReduce full table scan 

implementation can outperform one based upon a spatial 

index and ordered data, 

6. Small latencies (e.g., < 0.4 seconds) between query 

invocation and the first range query result can be obtained in 

Hadoop, and 

7. Result rows may be returned at high rates with properly 

architected systems. 

It is important to note that with the MapReduce programming 

model, it is not clear that a spatial index is always warranted (as 

noted in observation 5 above). When you are performing either a 

range query against the data (e.g., when rendering a reasonable 

portion of the data in the client application), or when you are doing 

an analysis that requires significant proximity awareness, spatially 

indexing the data is warranted. Researchers have shown that a 

spatial index provides performance advantages for spatial joins [1], 

[9]. However, when performing range queries where a significant 

fraction of the dataset is being returned, or when spatially joining 

two very large datasets, it is not clear than a persisted spatial index 

offers much of a performance advantage over on-the-fly spatial 

indexing [22].  

We have identified two primary topics for future work that extend 

our Hadoop-based PMR quadtree. The first topic involves 

extending the 2D PMR quadtree to a 3D PMR octree. This will 

facilitate the indexing of spatio-temporal data – organizations 

commonly temporally partition their data in HDFS. The bias 

toward temporal partitioning is a reflection of how the data is 

collected, as well as how it is most often consumed (e.g., temporal 

moment or range queries in conjunction with spatial queries). The 
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second topic involves extending the PMR octree to support the 

incremental maintenance of the index. A common use case is for 

organizations to pour data into existing datasets on their Hadoop 

cluster on a regular periodic basis. This requires a spatial index that 

can be incrementally maintained. The architecture of our spatial 

index is well suited to supporting incremental maintenance as 

additional data is added to a spatially indexed dataset; the 

incremental indexes on the periodically ingested data will be 

searched in tandem with the original index when resolving queries. 

In the analytic space, there is a collection of aggregate and spatial 

statistics tools that will be of high utility when identifying 

significant data on large volume Hadoop clusters. These tools will 

include kernel density (magnitude per unit area from point features 

using a kernel function to fit a smoothly tapered surface to each 

point), and hot spot analysis (taking a set of weighted features, 

identifies statistically significant hot spots and cold spots using the 

Getis-Ord Gi* statistic [14]). It is important to note that most data 

stored in this space is relatively uninteresting. The key is finding 

the interesting data (the proverbial needle in the haystack). These 

analytic functions will be implemented to run on Hadoop using 

MapReduce or on Spark [26] using the resilient distributed dataset 

(RDD) programming model. 
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