
Spatial Indexing and Analytics on Hadoop
Randall T. Whitman, Michael B. Park, Sarah M. Ambrose, and Erik G. Hoel

Environmental Systems Research Institute (Esri)
380 New York Street

Redlands, California 92373
1-909-793-2853

{rwhitman, mpark, sambrose, ehoel}@esri.com

ABSTRACT
Effective processing of extremely large volumes of spatial data has

led to many organizations employing distributed processing

frameworks. Hadoop is one such open-source framework that is

enjoying widespread adoption. In this paper, we detail an approach

to indexing and performing key analytics on spatial data that is

persisted in HDFS. Our technique differs from other approaches in

that it combines spatial indexing, data load balancing, and data

clustering in order to optimize performance across the cluster. In

addition, our index supports efficient, random-access queries

without requiring a MapReduce job; neither a full table scan, nor

any MapReduce overhead is incurred when searching. This

facilitates large numbers of concurrent query executions. We will

also demonstrate how indexing and clustering positively impacts

the performance of range and k-NN queries on large real-world

datasets. The performance analysis will enable a number of

interesting observations to be made on the behavior of spatial

indexes and spatial queries in this distributed processing

environment.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Spatial

databases and GIS, C.1.3.4 [Processor Architectures]: Parallel

Architectures – Distributed architectures, H.3.1 [Information

Storage and Retrieval]: Content Analysis and Indexing – Indexing

methods.

General Terms
Algorithms, Management, Performance.

Keywords
Hadoop, MapReduce, HDFS, spatial indexing, analytics, k-NN,

quadtree, distributed processing.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from Permissions@acm.org.

SIGSPATIAL '14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA.

Copyright 2014 ACM 978-1-4503-3131-9/14/11…$15.00

http://dx.doi.org/10.1145/2666310.2666387

1. INTRODUCTION

Improved performance of both visualization and spatial statistical

analysis on large volumes of data stored in Hadoop were the

motivation behind designing a spatial index on Hadoop. When

indexing and organizing data on Hadoop, there are two models that

must be supported. In the first model, users are willing to trade the

overhead of copying and clustering the source data for additional

query performance. Along with building the index, copying the

data in the same spatial order as the partitioned spatial index allows

greater levels of locality of reference. This results in increased

query performance, particularly when the query involves proximity

analysis (e.g., k-NN).

The second model arises in situations where either the volume of

source data is too large (e.g., petabyte scale), or the user is

unwilling to allow the source data to be copied and reorganized. In

this case, the source data remains unaffected. However, spatial

analytical operations will be slower than in the first case due to

additional network traffic and lower levels of locality of reference.

The observed performance differences on real world data will be

highlighted later in this paper.

In addition, the spatial index supports pan and zoom in ArcGIS

desktop (for reasonable zoomed-in extents) by performant range

query without MapReduce overhead – if every range query required

a MapReduce job, frequent pan and zoom operations would

overwhelm the Hadoop cluster.

It is important to note that a key aspect of this problem space relates

to having more traditional volumes of data (e.g., tens to hundreds

of millions of spatial objects), and very large computational

problems (big computation). For example, this would include

computing an all pairs shortest path or a k-NN query for all objects

in the dataset.

The rest of this paper is organized as follows. Section 2 reviews

related work in this domain. Section 3 describes our algorithm for

construction of a PMR quadtree using the Hadoop MapReduce [6]

framework. In addition to constructing a PMR quadtree, we present

details of how to further optimize the data and index by

reorganizing the source data to correspond to the ordering found

within the index. Section 4 details two fundamental spatial

operations, a range query and a k-NN query that have been

implemented on Hadoop. We focus on how they differ from their

traditional sequential counterparts. Section 5 presents some

detailed performance analyses of the PMR quadtree build

operation, as well as large analytic operations that perform range

and k-NN queries in parallel across the cluster. Concluding remarks

are contained in Section 6.

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2666310.2666387

2. RELATED WORK

Over the past two years, there has been significant research interest

in the topic of indexing and performing analytics on spatial data

within the Hadoop framework. At a high level, many approaches

seem similar, though closer analysis reveals important differences

both algorithmically as well as at a capability level. In addition,

each approach differs from a query processing standpoint. Some of

the more notable recent examples are discussed below.

Hadoop++, HAIL, and LIAH provide 20X to 50X faster queries on

Hadoop, via various indexing techniques [7]. However, none of

these projects provide a spatial indexing capability. Cary et al. [4]

discuss building an R-Tree index with Hadoop MapReduce, but do

not discuss querying.

Hadoop-GIS/RESQUE [1] provides spatially-aware query

planning and optimization for Hive (an infrastructure built on top

of Hadoop that supports a SQL-like language for querying the data

[23]). Hadoop-GIS is designed for efficient spatial joins, motivated

by use-cases related to medical pathology imaging. It uses a global

index of rectangular-tile partitions and a local R*-tree [3] index

within each tile. The on-demand indexing is not persisted,

facilitating multiple queries on the same data. Focusing on the

familiarity and usability of a query-language interface, it is not clear

that Hadoop-GIS would be suitable for custom MapReduce

applications. Finally, Hadoop-GIS requires deployment of a

customized Hive open-source implementation (it has been offered

as a contribution to Apache Hive).

SpatialHadoop [8] provides an open-source spatial extension

framework to Hadoop that can be used in custom MapReduce

applications (note that SpatialHahoop utilizes the open source GIS

Tools for Hadoop geometry API [10]). SpatialHadoop employs a

two-level indexing scheme. The global index determines which

partitions need be searched for the query – the disjoint spatial

partition regions having been chosen by STR bulk-loading a sample

of the data into a uniform grid or a single-level R+-tree. A local R+-

tree index is used in each of the blocks of each partition. In addition

to a range query, a k-NN query, and a spatial join, several

computational geometry operations are implemented [9]. The

researchers claim up to a two order of magnitude speedup when

performing spatial queries over non-indexed data on Hadoop and

have published results with 1.7 billion points from OpenStreetMap

[20]. SpatialHadoop runs a MapReduce job for every query; it does

not appear to be designed to perform multiple spatial searches (each

with separate spatial criteria parameters) within the same

MapReduce job. SpatialHadoop avoids the cost of random seeks in

HDFS by storing a complete copy of the data inline in the index.

With SpatialHadoop, the spatial index is not incrementally

maintained as an indexed dataset grows in size.

GeoMesa [11] offers indexed spatio-temporal range queries, and

claims one-second response time for most range queries, on

GDELT (an open spatio-temporal dataset of a quarter billion

geolocated human events dating back to 1979 [19]). GeoMesa

builds upon Accumulo [5] indexing; for the key in Accumulo,

GeoMesa interlaces 35-bit geohashes [13] with ISO-8601 date

strings. Focused on load-balancing, GeoMesa does not attempt to

enhance the spatial locality of data – rather, it distributes the data

spatio-temporally (using a random prefix) to ensure load balancing.

Data ingest is handled natively by Accumulo. GeoMesa does not

support the k-NN query. Finally, as it requires Accumulo, GeoMesa

is not applicable for general MapReduce applications on data stored

directly as files in HDFS.

The key distinction when querying our spatial index on Hadoop is

that the index allows efficient, random-access queries. This does

not require a MapReduce job to handle the volume of the

data. Neither a table scan, nor any MapReduce overhead, is

incurred when searching. Thus, a search can be performed for every

record processed in the Map and/or Reduce function of a

MapReduce application – in one single MapReduce job. In this

manner, the spatial index supports spatial statistical analysis.

3. SPATIAL INDEXING

Our spatial indexing technique relies upon the PMR quadtree

spatial index [21]. The PMR quadtree exhibits several important

characteristics that make it well suited to parallel or distributed

processing environments [18]. Most significantly, it is a regular

disjoint decomposition of space. The regularity property facilitates

the straightforward mapping of the structure to a collection of

processing elements (note: in this work, we employ a linearized

quadtree [12] where only the leaf nodes are represented). The

disjoint decomposition property is useful in minimizing problems

associated with processing spatial data contained in multiple

overlapping regions of space (e.g., R-trees).

3.1. Building the Quadtree

The basic process of building the PMR quadtree in parallel across

a collection of Hadoop processing elements consists of the

following five basic steps:

1. Split the unorganized source data into equal sized collections,

physically distributing one collection to each processing

element in the cluster.

2. On each processing element, build a partial quadtree

incorporating the local data in the collection.

3. Assign and distribute each quadrant in each partial quadtree

to a processing element for later assembly of the complete

quadtree.

4. On each processing element, combine the received and sorted

overlapping quadrants into a locally consistent quadtree.

5. Combine the locally consistent quadtrees into a complete

global PMR quadtree, persisting the index as files in HDFS.

Split inputs

(data in HDFS)

Partial

quadtree per

partition

Figure 1: Example highlighting the splitting of the source data

into equal sized collections (step 1) and the partial quadtrees

being built on each processing element.

The native splitting capability of the Hadoop system is used to split

the unordered source data into equal sized collections (step 1). We

are able to accept as input, datasets for which a tabular schema has

been defined in the Hive metadata. We support the following

formats: delimited text, JSON, and a Hadoop sequence file (a flat

file consisting of binary key/value pairs). The number of collections

is not constrained to be equal to the number of processing elements

in the cluster. Within Hadoop, clients have limited control over the

number and size of the collections.

Using the Hadoop MapReduce framework, we chose to build a

PMR quadtree during the Map phase on each processing element

(step 2). This is done for each collection independently, resulting

in a set of partial quadtrees, one for each collection. In contrast to

the typical MapReduce pattern where zero or more output records

are emitted after receiving and processing a single input record, we

instead accumulate multiple input records and build a partial

quadtree. If the partial quadtree exceeds memory capacity, it is

locally paged to disk. After the Map task inserts all input records in

the collection into the partial quadtree, all the entries in the partial

quadtree are emitted. The entries emitted by the Map task have a

composite key consisting of a Peano key of the quadtree node, and

the node depth. Note that input objects whose bounding rectangle

intersects more than one quadrant are referenced by multiple entries

in the index (similar to the R+-tree). Therefore, the possible

presence of duplicate entries in the spatial index must be accounted

for in the implementations of the analytic operations.

Partial

quadtree per

partition

Sorted partial

quadtrees

Figure 2: Sorted partial-extent quadtrees resulting from the

custom partitioner and the sort, in step 3.

A custom partitioner is defined whose purpose is to assign each

entry in a partial quadtree to the processing element that will

combine the quadrants of the partial quadtrees into subtrees of a

complete quadtree index (step 3). The partitioner assigns the entry

to the partition for which the Peano key of the entry lies within the

partition boundaries – the partition boundaries having been chosen

by a pre-calculation that sampled the input (see Figure 2). A

partition corresponds to a subsequence of entries in the linearized

PMR quadtree; note that the space corresponding to a partition may

contain disjoint parts (see Figure 5).

The MapReduce framework sorts records by key between the Map

and Reduce phases. For the key type emitted by the Mapper, used

by the Partitioner, and received by the Reducer, we define a

composite key consisting of the Peano key and quadrant depth. This

results in the MapReduce framework sorting all entries in the

quadtree by Peano key and depth.

Entries from all the partial quadtrees are combined into a complete

global linear PMR quadtree (step 4), using a quadtree-aware

streaming merge sort. The streaming and sorting (at the end of step

3) are done using the built in capabilities of the MapReduce

framework. The quadtree-aware merge (i.e., where merging may

result in subdividing a quadrant), is accomplished in the Reduce

phase of the MapReduce job. In the Reducer, we build a partial

quadtree – this time not data-partial with respect to a non-spatial

split – but rather the complete data for one quadrant or subtree out

of the whole tree (see Figure 3). Because the Reducer receives the

entries in sorted order, the subtree for one quadrant is completed

and can be emitted before starting the next one. This is conceptually

analogous to the flushing step in bulk-loading quadtrees [16].

Sorted partial

quadtrees

Quadtree

subtree per

partition

Complete

quadtree

Figure 3: Example showing subsets of the partial quadtrees

being distributed and merged on the collection of processing

elements. The final combined result (the complete quadtree) is

also shown.

Persisting the index in index-portion files in HDFS (step 5), is an

outcome of Reducer output getting written to files in the

MapReduce framework. Due to the quadtree-compatible

partitioning by Peano key (step 3), the logical concatenation of the

index-portion files constitutes the complete global quadtree index.

Each segment of the index is stored in Hadoop map file format – an

indexed key-value store. The key type is the composite key of

Peano key and quadrant depth, packed into 58 bits and 5 bits

respectively. The value type holds the bounding rectangle of the

geometry, as four doubles – except that for point datasets the point

is stored as two doubles. The value also contains a row locator that

specifies which file, and the position within the file. The row

locator facilitates the lookup of the full object/row during query

processing. The record format is shown in Figure 4. A Hadoop map

file is chosen for the following properties: index-segment files can

be built in isolation in separate reduce tasks; files are written

append-only; capability to seek a random key for ensuing queries;

and splittable as the input to a MapReduce job.

quadtree record

value

record locator

key

Peano

key
depth

bounding

rectangle file offset

Figure 4: Quadtree index record format.

It is important to note that the PMR quadtree can be readily

optimized when one realizes that much of the data in the “big data”

space is generated by sensor, moving objects, etc. (polygonal data

in this space is rare, other than in the filtering role). Essentially,

these produce objects with point geometry. Because of this, it is

possible to further optimize the quadtree index record to utilize a

point geometry rather than a bounding rectangle as part of the

value. Not only does this save space, but it also removes the

necessity to perform secondary filtering when resolving spatial

queries as the index contains the full geometry of the indexed

objects.

Strictly speaking, it would be possible for the Reduce task (step 3),

to build a quadtree portion without the interim quadtree (step 1)

having been built beforehand, but in the interest of performance,

we obviate much of the potential paging to disk in the Reducer, by

this interim quadtree which provides a first-pass approximation to

the depth at the entry will lie in the final, complete quadtree.

3.2. Ordering and Clustering

In the case of the first model, besides construction of a PMR

quadtree, it is possible to further optimize the data and index by

reorganizing the source data to correspond to the ordering found

within the index. The process of building a spatially-ordered copy

of the data and indexing it can be completed by a sequence of five

MapReduce jobs. These five jobs correspond to the following:

1. Choose spatial partitions based on sampling the input.

2. Make the spatially-ordered and partitioned copy.

3. Build buffer regions.

4. Build a quadtree index on the main, complete data.

5. Build quadtree index on buffer region data.

As in the description of the quadtree build (see Section 3.1), the

preliminary MapReduce job to choose partitions samples the data

in order to balance the size of data in partitions. This is done for

load balancing of both the build as well as subsequent querying.

For each sample object, we calculate the Peano-key address,

consistent with the quadtree to be built. We bucket the samples into

quadtree quadrants of a certain, generally shallow, partitioning

depth. Then we essentially distribute 2𝑑𝑝 uniform ordered

rectangular blocks (in subsequences) among the desired number of

partitions (where dp is the partitioning depth). In contrast to the

rectangular partitioning of SpatialHadoop [8] and Hadoop-GIS [2],

we allow the partition regions to have jagged shapes and to contain

multiple disjoint pieces. An example of a disjoint partition region

is depicted in Figure 5, labeled region 7. The list of partitions is

stored, by starting Peano-key address, in the table metadata (by

augmenting the table properties in the Hive metastore).

1

2

3
4

5

6
7

7 8

9

Figure 5: Quadtree containing nine partition regions.

The optional spatially ordered copy trades disk space and pre-

computation in order to optimize searches by reducing the number

of blocks that need to be read from disk in complete-row lookup.

In step 3, a MapReduce job loads and transforms the original data

into the spatially ordered copy. The Map function calculates the

Peano key for the geometry of each row. For depth, it uses the

maximum depth of the quadtree to be built, so the ordering of the

complete ordered data is compatible with the ordering of its index.

The custom partitioner for building the ordered copy, partitions

based on Peano key using the pre-calculated partition boundaries;

it is the same partitioner used by the MapReduce application that

builds the quadtree index. Each partition is stored in a key-value

sequence file in HDFS, where the key is null (as typical when a

tabular schema is defined in Hive) and the value is the complete

row. Hadoop sequence files are chosen for the following properties:

they are splittable, for use as input to MapReduce jobs; it is possible

to look up rows one-by-one after index search; they are compact

and performant; and finally, they handle various data formats

including binary formats.

For spatially-ordered tables, a MapReduce job is necessary to build

a buffer region around each partition. The buffer region contains

spatial objects outside the partition region that are within a user-

specified buffer radius, which is to be chosen based on the expected

size of proximity queries. The buffer region is designed to avoid

reading from multiple partitions for proximity queries near partition

boundaries. This applies to a range query with a query range

overlapping a second partition by less than the buffer radius. It also

applies to a k-NN query where some of the k objects nearest to the

query location are in a partition neighboring the partition

containing the query center, but distant from the partition boundary

by at most the buffer radius. For each input row, the Map function

determines whether the spatial object needs to be in any buffer

regions - by inflating the bounding rectangle of the spatial object.

If the spatial object will be in any buffer regions, the Mapper then

determines the distance to the neighboring partitions. For each

partition at a distance of at most the buffer radius, it emits a record

of which the key is the partition number of the partition that needs

to include the spatial object in its buffer region, and the value is the

row annotated with a row identifier. The row identifier is needed

for de-duplication during queries. The partitioner simply returns the

partition number from the key, and the reducer is trivial. The

storage is a sequence file whose value is the complete row

annotated with the row identifier information.

Index

Data

Buffer

Shard

Figure 6: Example highlighting the relationship between data,

index, buffer, and the shard.

The same MapReduce application that builds the quadtree index on

unordered data is used to build the quadtree index on the spatially

ordered derived table. The same partitioner, based on Peano keys,

is used for building both the spatially ordered copy and the quadtree

index. This results in the entries of one index partition

corresponding to the rows of one partition of the complete ordered

data.

Finally (step 5), a quadtree index is built on the buffer region data

in each partition. The one difference, when building the quadtree

index on the buffer region data – rather than on the main data – is

that the partitioning phase is done by already-determined target

partition number, rather than by Peano key. This also implies that

the buffer region indices are a separate index per partition, and do

not constitute a global index of buffer regions across partitions.

4. SPATIAL ANALYTICS

Spatially indexing datasets, while an interesting topic, is a means

to an end - most notably, providing the ability to improve the

performance of spatial queries against the indexed dataset. Users

typically do not care whether a dataset is indexed – they instead

focus on what can be done with the data; what queries can be

answered, what they can learn from their data.

Utilizing our PMR quadtree implementation on Hadoop, we have

implemented the traditional range and k-NN queries – without

requiring a MapReduce job for every search parameter. These can

be considered building blocks in the implementation of more

sophisticated and useful queries in the future.

4.1. Range Query

The design of the spatial index allows searching with near-standard

random-access range query techniques. The key differences

between standard implementations of range queries on a PMR

quadtree and ours are the following:

1. The index is partitioned into multiple files.

2. The buffer-region index is used along with the main index, in

the case of spatially-ordered derived files.

3. Optimizations are made for the common case of point data.

As the quadtree index consists of multiple segments (i.e., separate

files in HDFS for each partition), a query region may intersect with

the multiple partitions of the index. The partition boundary list from

the table metadata is used – as it is in the Partitioner phase of the

MapReduce job that built the index – to determine the range of

partitions in which to search. The lowest partition is the one

containing the low-coordinate corner of the search MBR, and the

highest partition is the one containing the high-coordinate corner of

the search range. Only those partitions of the index that are within

this range are opened during the search.

1 2

3 4

1 2

3 4

1 2

3 4

(a) Ignore buffer,

one partition

(b) Buffer advantageous,

one partition

(c) Ignore buffer,

two partitions

Figure 7: Example highlighting the interplay between the query

region and partition buffers. The optimizations shown in (a)

and (c) are only applicable to point data.

The buffer region may be used to avoid searching in multiple

partitions of the index when the query region is near the boundary

of a partition region. If the query region overlaps a second partition

region by a distance less than the buffer radius (see Figure 7b), the

buffer region index is utilized in order to avoid reading from the

second partition. However, when the query region overlaps a

second partition region by more than the buffer radius (see Figure

7c), the buffer region provides no such advantage – the buffer

region is read only for the purpose of including a line or polygon

that was assigned to a non-participating partition, but overlaps one

(or more) of the participating partitions.

When the spatially ordered copy is used, we expect rows that are

close to each other spatially will also usually be stored near each

other in the data file. Thus, we minimize the number of blocks that

need to be read from disk when looking up the complete rows.

Point data is, in our experience, by far the most common geometry

type of spatial data in the Big Data domain. In the case of point

geometry, two numbers (floating point doubles) suffice to store the

full geometry of the spatial object as an entry in the quadtree, rather

than the more common four doubles to represent the bounding

rectangle or higher dimensional line or polygon data. Storing two

doubles for a point, rather than four doubles for bounding rectangle,

allows the size of the index to be reduced by about 30%. Not only

is it desirable to reduce storage space, but also we expect less

frequent occurrence of the need to read across disk blocks when

reading the index, for same-size query regions, when the index

records are shorter.

Unlike lines and polygons (where the full geometry must be read

out of the complete data file in order to refine the intersection test),

with point data, the full geometry is obtained directly from the entry

in the quadtree index. Thus, for queries that require only the

geometry (without attributes – e.g., when drawing to the screen of

the client application), we can read from the index without having

to open the file of complete data. However, when symbolizing or

analyzing on any attribute, it is necessary to read the full data (the

complete feature is not being stored inline in the index).

Another optimization for point geometry is applicable when buffer

regions are present, i.e., in the case of a spatially-ordered derived

table. With line and polygon data, it is necessary to include the

buffer-region index in all queries because we assign each row to

only one partition, even if it overlaps multiple partition regions. In

the case of point data, in the worst case, the point can lie on the

partition boundary. Thus, if the query region is fully contained

within a partition region, we do not need to open the buffer index

file (nor the buffer-region complete data file – see Figure 7a).

Furthermore, in the case of a range query that overlaps a second

partition region by more than the buffer radius, once it is already

necessary to search in multiple partitions, we do not need to search

in the buffer region when it offers no advantage (see Figure 7c).

4.2. k-NN Query

The design of the spatial index facilitates implementation of a k-

NN query using the standard incremental k-NN algorithm [15].

This is due in part to being able to support random reads into a

spatial index file – without requiring a MapReduce job for every

search parameter. The key differences between our implementation

on Hadoop, and the standard algorithm, are the following:

1. The index is partitioned into multiple files, and we search

only one partition.

2. The buffer region index is used along with the main index.

For k-NN queries, we search only in the partition containing the

query center. The partition containing the query center is

determined by the Peano key of the query center and the partition

boundary list from the table metadata. When a quadrant is dequeued

from the incremental k-NN priority queue and the quadrant

overlaps more than one partition, we know that the quadrant

corresponds to an implicit internal node in the quadtree of actual

data. This is the case because the quadtree index was constructed

such that every leaf quadrant is fully contained within a partition of

the index. The determination that a quadrant is an implicit internal

node allows us to enqueue its subquadrants, without having to read

from disk. As a consequence, we avoid reading from any other

partition, despite top-down tree traversal for enqueueing.

To support k-NN query around an arbitrary query center – including

a query center that may happen to lie near a partition boundary –

requires using the spatially-ordered copy of the data, which

provides the buffer region. With the buffer region, k-NN queries

are supported where the distance to the kth-nearest object is at most

the buffer radius.

The buffer region of spatially-ordered derived tables allows

performing a k-NN query while reading from only one partition,

even when the query center is near a partition boundary. When a

quadrant is dequeued from the incremental k-NN priority queue,

one of three conditions holds: (1) the quadrant overlaps multiple

partition regions; (2) the quadrant is within the query partition; or

(3) the quadrant is outside the query partition. In case (1), as

explained above, the quadrant is an internal node. For case (2), the

quadrant inside the partition, we search in the main index and not

the buffer region index. Symmetrically, for case (3), the quadrant

outside the query partition, we search in the buffer region index but

not the main index. Furthermore, a quadrant outside the query

partition, is discarded before reading from disk, if the distance from

the quadrant to the query region is greater than the buffer radius.

As for point geometry type, the benefits of smaller storage size of

the index, apply to k-NN as well as to range query. Likewise,

queries that request the geometry only, can read from the index

only, and not from the complete data, for Point data. However, no

additional algorithmic optimization is made for Point data with k-

NN query.

Figure 8: Buffer data and index size (in GB) for various

partition counts.

5. PERFORMANCE COMPARISON

In order to test the performance (wall clock and disk I/O) as well as

the storage requirements, we selected a recently available public

dataset – the New York City Taxi and Limousine Commission’s

2013 taxi tripsheet dataset [25]. It consists of over 170 million

records, detailing both trip and fare data for every taxi trip recorded

in the seven boroughs of New York City in 2013. The data is

available for download as a collection of 24 CSV files (~50GB

uncompressed). The trip data contains information such as hack

license, pickup date/time, dropoff date/time, passenger count, trip

duration, trip distance, and pickup and dropoff latitude/longitude.

The fare data contains hack license, pickup date/time, fare, tip

amount, tolls, and total trip cost.

Performance tests were run on a 20 node Hadoop cluster. Each node

in the cluster was a garden variety desktop PC containing either 4

or 8 cores. Each desktop was outfitted with 16GB RAM, and 2.5TB

of reasonably fast disk. Each machine was running CentOS 6.5

Linux and Hadoop 2.2.

5.1. Indexing

The data footprint was measured for a collection of different

partition sizes, with the count of partitions ranging between 16 and

256. The source data required 28.7 GB of storage; the PMR

quadtree occupied an additional 7.2 GB. Both were constant across

all partition counts. What did vary by partition count was the

amount of storage required for the buffer regions and their indexes.

Not surprisingly, the more partitions, the more storage overhead

was required. These values are shown in Figure 8.

Figure 9: Build times (in minutes) for various partition counts.

Build times for the PMR quadtrees were relatively unaffected by

partition count (i.e., 19.2 – 19.7 minutes for partition counts

between 16 and 256 as shown in Figure 9). This is somewhat

unexpected given that the size of the buffer data and index storage

grows from 1.3 GB (partition count 16) to 6.2 GB (partition count

256). Persisting the larger volume of buffer data and index to HDFS

will take more time; however, this is offset by having more

Mappers (and opportunities for parallelism) participating in the

process.

For comparison purposes, we observed that on a single-node

computer, indexing the data using a regular grid (a far simpler

spatial index), took approximately two hours.

5.2. Analytics

When analyzing the performance of both range queries and k-NN

queries on Hadoop, there are a number of interesting dimensions to

the problem. We first considered the impact of sequential and non-

sequential reads of the index and data when resolving the queries.

As shown in Figure 10, the range query performance times varied

by PMR quadtree splitting threshold. The performance curve is

reminiscent to observed performance curves in the sequential

environment where optimal performance does not correspond to the

minimal splitting threshold [17]. In our test cases, the threshold of

1024 was the best performing. By superimposing the number of

random reads, it is clear that performance is governed in large part

by I/O.

0

1

2

3

4

5

6

7

16 32 64 128 256

B
u

ff
e
r
 D

a
ta

 /
 I

n
d

e
x
 S

iz
e
 (

G
B

)

Partitions

buffer index

buffer data

0

5

10

15

20

16 32 64 128 256

B
u

il
d

 T
im

e
(m

in
)

Partitions

Figure 10: Range query times (in milliseconds) and non-

sequential reads for different splitting thresholds.

We also examined the impact of ordering the source data following

construction of the spatial index on query performance. We

observed that ordered data has a very significant impact upon the

range query performance, and less of an impact on k-NN query

performance.

In Figure 11, we highlight the impact of unordered data and the

accompanying non-sequential reads for the range query. The range

query on unordered data took more than twenty times as much time

(55.9 seconds versus 2.4 seconds). In addition, the unordered data

resulted in roughly eight times more non-sequential reads.

Figure 11: Range query times (in milliseconds) and non-

sequential reads, comparing ordered and unordered data.

The k-NN query implementation also demonstrated the impact of

ordered data, though to a far smaller extent than was observed with

the range query. Using our New York City taxi data, we saw that a

k-NN query (where k was large – e.g., 1000), the query on

unordered data took roughly twice as much time as the same

collection of query points on the ordered data (16.2 seconds versus

8.4 seconds). However, the difference in non-sequential reads was

not as great – 1000 versus 878 with the ordered data. This accounts

for much of the more similar query performance.

Another interesting question that warranted experimentation

involved the MapReduce programming model and the utility of

spatially indexing the data. As is often the case with MapReduce

jobs, full scans of the data are sometimes performed. This is

common with certain classes of analytic functions that rely upon

global statistics gathered on the source data – e.g., hot spot analysis.

We tested two implementations of a range query, one based upon a

MapReduce-based full scan of the non-indexed data, and the

second our implementation as described previously.

In Figure 12, three performance curves are plotted. The nearly

horizontal line represents the query time required for the naïve

MapReduce implementation (triangle data points). Given that the

implementation requires examination of all data across the Hadoop

cluster, it is not surprising that the query times vary a small amount,

regardless of the number of records returned by the range query.

Figure 12: Range query times (in seconds) using both naïve

MapReduce full scan implementation and the PMR quadtree-

based algorithm.

The second line depicted is the dark gray line (diamond data

points); it corresponds to the time required to return the point

locations of all features intersecting the various query regions. As

was discussed in Section 3, the PMR quadtree implementation is

optimized for point data. If only the points are required (e.g., for

rendering to a display) without the associated attributes, high levels

of performance may be obtained. The third line depicted (light gray,

square data points) corresponds to the time required to return the

completed features (geometry plus all attribution).

It is interesting and significant to note the break even points

depicted in Figure 12. If the client requires only the point

geometries of the features when answering the range queries, it

appears that when the volume of features returned exceeds roughly

65 million (~40% of our test dataset), the naïve MapReduce range

query implementation will outperform the PMR quadtree based

implementation. This reflects the increased complexity and

computational costs of the quadtree implementation on a per feature

basis. However, the quadtree implementation offers better

selectivity and avoids the need to examine all features in the

dataset.

Finally, when the client requires both the point geometries and the

attributes of the features, when the volume of returned features

exceeds approximately 15 million (~10% of the dataset), the

MapReduce implementation offers superior performance. Figure

12 shows that the index performs better when the range is small

enough to return a small subset of the data, but that when a

substantial portion of the data is returned, a full scan with

MapReduce completes faster. Another significance of this test is to

show that for certain classes of problems, utilizing a spatial index

is not necessarily optimal from a performance standpoint.

Another important consideration when designing a spatial index

and query algorithms for use with a real-time user interface is to

minimize the amount of time necessary between query invocation

and the first result being returned to the client application for

rendering. Figure 13 depicts the time between query invocation and

first results for various range query sizes (note that range queries

are used when rendering features to the user interface). In the

figure, times are shown for range query result sizes varying from 3

to nearly 90 million features. At the lower end (which would

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

32 64 128 256 512 1024 2048 4096

Q
u

e
r
y

 T
im

e
 (

m
s)

N
o

n
-s

eq
u

e
n

ti
a

l
R

e
a

d
s

Splitting Threshold

Query Time (ms)

Random Reads

0

2

4

6

8

10

12

0

10

20

30

40

50

60

ordered unordered

R
e
a

d
s

(t
h

o
u

sa
n

d
s)

Q
u

e
r
y

 T
im

e
 (

se
c
)

Ordered vs. Unordered Data

Query Time (ms)

Non-sequential Reads

correspond to even a prohibitively large volume of features being

displayed in a user interface – e.g., more than 3 million points), the

observed times between query invocation and the first feature being

returned were less than 400 milliseconds.

Figure 13: Time (in milliseconds) to return the first feature (i.e.,

latency) for various range query result sizes.

A complementary metric to the latency between query invocation

and the first returned result record is the rate by which results are

returned to the client. Figure 14 depicts the observed rates for the

same range queries as depicted in Figure 13. When returning only

the point geometries (which are contained in the spatial index), we

are observing upwards of 900,000 records being returned for larger

result sizes (depicted as the dark line in the figure). When

measuring the number of geometries and associated attributes, the

rate is considerably smaller – nearing 200,000 records per second.

This performance difference is attributable to the need to process

both the spatial index as well as the sorted attribute records.

Figure 14: Number of records returned per second for various

range query result sizes.

6. CONCLUSION AND FUTURE WORK

In this paper we have detailed a MapReduce-based implementation

of a PMR quadtree that runs in a distributed manner across a

Hadoop cluster. In addition, we described two key spatial queries

(range and k-NN) that were implemented which consume the PMR

quadtree. Differing from the quadtree build algorithm, these two

queries were not implemented using a MapReduce programming

model. This provides the benefit of allow simultaneous execution

of large numbers of these queries against a dataset.

Performance analysis was performed against the quadtree index

and query implementations using several “big data” scale datasets

on a 20 node Hadoop cluster. We measured performance relative to

various parameters or metrics. These included:

1. Index built time by partition count,

2. Buffer index and data overhead by partition count,

3. Range query performance by splitting threshold,

4. Range query times on ordered and unordered data,

5. Range query times using both naïve MapReduce and spatial

index based algorithms,

6. Latency between invocation of a range query and the first

result record being returned, and

7. The rate at which records are returned by range query size.

These performance tests led to a collection of observations

regarding the performance of spatial indexes, range, and k-NN

queries in a MapReduce/Hadoop environment:

1. Build times are relatively unaffected by partition count,

2. Buffer overhead increases with partition count,

3. PMR quadtree splitting thresholds impact query

performance, much as they do in the traditional sequential

environment,

4. Ordered data can lead to significant increases in spatial query

performance as compared with unordered data,

5. As range query result sizes grow to a significant fraction of

the dataset size, a simple MapReduce full table scan

implementation can outperform one based upon a spatial

index and ordered data,

6. Small latencies (e.g., < 0.4 seconds) between query

invocation and the first range query result can be obtained in

Hadoop, and

7. Result rows may be returned at high rates with properly

architected systems.

It is important to note that with the MapReduce programming

model, it is not clear that a spatial index is always warranted (as

noted in observation 5 above). When you are performing either a

range query against the data (e.g., when rendering a reasonable

portion of the data in the client application), or when you are doing

an analysis that requires significant proximity awareness, spatially

indexing the data is warranted. Researchers have shown that a

spatial index provides performance advantages for spatial joins [1],

[9]. However, when performing range queries where a significant

fraction of the dataset is being returned, or when spatially joining

two very large datasets, it is not clear than a persisted spatial index

offers much of a performance advantage over on-the-fly spatial

indexing [22].

We have identified two primary topics for future work that extend

our Hadoop-based PMR quadtree. The first topic involves

extending the 2D PMR quadtree to a 3D PMR octree. This will

facilitate the indexing of spatio-temporal data – organizations

commonly temporally partition their data in HDFS. The bias

toward temporal partitioning is a reflection of how the data is

collected, as well as how it is most often consumed (e.g., temporal

moment or range queries in conjunction with spatial queries). The

0

200

400

600

800

1000

1200

0 50,000,000 100,000,000

T
im

e
to

 F
ir

st
 R

es
u

lt
 (

m
s)

Range Query Result Size

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

0 50,000,000 100,000,000

R
ec

o
rd

s
p

er
 S

ec
o
n

d

Range Query Result Size

Index Only

Index and Data

second topic involves extending the PMR octree to support the

incremental maintenance of the index. A common use case is for

organizations to pour data into existing datasets on their Hadoop

cluster on a regular periodic basis. This requires a spatial index that

can be incrementally maintained. The architecture of our spatial

index is well suited to supporting incremental maintenance as

additional data is added to a spatially indexed dataset; the

incremental indexes on the periodically ingested data will be

searched in tandem with the original index when resolving queries.

In the analytic space, there is a collection of aggregate and spatial

statistics tools that will be of high utility when identifying

significant data on large volume Hadoop clusters. These tools will

include kernel density (magnitude per unit area from point features

using a kernel function to fit a smoothly tapered surface to each

point), and hot spot analysis (taking a set of weighted features,

identifies statistically significant hot spots and cold spots using the

Getis-Ord Gi* statistic [14]). It is important to note that most data

stored in this space is relatively uninteresting. The key is finding

the interesting data (the proverbial needle in the haystack). These

analytic functions will be implemented to run on Hadoop using

MapReduce or on Spark [26] using the resilient distributed dataset

(RDD) programming model.

7. ACKNOWLEDGMENTS

We wish to thank other key development staff within Esri that have

contributed to this work through discussion and critical feedback.

These people include Bill Moreland, Mark Janikas, Mansour Raad,

Lauren Bennett, Sud Menon, Scott Morehouse, and David Kaiser.

8. REFERENCES

[1] Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., and

Saltz, J. 2013. Hadoop-GIS: A High Performance Spatial

Data Warehousing System over MapReduce, Proc. VLDB

Endow. 6, 11 (August 2013), 1009-1020.

DOI=http://dx.doi.org/10.14778/2536222.2536227.

[2] Aji A., Vo H., and Wang, F. 2014. Effective Spatial Data

Partitioning for Scalable Query Processing in MapReduce, In

Proceedings of the 40th International Conference on Very

Large Data Bases (VLDB '14), Hangshou, China.

[3] Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B.

1990. The R*-tree: an efficient and robust access method for

points and rectangles. In Proceedings of the 1990 ACM

SIGMOD International Conference on Management of Data

(SIGMOD '90). ACM, New York, NY, USA, 322-331.

DOI=http://doi.acm.org/10.1145/93597.98741.

[4] Cary, A., Sun, Z., Hristidis, V., and Rishe, N. 2009.

Experiences on Processing Spatial Data with MapReduce.

Scientific and Statistical Database Management, 302-319.

[5] Cordova, A., Rinaldi, B., Wall, M. 2014. Accumulo. O'Reilly

Media, Inc., Sebastopol, CA, USA.

[6] Dean, J., and Ghemawat, S. 2008. MapReduce: simplified

data processing on large clusters. Commun. ACM, 51, 1

(January 2008), 107-113. DOI=

http://dx.doi.org/10.1145/1327452.1327492.

[7] Dittrich, J., Richter, S., Schuh, S., and Quiané-Ruiz, J.-

A. 2013. Efficient OR Hadoop: Why not both? IEEE Data

Engineering Bulletin. 36, 1, 15-23.

[8] Eldawy, A., and Mokbel, M. 2013. A Demonstration of

SpatialHadoop: An Efficient MapReduce Framework for

Spatial Data, Proc. VLDB Endow. 6, 12 (August 2013),

1230-1233.

DOI=http://dx.doi.org/10.14778/2536274.2536283.

[9] Eldawy, A., Li, Y., Mokbel, M., and Janardan, R. 2013.

CG_Hadoop: Computational Geometry in MapReduce, In

Proceedings of the 21st ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems

(SIGSPATIAL'13). ACM, New York, NY, USA, 294-303.

DOI=http://doi.acm.org/10.1145/2525314.2525349.

[10] Esri. 2013. GIS Tools for Hadoop.

https://github.com/Esri/gis-tools-for-hadoop.

[11] Fox, A., Eichelberger, C., Hughes, J., and Lyon, S. 2013.

Spatio-temporal Indexing in Non-relational Distributed

Databases, In Proceedings of the IEEE International

Conference on Big Data, October 2013.

[12] Gargantini, I. 1982. An effective way to represent quadtrees.

Commun. ACM 25, 12 (December 1982), 905-910. DOI=

http://doi.acm.org/10.1145/358728.358741.

[13] Geohash.org. Tips & Tricks. http://geohash.org/site/tips.html.

[14] Getis, A., and Ord, K. 1992. The Analysis of Spatial

Association by Use of Distance Statistics, Geographical

Analysis, 24, 3 (July 1992), 189–206. DOI=

http://dx.doi.org/10.1111/j.1538-4632.1992.tb00261.x

[15] Hjaltason, G., and Samet, H. 1999. Distance Browsing in

Spatial Databases, ACM Trans. Database Syst. 24, 2 (June

1999), 265-318.

DOI=http://doi.acm.org/10.1145/320248.320255.

[16] Hjaltason, G., and Samet, H. 2002. Speeding up construction

of PMR quadtree-based spatial indexes. VLDB Journal, 11, 2

(October 2002), 109-137.

DOI=http://dx.doi.org/10.1007/s00778-002-0067-8.

[17] Hoel, E, and Samet, H. 1991. Efficient Processing of Spatial

Queries in Line Segment Databases, In Proceedings of the

2nd International Symposium on Advances in Spatial

Databases (SSD’91), Zurich, August 1991.

[18] Hoel, E., and Samet, H. 2003. Data-parallel Polygonization,

Parallel Computing, 29, 10 (October 2003), 1381-1401.

DOI=http://dx.doi.org/10.1016/j.parco.2003.05.001.

[19] Leetaru, K., and Schrodt, P. 2013. GDELT: Global Database

of Events, Language, and Tone, 1979-2012. International

Studies Association Annual Conference, San Francisco,

(April 2013).

[20] Neis, P., Zipf, A. 2012. Analyzing the Contributor Activity

of a Volunteered Geographic Information Project — The

Case of OpenStreetMap. ISPRS International Journal of

Geo-Information, 1, 2, 146-165.

[21] Nelson, R., and Samet, H. 1986. A consistent hierarchical

representation for vector data. In Proceedings of the 13th

Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH '86), Evans, D., and Athay, R.,

(Eds.). ACM, New York, NY, USA, 197-206.

DOI=http://doi.acm.org/10.1145/15922.15908.

[22] Raad, M. 2013. BigData Spatial Joins, Blog post.

http://thunderheadxpler.blogspot.com/2013/10/bigdata-

spatial-joins.html.

http://dx.doi.org/10.1145/1327452.1327492
http://www.bibsonomy.org/author/Dittrich
http://www.bibsonomy.org/author/Schuh
http://www.bibsonomy.org/author/Quian%C3%A9-Ruiz
http://dx.doi.org/10.14778/2536274.2536283
http://doi.acm.org/10.1145/2525314.2525349
https://github.com/Esri/gis-tools-for-hadoop
http://doi.acm.org/10.1145/320248.320255
http://dx.doi.org/10.1007/s00778-002-0067-8
http://dx.doi.org/10.1016/j.parco.2003.05.001

[23] Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P.,

Anthony, S., Liu, H., Wyckoff, P., and Murthy, A. 2009.

Hive – A Warehousing Solution Over a Map-Reduce

Framework. Proc. VLDB Endow. 2, 2 (August 2009), 1626-

1629.

[24] White, T. 2009. Hadoop: The Definitive Guide (1st ed.).

O'Reilly Media, Inc., Sebastopol, CA, USA.

[25] Whong, C. 2014. FOILing NYC’s Taxi Trip Data, Blog post,

http://chriswhong.com/open-data/foil_nyc_taxi.

[26] Zaharia, M., Chowdhury, M., Franklin, M., Shenker, S., and

Stoica, I. 2010. Spark: cluster computing with working sets.

In Proceedings of the 2nd USENIX Workshop on Hot Topics

in Cloud Computing (HotCloud ’10), Boston, June 2010.

