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ABSTRACT

Automatic roof style classification using point clouds is useful and
can be used as a prior knowledge in various applications, such as
the construction of 3D models of real-world buildings. Previous
classification approaches usually employ heuristic rules to recog-
nize roof style and are limited to a few roof styles. In this paper,
the recognition of roof style is done by a roof style classifier which
is trained based on bag of words features extracted from a point
cloud. In the computation of bag of words features, a key chal-
lenge is the generation of the codebook. Unsupervised learning is
often misguided easily by the data and detects uninteresting pat-
terns within the data. In contrast, we propose to integrate existing
knowledge of roof structure and cluster the points of target roof
styles into several semantic classes which can then be used as code
words in the bag of words model. We use synthetic variants of these
code words to train a semantics point classifier. We evaluate our
approach on two datasets with different levels of degradations. We
compare the results of our approach with two unsupervised learn-
ing algorithms: K-Means and Gaussian Mixture Model. We show
that our approach achieve higher accuracy in classification of the
roof styles and maintains consistent performance among different
datasets.

Categories and Subject Descriptors
1.4.8 [Image Processing And Computer Vision]: Scene Analysis-
Range data

General Terms
Algorithm, Experimentation, Performance
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Realistic roof modelling has become increasingly important for ur-
ban planning, navigation and GIS. There are two main approaches:
reconstructing a mesh from real point cloud data and artificially
designing a mesh model. Reconstructing meshes from raw point
cloud data [13, 18, 19, 11] preserves detailed building geometry
and is suitable for modeling the core area of a city. However, with-
out given any prior knowledge about building’s roof style, many
geometric and topological constraints are used by these methods,
which in turn make the methods hard to be applied to a different
dataset. Artificial meshes on the other hand is broadly used and
an ideal solution for modeling buildings with simple shape. The
workload and cost of the artificial modeling will be largely reduced
if roof style and other properties of the building are given before-
hand.

Therefore it is valuable to recognize before modeling the roof style
of a given building data. Existing works on roof recognition iden-
tify roof styles by using pre-defined rules to look for specific fea-
tures of the different roof styles. Such previous methods are re-
stricted to very few roof styles. In this paper, we propose a learning
based roof style classification algorithm using aerial LiDAR point
clouds. The proposed approach is tested in classifying 9 roof styles
and to our knowledge, it is the first method that is not limited to a
small set of styles. In contrast to the previous work, the proposed
approach does not depend on geometry fitting and roof topology
detection. Instead, our approach to classifying roof style is based
on a bag of words of roof point semantics.

The novel contributions of this paper are in several aspects. First,
we propose a learning based roof style classification algorithm us-
ing a point cloud data. The proposed approach capable of recogniz-
ing 9 different roof styles. Second, our learning based approach is
the first to successfully apply the bag of words model for the clas-
sification of the roof styles. We show that by integrating existing
knowledge about the roof structures, it is possible to obtain mean-
ingful code words that support good recognition performance. We
test our approach on multiple data sets with different types and lev-
els of degradation and compared it to known methods. We show
that our approach achieves better accuracy and keep consistent per-
formance over several datasets.

2. RELATED WORK

The major difficulties in roof style modelling using point cloud data
is to deal with the presence of outliers and missing parts in the data.



The most common approach to address the noise problems to fit a
geometric surfaces to the point cloud. For example, in [17], a 3D
Hough transform is used to fit several planes on the roof. To pre-
vent from over fitting, roof patches are divided and fit by planes
separately. A similar strategy of fitting plane has been used in [9],
where the authors employ in addition several heuristic rules to de-
tect roof ridges. To understand adjacency relationship among roof
pieces, a topology graph is proposed in [16]. This was then used
by many others [7, 6, 9]. Roof detection and classification based
on learning algorithms have been used in several cases. In [15],
to help detect gable and the hip roofs, height information is used
to separate these two roof styles using a linear classifier. In [5],
by measuring the linearity of roof contours, a neural network is
constructed to separate a building region from everything else. To
better deal with residual sensor noise and small features, [18] extent
classic dual contouring method in their approach. By minimizing
a quadratic error function, their approach can handle reconstruc-
tion simplification as easy as optimizing the error function. In [13],
refined boundaries of building region are used to generate build-
ing facades, thus better support the modeling of building roofs. A
strategy of using combination of 3D-primitive and mesh-patches to
represent building roofs is employed in [11], which better controls
the error of mesh simplification. To correct local fitting error and
keep better global consistency, a modeling method which look in to
global regularities is introduced in [19]. By discovering a various
of global constraints, their method gains a large improvement on
both quantitative and qualitative evaluation.

Existing work for roof style classification suffers from low classi-
fication accuracy, due to the use of heuristic rules and the assump-
tion of specific geometry of roof data. In contrast, the proposed
approach does not make any specific assumption about the under-
lying geometry of the roof styles. We propose to use the bag of
words model in classifying the roof styles. Because bag of words
features represent an object in a statistical manner, it can better han-
dle outliers in the data, and hence has better classification results.
The use of the bag of words model in this work is based on treating
each roof as an entity composed of different semantic parts. Sev-
eral examples of semantic roof points in a hip roof are shown in
Figure 1.
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Figure 1: Illustration of the point semantics in a hip roof.

A key step in generating bag of words features is the generation
of a highly descriptive codebook. Usually, the codebook is gener-
ated using an unsupervised learning algorithms such as K-Means or
Gaussian Mixture Model. However, such unsupervised algorithms
are often very hard to tune and need a large amount of fine tuning to
generate a meaningful and stable model. Hence, instead of learning
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Figure 2: An example of computing the largest inscribed circle
for a U-shaped roof. (a) The original roof points. (b) The foot-
print image of roof mapped down to 2D plane. (c) The image of
building footprint edges extracted from (b). (d) The inscribed
circle of distance transform image of (c)

a codebook from sample data, we design a codebook containing 33
kinds of semantic roof points. These are shown in Figure 13. Our
approach is currently capable of recognizes 9 roof styles including
Curve, Flat, Gable, Hex, Hip, Mansard, Pyramid, Shed and Un-
known. Our approach can easily accommodates new roof styles by
re-training of the new dataset with the new roof styles added.

3. ROOF PREPROCESSING

In our work, the roof is processed automatically one at a time. To
extract point data associated to a roof from aerial LiIDAR, footprints
of buildings are first generated using a method described in [13] and
then are used to extract roof points. The proposed roof style clas-
sification algorithm is invariant to size and resolution of the point
cloud due to pre-processing of data. In our approach, we assume
that the fraction of a specific kind of semantic roof points in a roof
should remain consistent in roofs with the same style. To achieve
this consistency among different roofs, we need to deal with two
pre-processing problems: roof size normalization and point cloud
re-sampling.

eNormalization

We normalize all the roofs to a uniform size. We define the size
of roof as the radius of the largest inscribed circle of a roof’s foot-
print. To get the radius of the inscribed circle, we first project all
roof points to a 2D binary footprint image. Small holes of the foot-
print image are then filled using a morphology operation. To get
inscribed circle, we extract edges of the footprint image and com-
pute the distance transform[2] for the edge image. We identify the
center of the largest inscribed circle as the pixel with the largest
distance within the roof (see Figure 2). In our experiments, the
normalization scales the synthetic and actual roof models to have a
largest inscribed circle with a diameter of 5 meters.

eRe-sampling

The re-sampling in our approach is done by first up-sampling and
then down-sampling the point cloud to meet a pre-defined resolu-
tion. To compute the average distance © in the current mesh, we
compute the distance between each point and its closest neighbor
and average this distance. We then try to sampling the point cloud
to match this distance to a specified distance of ©* (0.1 meters in
our experiments).

The proposed re-sampling algorithm first generates a denser ver-
sion of the roof point cloud by up-sampling the roof data. Sub-
sequently, the point cloud is down-sampled to meet the required
resolution. This is done to assure we can achieve the desired res-
olution even if the distribution of points in the original data set is
not uniform. The up-sampling is based on subdivision of a trian-
gle mesh reconstructed from the raw point cloud. To reconstruct
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Figure 3: Demonstration of our re-sampling approach. (a) The
point cloud of the original roof. (b) The re-sampled point cloud
produced by the proposed approach.

the mesh, we use the Ball-Pivoting Algorithm (BPA) [1] and set
the radius of the ball to 7y = 1.50. We then employ the midpoint
subdivision algorithm to subdivide edges of the mesh whose length
is longer than ©* to produce a denser roof mesh. To down-sample
the up-sampled mesh, we use an octree, and set the size of the leaf
node to ©*. In each leaf node, we retain the point closest to cell
center. This leads to a down-sampled point cloud with the required
resolution. An example of roof data before and after re-sampling is
shown in Figure 3.

4. ROOF POINT SEMANTICS QUANTIZA-
TION
4.1 Codebook and Synthetic Variants

The objective here is to produce a codebook of important roof
points. This codebook can then be used for bag of words recog-
nition. Different from the known approaches, we do not learn the
codebook from the real dataset. We instead manually represent the
codes in the codebook as semantic parts of the roof structure pro-
duced by manually analysing roof style models. We then learn a
point semantics classifier using a large amount of synthetic vari-
ants of roof styles. There are 33 codes in the codebook used in this
work. The key points that are used to produce the code words are

shown in Figure 13.
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Figure 4: Illustration of all roof base models that are used in
this work.

As can be observed in Figure 13, some roof styles shown in Fig-
ure 4 are used to produce multiple key points. The synthetic vari-
ants of the codes are derived from these base models in two ways.

First, we generate roof models by changing the parameters of the
roofs including height, width and slope. The parameters are drawn
evenly within a given range. Second. we consider erosions of roofs
because it is common in our data to have eroded roofs due to un-
known reasons. Four versions with different magnitude of erosion
are derived using approach described in [8] from each generated
roof. Please refer to appendix section for more information regard-
ing creation of the synthetic variants.

4.2 Point Descriptor

To have distinct code words for each of the key points we define
in the synthetic model, we need to have good characterization of
the points that take into account their neighborhood. Without such
characterization, classification of code words in actual data may
be inaccurate. The point descriptors we use are composed of two
groups of features: spatial features and contextual features. The
point classifier has two stages. The first stage uses spatial feature
whereas the second stage uses contextual features.

e Spatial Features

Spatial features take into account the neighborhood of each point.
So the spatial features are powerful to describe geometry charac-
teristics in the point’s neighborhood and so assist in producing a
distinct characterization of it. Let p; be a key point. Let NV; be a
neighborhood of the point, containing neighbors in a radius of w
(0.6 meters in our experiments). We denote the spatial features at
p; using S;.

i. Eigen Features (EF). We compute the eigenvalues: A\i, A2, A3
of the covariance matrix of neighbors N; centred at p;. We then
add following features for p;: A1, A2, Az, Az — A2, A2 — A1,
A/ (A1 +A24+A3), A2/ (A1 + A2+ A3), A /(A1 + A2+ A3), yield-
ing 8 features in total. These features capture the non-planarity of
points around p;.

ii. Point Feature Histogram (PFH). These are point cloud fea-
tures based on histogram which are described in [14]. Taking into
account computational efficiency, 3 subdivisions of the features
range are used in the feature histogram which yield 3* = 27 fea-
tures.

Figure 6: Illustration of the frame we used in the computation
of the shape distribution features.

iii. Shape Distribution Features (SD). Shape distribution [12] mea-
sures global geometric properties of an object by representing ob-

ject features as a probability distribution. Shape distribution is in-

variant to translation, rotation and scale and is highly informative
in matching objects. Using the ideas of shape distribution we con-
struct four features:

1) A2: Measures the angle between two vectors composed by two
neighbors p;, pr € N; and p;, shown as Zp;p;py in Figure 6. A2
feature is computed for all pairs of points chosen from ;.



Figure 5: Point classification results obtained by running our point type classifier on dataset one (top row) and the dataset two
(bottom row). The colors of points corresponds to the color bars of the point in Figure 13.

2) Az: Measures the angle between the z direction and a vector
pointing from p; to one neighbor p, shown as Zzp;py, in Figure 6.
All points in N; are used to compute this feature.

3) D2: The is the feature D2 as described in [12]. It measures the
distance between any two neighbors of p;, an example is shown as
|lpjpr|| in Figure 6. D2 is computed for all pairs of points chosen
from N;.

4) Dt: Measures the angle between p;’s tangent plane and a vector
pointing from p; to another neighbor p;, shown as Zp;p;p; in Fig-
ure 6, where p’; is the projection of p; on tangent plane. All points
in IN; are used to compute this feature.

We use a histogram with 10 bins to represent each of the features
described above. In total there are 40 SD features that are com-
puted.

iv. Spin Image. Spinning around the z direction, we compute a
spin image [10] with 6(width) x 11(height) dimensions. Totally
66 features are contributed by spin image.

(@) (b) (©

Figure 7: Example of applying Gaussian smoothing to the spin
image features. (a) The red dot shows the location where spin
image features are computed. (b) Generated spin image with-
out smoothing. (c) Result of spin image after smoothing.

To better handle variations, noises and outliers in the actual dataset,
since training is done on a synthetic set, we smooth all above fea-
tures except for the EF features. Specifically, we spread the value in
each entry of the feature vector to its adjacent entries using Gaus-
sian convolution. A 3 X 3 2D Gaussian kernel is applied to the

spin images, and a size 3 1D Gaussian kernel is applied to the PFH
and SD features. An example of the spin image after convolution
is shown in Figure 7.

We use a random forest to learn the first stage of the point classi-
fier based on spatial features. The classifier produces a probability
measure for each of the 33 code words. Thus given a point p; we
have {P(1;]S;)}32,, where S; is the spatial feature set at p; and I;
is the j-th label (5 € [1, 33)]).

o Contextual Features

The point classifier in the previous stage attempts to classify a sin-
gle point. More reliable results can be obtained if considering the
labels of neighbors as features. However, since initially the labels
of a point or its neighbors are not known, an iterative process is
required. For each point p;, let Cf, ¢ > 1 represent the contex-
tual features of point p; in t-th iteration which are composed of
assignment values and let C{[5] to denote j-th element in C. The
second level classifier starts with an assignment vector C; contain-
ing the assignment value of point p; into all 33 code words. This
assignment is a sum of the assignment at p; and all of its neighbors
{pr|px € N;}. The second level classifier then uses C; and S; to
regenerate the assignment. In each iteration we update the C![4]
using the following rule:

ZN P(l; | Sk) if t=1
Cilj] =4 "N ;M
g S OP(ly | Sk,CEY) i t>2
PLEN;

4.3 Point Semantics Quantization

In both stages of code word classifier, we use a random forest[3].
There are two parameters in setting the random forest: the number
of trees po in the forest and the number of features p; that the ran-
dom forest can choose at each node. Assuming that the dimension
of the input feature vector is €, so we set pp = 100 and p1 = /€
for both the random forests.

Training and testing of the first classifier is straight forward. For the
second classifier, both training and testing are iterative. To deter-
mine the convergence of the classification, In ¢-th iteration, we use
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Figure 8: Example of iteratively refining the code word classi-
fication using the contextual features. (a) A curve of the corre-
sponding d in each iteration. (b) to (f) The results of the classi-
fication in each iteration. Points are colored using the highest
probability label.

a histogram H' = { h§ };’i 1 to count the frequency of the points in
a roof in ¢-th iteration. Given points of a roof P = {p;}i,, each
bin 2’ of H' is computed as:

M= 3P ISLCTY, 1<j<3 @)
i=1

Convergence is determined by comparing the difference of his-
tograms in two continuous iterations using the following equation:

33 |pt t—1
- |hj —hy|
d= Z 33 )

j=1

The algorithm is determined to converge when d < ¢, (¢ = 2%
number of roof points in our experiments). An example of the
classification of roof points by the proposed approach is shown
in Figure 8. As can be observed in this figure, context features
produce more regular and confident result. After convergence, the
histogram 7 is used as the bag of words features of the roof.

5. ROOF STYLE CLASSIFIER

The roof style classifier uses the bag of words features H. We
use a random forest classifier to classify each roof style into one
of 9 possible roof styles. To accommodate various kinds of point
cloud degradations in different datasets, the roof style classifier is
trained using a real roof dataset. We set the two parameters of the
random forest as: pg = 100 and p; = 6. To avoid bias towards a
particular roof style and create a balanced number of training data
among different styles of the roofs, we super sample the training
data using the SMOTE [4] algorithm.

6. EXPERIMENTAL RESULTS

The proposed approach has been tested on two datasets. In the first
dataset, there are 3290 buildings that were extracted from Chicago
urban area. In the second dataset there are 3290 buildings that were

Chicago San Francisco
Precision Recall Precision Recall

GMM | KM | Ours || GMM | KM | Ours || GMM | KM | Ours || GMM | KM | Ours
FLAT 0.87 | 0.85 | 0.92 0.88 | 0.90 | 0.90 0.88 | 0.88 | 0.86 093 1093 | 093
SHED 0.94 | 0.94 | 091 0.57 | 0.64 | 0.78 0.87 | 091 | 1.00 0.43 | 0.68 | 0.68
GABLE 0.62 | 0.67 | 0.71 0.86 | 0.84 | 0.88 0.57 | 0.61 | 0.65 0.71 | 0.69 | 0.77
HIP 0.65 | 0.63 | 0.63 0.16 | 0.36 | 0.37 0.55 | 0.61 | 0.70 022 | 0.28 | 0.31
HEX 0.87 | 0.86 | 0.93 0.87 | 0.81 | 0.90 0.90 | 0.80 | 0.92 0.83 | 0.66 | 1.00
PYRAMID 0.83 | 0.66 | 1.00 020 | 0.16 | 0.37 0.87 | 0.83 | 1.00 0.87 | 093 | 1.00
MANSARD 1.00 | 0.75 | 1.00 025 | 0.18 | 0.31 0.50 | 0.66 | 1.00 0.05 | 0.11 | 0.41
CURVED 1.00 | 0.93 | 1.00 0.87 0.93 | 1.00 0.71 0.70 | 0.74 0.77 0.71 | 0.79
UNKNOWN 0.84 | 0.85 | 0.97 0.88 | 0.85 | 0.90 0.62 | 0.59 | 0.66 0.63 | 0.64 | 0.66
Average 0.85 | 079 | 0.89 0.62 | 0.63 | 0.71 072 1073 | 0.84 0.60 | 0.63 | 0.73

Table 1: Precision and recall of Gaussian Mixture
Model(GMM), K-Means(KM) and our approach are shown
in above table. We use red font to show highest value among
results obtained by these three approaches.

extracted from a San Francisco urban area. The two datasets have
different characteristics and kinds of degradations.

In the first dataset, roof points are irregular and the shape of the
roof is decayed to some extent. This is due to the fact that roofs in
this dataset were originally produced from a highly down-sampled
aerial LiDAR. The roof points in the second dataset have relatively
low resolution and uneven distribution across the roof surface. Both
datasets contain roof points of building only. The roofs were la-
belled to one of 9 target roof styles according to their appearances.
A roof is labelled as UNKNOWN when either the roof is not rec-
ognizable or its roof style can not be categorized into one of the 8
styles. When a roof is composed of multiple styles, we label the
roof according to the style of the largest component. The distribu-
tion of roof styles in the two datasets is shown in Figure 9.
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Figure 9: The distribution of the roof styles in the two datasets.

To evaluate the performance of our approach and measure the im-
provement in using the synthetic model when generating the code-
book, we compare the roof style classification results obtained by
our approach to the results obtained by the K-Means (KM) and
the Gaussian Mixture Model (GMM) algorithms for generating the
codebook.

We evenly divide the dataset into two parts, one part is used as a
training set, while the second part is used as a testing set. In the
case of the KM and GMM algorithms, the codebook is generated
using the training set. For each approach, the bag of words features
of all buildings are then computed using its own codebook. We set
k = 30 in the K-Means algorithm and k£ = 27 in the Gaussian
Mixture Model algorithm as these were the two configurations that
provided the best accuracy for these approaches. The roof style
classifier of each approach is then trained and tested using its own
bag of words features. The results of these three approaches in
terms of precision and recall are shown in Table 1. F-Score results
are shown in Figure 10.
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Figure 10: The comparison of F-Score on the two datasets by
running KM, GMM and the proposed approach.

As can be observed, the proposed approach performs better for al-
most all roof styles. Considering the roof styles of PYRAMID and
MANSARD, we observe that the performance of KM and GMM
is limited by the fact that the training set does not contain many
examples of such roofs. In contrast, the proposed approach uses
synthetic models and so is not affected by a small set of training
examples.

The confusion matrices of the proposed approach on the two datasets
is shown in Figure 11. As can be observed, the proposed approach
performs well in classifying most of the roof styles. Errors mostly
come from the confusion between the hip and gable roof styles,
which are actually similar. Indeed, visual examination confirms
that in our dataset many hip roofs resemble gable roofs due to shape
erosion.
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Figure 11: The confusion matrix of obtained by the proposed
approach on two datasets.

The hardest part in the classification is the recognition of the un-
known roof styles, because there is no regular pattern (bag of words
features) for roofs in this category. We observe that we get accu-
racy above 90% in the Chicago dataset and accuracy above 67% in
the San Francisco dataset.

We evaluate the performance of the proposed approach as a func-
tion of the training set size. The F-Score obtained by the proposed
approach as a function of training set size is shown in Figure 12.

As can be observed, the proposed approach achieves stable perfor-
mance on most of the roof styles. For roof styles with relatively low
score, the curves present are ascending which could suggest that a

better score can be obtained once more training data is included.
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Figure 12: The F-Score of each roof style obtained by using an
increasing proportion of the training data.

7. CONCLUSION AND FUTURE WORK

In this paper, we propose a learning based approach to perform
roof style classification in aerial LIDAR. The advantages of the pro-
posed approach lies in two aspects: first, the classification of roof
style is based on recognition using the bag of words features which
are composed of the classified roof points; second, we successfully
generate the codebook based on synthetic models and knowledge
about roof styles. We test our approach on two datasets with dif-
ferent characteristics, and compare the results we obtained to ones
obtained using the K-Means and Gaussian Mixture Model algo-
rithms. We show that our approach achieves better classification
and keeps consistent performance in both datasets. In the future,
we will look into how more sophisticated learning techniques such
as deep learning and transfer learning can be applied and add more
value to this work.
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APPENDIX

In this work, to train point classifier, a codebook containing 33
types of roof point semantics is created. Examples of all point
semantics used in this work are shown in Figure 13. We then de-
rive variants of the codes using base model shown in Figure 4 in
two aspects. We then create hundreds of thousands of synthetic
roof models to mimic real roof data in both various dimensions and
degradations of erosion.

A. MODEL SIZE DERIVATION

To generate models in various dimensions, when the models are
created we make adjustments to a few parameters of base mod-
els such as height, slope of roof surface and the location of ridge
and valley. Since it is inaccurate and unreasonable to assume any
distribution for these parameters and we want to generate models
that can cover as much as possible cases in real world, we evenly

draw these parameters from their given ranges. We present the size
derivation of each base roof in below.

1) Flat
A small slope is allowed for flat roof, so we change the angle be-
tween flat surface and ground plane from 0 degrees to 10 degrees.

2) Gable

We fix the width of gable roof and set it to be 10 meters. There
are two parameters that are adjustable. First, the median ridge is
shifted along the width side, which starts from the middle of the
width and is shifted by 2.5 meters. Second, we set the slope of
gable surface to be one between 20 to 75 degree.

3) Hip
In addition to how we configure the gable roof, the slope of two
wing faces is changed from 20 to 75 degree.

4) L-Joint
For each branche, the same configuration of the gable roof is ap-
plied.

5) T-Joint
For each of two branches(vertical and horizontal), the same config-
uration of the gable roof is applied.

6) X-Joint
For each of two branches that pass the joint, the same derivation of
the gable roof is applied.

7) Gambrel

Given a gambrel roof with two slope parts, the angle between each
part of gambrel roof and Z direction is changed. Denoting the an-
gle between the upper part of gambrel with Z is a¢ and the angle
between the lower part with Z is a1. ao and a; are changed from
20 to 75 degrees, which is subject to ag — a1 > 20 degree.

8) Hex
We synchronously change the slope of all side faces from 20 to 75
degrees.

9) Mansard

The same configuration of flat roof is applied to derive the top flat
face of mansard. We then synchronously adjust the slope of two
side faces from 20 to 75 degree.

10) Pyramid
The same configuration of hex roof is applied here.

11) Shed
We change slope from 20 to 75 degree.

12) Loft

For the gable branch of loft roof, the same configuration of gable
roof is applied. For the slope surface that gable is connected to, the
slope of this surface is changed from 20 to 75 degree.

B. MODEL EROSION DERIVATION

To mimic erosion shapes of real models, we refer to a method pro-
posed in [8], and three filter scales ap = 3, a1 = 6, a2 = 9 meters
are employed to generate eroded roofs under three scales.
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Figure 13: Illustration of the key points (marked in red) used in the proposed approach. The color bar under each image corresponds
to all color used to render corresponding roof points with the same semantics in this paper. The name of the base model of each sample
is highlighted in blue under each picture.



