
Fast map generalization heuristic with a uniform grid

Salles V. G. de
Magalhães

Universidade Federal de
Viçosa

Viçosa, Brazil
salles@ufv.br

W. Randolph Franklin
Rensselaer Polytechnic

Institute
Troy, NY, USA

mail@wrfranklin.org

Wenli Li
Rensselaer Polytechnic

Institute
Troy, NY, USA

liw9@rpi.edu

Marcus V. A. Andrade
Universidade Federal de

Viçosa
Viçosa, Brazil

marcus@ufv.br

ABSTRACT
We present Grid-Gen, an efficient heuristic for map simpli-
fication. Grid-Gen deals with a variation of the general-
ization problem where the idea is to simplify the polylines
of a map without changing the topological relationships be-
tween these polylines or between the lines and control points.
Grid-Gen uses a uniform grid to accelerate the simplifica-
tion process and can handle a map with more than 3 million
polyline points and 10 million control points in 9 seconds in
a Lenovo T430s laptop.

Categories and Subject Descriptors
I.3.5 [COMPUTER GRAPHICS]: Computational Ge-
ometry and Object Modeling

General Terms
Algorithms, Performance

Keywords
Algorithms, Computational geometry, Map generalization

1. INTRODUCTION
One important problem of computational geometry is the
curve generalization (or simplification) problem, where the
objective is to reduce the amount of information needed
to represent a curve while keeping it “similar” to the orig-
inal geometry. The most well-known algorithms to solve
this problem are Douglas-Peucker [3, 7] and Visvalingam-
Whyatt [10].

Generalization methods are widely used in GIS to reduce
the amount of storage of vector maps, to perform map anal-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright 2014 ACM 978-1-4503-3131-9/14/11 $15.00
http://dx.doi.org/10.1145/2666310.2666421

ysis with different level of details, to improve the display
quality of a small scale map [8] and to perform progressive
transmission of maps [2].

While methods such as Douglas-Peucker try to simplify lines
while keeping them as “similar” to the original input as pos-
sible, the direct application of these algorithms to simplify
polylines in a map may create undesirable features. For ex-
ample, if Douglas-Peucker is applied to a county dataset, the
boundaries may be simplified in a way that a point repre-
senting a city will be in the wrong county. Also, simplifying
a polyline may make it cross another line in the map. See
Figure 1: if the red polyline is simplified by removing point
a, the resulting map will be more similar to the original
than the map obtained by removing point b. However, in
the former case the topological relationships in the map will
change, since point c will be in the other side of the polyline.

a

b

c

b

c

a

c

Figure 1: Challenges during map simplification.

In this work we will deal with the following variation of the
geometry generalization problem: given a set of polylines
and a set of control points, simplify these polylines by re-
moving some of their points (the only points that cannot be
removed are the endpoints) such that the topological rela-
tions between pairs of polylines and between the polylines
and the control point do not change.

We propose Grid-Gen, a heuristic that, combined with a
uniform grid, can efficiently simplify maps without creating
any change in the topology. Grid-Gen can efficiently process
geometries containing millions of points.

2. THE PROPOSED HEURISTIC
Given a set of control points C and an input map M com-
posed of a set P of polylines, our heuristic simplifies M by
iteractively processing each polyline independently. When a
polyline is processed, Grid-Gen iterates through all its inte-
rior points vi (that is, the points excluding the endpoints)
and removes vi if this deletion would not change the topo-
logical relations between the map’s elements.

To determine if the deletion of a polyline point vi would
change the map topology, Grid-Gen verifies if there is any
control point or polyline point inside the triangle whose ver-
tices are vi and its two adjacent points (i.e., vi−1 and vi+1).

Figure 2 presents an example of the possible topological
changes that may happen during the deletion of points: No-
tice that there is a control point x inside the triangle (in red)
formed by polyline point a and its two adjacent points. If
a polyline is simplified by removing a, then the topological
relation between the curve and x will change. Point b also
cannot be removed since polyline point y is inside the red
triangle containing b as vertex and, thus, the deletion of b
would change the topological relation between b’s polyline
and y’s polyline (in fact, the two polylines would cross if b
was removed). Therefore, neither a nor b should be removed
from the current map. Point c, on the other hand, may be
removed without changing the map topology since there is
no control or polyline point inside the blue triangle whose
vertex is c.

Figure 2: Determining if the deletion of some points
would change the map topology.

Algorithm 1 presents a pseudo-code of the method. Notice
that, if during one iteration of the while loop no point is
removed from the map, then in the next iterations no point
will be removed (since the map does not change when no
point is removed) and, thus, the heuristic can be terminated.

There are two situations where Algorithm 1 may create sim-
plified maps with an invalid topology. If one polyline p has
coincident endpoints and the polygon (or island) defined
by this polyline does not have any control point or other
polylines in its interior, then Algorithm 1 may remove all
interior points from p (creating an invalid polygon). Figure
3 presents an example where an island is simplified creating
a “polyline” composed only by the two coincident endpoints.

Also, if two polylines p1 and p2 have the same endpoints and
the polygon formed by them does not contain any control
point or polyline in its interior, then Algorithm 1 may re-
move all interior points of p1 and p2, creating two coincident
line segments. See the example in Figure 4.

Figure 3: Simplification of a polyline with coinci-
dent endpoints (in blue) and with no control point
or other polylines in the interior of the polygon that
it defines.

Figure 4: Simplification of two polylines with coin-
cident endpoints (in blue) and with no control point
or other polylines in the interior of the polygon that
it defines.

To solve these two problems, we preprocess the input adding
dummy control points that ensure that the heuristic would
never simplify the polylines to an invalid state. If a poly-
line p has coincident endpoints, we add two dummy control
points at an infinitesimal distance around one of the line
segments that forms p. See an example in Figure 5. This
ensures that one of these control points will be always in
the interior of the polygon defined by p. Thus, Algorithm 1
would never create an invalid simplification such as the one
showed in Figure 3, since this would change the topological
relations between the polyline and the dummy points.

Figure 5: Use of dummy control points (in orange)
to avoid invalid simplifications: notice that, in this
dataset, the simplification algorithm stops after re-
moving the second interior point of the polyline
since one of the dummy control points is in the in-
terior of a triangle defined by the polyline vertices.

If an input polyline p has only two points (that is, if it does
not have any internal points) we also add two dummy control
points in an infinitesimal distance around p. Furthermore, if
during the simplification all the internal points of a polyline
are removed, the dummy points are also added around the
resulting polyline. This ensures that no simplification would
create a polyline coincident to p. Figure 6 presents an ex-
ample where all interior points of a polyline p are removed
and, then, two dummy points are added to the map.

a

Figure 6: Use of dummy control points to avoid the
creation of coincident polylines. Notice that Grid-
Gen does not remove point a, since the polygon con-
tains one of the dummy points.

Also, it is necessary to consider the special case where some
line segments are colinear to the endpoints of a polyline. For
example, in Figure 7 there is no polyline or control point in

Algorithm 1 Pseudo-code of the map simplification algorithm

1: np2rem← Number of points to remove
2: npar ← 0 //Number of points already removed from the map
3: while npar < np2rem do
4: for each polyline p in the input map do
5: for each interior point vi in p do
6: if vi−1, vi, vi+1 are colinear OR there is no polyline point or control point in triangle vi−1, vi, vi+1 then
7: npar ← npar + 1
8: Remove vi from p
9: if npar ≥ np2rem then

10: Stop the algorithm
11: end if
12: end if
13: end for
14: end for
15: if no point was removed from the input map then
16: Stop the algorithm
17: end if
18: end while

the triangle vi−1, vi, vi+1 and, therefore, Algorithm 1 could
remove vertex vi, creating coincident segments. This special
case is treated by considering that points in the border of the
triangle vi−1, vi, vi+1 are inside the triangle and, therefore,
Algorithm 1 does not remove vi.

vi-1

vi

vi+1

a b c

Figure 7: Example of two polylines with the same
endpoints (in blue): if vi is removed, the resulting
polyline will have segments coincident to the seg-
ments of the other polyline. This problem is solved
by considering that points in the border of the tri-
angle vi−1, vi, vi+1 (points a, b and c) are effectively
inside the triangle.

3. ACCELERATING THE POINT IN TRI-
ANGLE TESTING

The bottleneck of Algorithm 1 is the test to detect if a poly-
line or control point lies inside a triangle. Several spatial
indexing techniques may be used to accelerate this process
like, for example, R-trees [5] or uniform grids [4]. This work
uses a uniform grid to perform this kind of optimization.

More specifically, the idea is to create a N ×M grid (where
N and M are parameters defined by the user), superimposed
over the map being simplified. Each cell c of the grid con-
tains a list of all points (polyline and control points) inside
it. Given a triangle t, only the points in the cells that inter-
sect t need to be checked in order to verify if there is any
point in t. If a polyline is simplified, the point removed from
the polyline is also removed from the uniform grid.

Figure 8 presents an example of a 3 × 5 uniform grid su-
perimposed on the map. Only the 6 points laying in the
detached grid cells need to be checked to determine if there
is a point in the detached triangle.

Figure 8: Example of a 3× 5 uniform grid superim-
posed over a map.

4. EXPERIMENTAL EVALUATION
Grid-Genwas tested on a laptop with the following configu-
ration: i7-3520M 3.6 GHz processor, 8GB of RAM memory,
Samsung 840 EVO SSD (500 GiB) and Linux Mint Mate 16
operating system.

Tests were performed on 7 datasets, the first 5 datasets were
used by the GISCUP 2014 [1] organizers to evaluate the so-
lutions submitted to the GISCUP contest; the polygons in
dataset 6 were obtained from IBGE ’s (the Brazilian geogra-
phy agency) website [6] and represents the Brazilian county
divisions; dataset 7 represents the United States continental
county division and was obtained from the United States
Census website [9]. The control points in datasets 6 and
7 were selected in random positions in the maps. Table 1
presents the number of points in each map and, also, the
maximum number of points that Grid-Gen removed during
the simplification.

Initially, we evaluated the processing time (excluding I/O
time) of Grid-Gen considering the 7 datasets and different
dimensions for the uniform grid. Table 2 presents the pro-
cessing time (in milliseconds). We also evaluated the heuris-
tic using an 8000×8000 uniform grid, but these results were
not included because Grid-Gen was slower in all datasets
using this grid size.

Notice that for the smaller datasets, the overhead caused by
the management of a larger uniform grid does not balance

Table 1: Number of control and polyline points in each dataset and number of points removed after the map
simplification process.

Dataset 1 2 3 4 5 6 7

Number of control points 26 127 151 256 1607 10000 10000000
Number of polyline points 992 1564 8531 28014 28323 342738 3645559
Number of points removed 928 1435 7545 25212 23411 308992 3613026

the possible reduction in the number of cells evaluated dur-
ing the point in triangle test. On larger datasets, on the
other hand, increasing the grid size significantly improves
the heuritic’s performance (for example, there is an improve-
ment of 18 times in the performance when the grid size is
increased from 1252 cells to 40002 cells in dataset 7).

Table 2: Processing-time (in milliseconds) to sim-
plify each of the 7 maps. The smallest time for each
dataset is in boldface.

Map
Grid Size (# cells)

1252 2502 5002 10002 20002 40002

1 0 4 7 23 99 405
2 0 2 5 17 65 269
3 2 3 6 15 51 171
4 11 9 12 19 50 168
5 10 8 10 17 45 149
6 333 170 134 132 203 376
7 163875 48940 22529 14307 10708 9172

In the second set of tests, presented in Table 3, we evalu-
ated the amount of time spent by each step of Grid-Gen. For
each dataset, Grid-Gen was executed using the uniform grid
size that presented the best result considering the tests from
Table 2. Notice that, even though the tests were performed
in a machine with a fast SSD drive, in all situations most
of the processing time was spent performing I/O. This sug-
gests that further improvements in the simplification heuris-
tic (for example, using parallelization) would not improve
significantly the total running time. Observe also that the
amount of time used to write the output is much smaller
than the time spent to read the input map. This could be
explained because, as shown in Table 1, Grid-Gen was able
to significantly simplify all datasets.

Table 3: Processing-time (in milliseconds) spent in
each step of Grid-Gen. Row Initialize presents the
total time for the initialization of the uniform grid.

Dataset 1 2 3 4 5 6 7
Grid size 125 125 125 250 250 1000 4000

Read input 1 2 9 23 27 275 37688
Initialize 0 0 0 1 1 25 1567
Simplify 0 0 2 8 6 107 7605

Write output 0 0 2 4 8 40 38

5. CONCLUSIONS AND FUTURE WORKS
We presented Grid-Gen, a heuristic that, as showed in our
experiments, can perform map simplification very efficiently.
Even though the tests were performed using a fast SSD

drive, most of the processing time was spent in I/O oper-
ations. Also, Grid-Gen never changes the topological rela-
tionships in the map.

Future work includes comparing Grid-Gen with other meth-
ods and determining an efficient strategy to automatically
determine an adequate uniform grid size for each input map.
Another extension is adapting it not only to perform the sim-
plification while satisfying the topological constraints, but
also trying to keep the output data as similar as the input as
possible. This could be achieved by incorporating ideas from
other generalization (like Visvalingam-Whyatt method) al-
gorithms to Grid-Gen.

6. ACKNOWLEDGMENTS
This research was partially supported by NSF grant IIS-
1117277 and by CAPES (Ciencia sem Fronteiras).

7. REFERENCES
[1] ACM SIGSPATIAL Cup 2014. GIS Cup sample data.

mypages.iit.edu/∼xzhang22/GISCUP2014/ (accessed
on 09/01/2014).

[2] M. Bertolotto and M. J. Egenhofer. Progressive
transmission of vector map data over the world wide
web. GeoInformatica, 5(4):345–373, 2001.

[3] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to
represent a digitized line or its caricature.
Cartographica, 10(2):112–122, 1973.

[4] W. R. Franklin, D. Sun, M.-C. Zhou, and P. Y. Wu.
Uniform grids: A technique for intersection detection
on serial and parallel machines. In Proceedings of Auto
Carto 9, pages 100–109, Maryland, April 1989.

[5] A. Guttman. R-trees: a dynamic index structure for
spatial searching, volume 14. ACM, 1984.

[6] IBGE: Instituto Brasileiro de Geografia e Estatistica.
Malhas digitais dos municipios Brasileiros.
geoftp.ibge.gov.br/malhas digitais/municipio 2007/
(accessed on 09/01/2014).

[7] U. Ramer. An iterative procedure for the polygonal
approximation of plane curves. Computer Graphics
and Image Processing, 1(3):244–256, 1972.

[8] W. Shi and C. Cheung. Performance evaluation of line
simplification algorithms for vector generalization. The
Cartographic Journal, 43(1):27–44, 2006.

[9] United States Census. US counties Shapefiles.
www.census.gov/cgi-bin/geo/shapefiles2013/main
(accessed on 09/01 /2014).

[10] M. Visvalingam and J. Whyatt. Line generalisation by
repeated elimination of points. The Cartographic
Journal, 30(1):46–51, 1993.

