
Moving Window Based Geometry Simplification with
Topology Constraints

Shivanth M P, Sandeep Kale, N. L. Sarda, Umesh Bellur, Vishal Goje
{shivanthmp, sanrajkale, nls, umesh, vishalgoje}@cse.iitb.ac.in

GISE Advanced Research Lab
Indian Institute of Technology Bombay

Mumbai, India

ABSTRACT
Geometric simplification is a widely used technique in the
field of cartographic generalization. Many algorithms al-
ready exist in this field to simplify a geometry so that the
number of points in the geometry is reduced while it retains
its approximate shape. In this paper, a new algorithm, Mov-
ing Window Geometry Simplification (MWGS) algorithm is
presented that can be used to reduce a geometry under a
given set of constraints. The proposed algorithm uses the
technique called sweep line to reduce a geometry and also
ensures that none of the constraints are violated. Both com-
putational and algorithmic aspect of the technique are con-
sidered for better performance and scaling. The method
has important applications in areas relating to map gen-
eralization, map compression etc. This algorithm reduced
approximately 90% of the points in all the datasets.

Categories and Subject Descriptors
I.3.5 [COMPUTER GRAPHICS]: Computational Ge-
ometry and Object Modeling Geometric algorithms, lan-
guages, and systems

Keywords
Cartographic Generalization,Line Sweeping Algorithm

1. INTRODUCTION
One of the essential ideas in map generalization is smooth-
ing and simplification of a geometry in the map. Many al-
gorithms have been designed to implement unconstrained
reduction of geometries. These algorithms basically try to
preserve the shape of the geometry while reducing visually
redundant points in the geometry. But in many cases we
would require that the solution should also work under cer-
tain constraints, such as a point which can never fall outside
a polygon when it is reduced. An example of a real life con-
straint is smoothing of a country map when a city lies close
to the border of the country. While using unconstrained al-
gorithms for reducing the geometry of the border, the new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGSPATIAL’14, SIGSPATIAL ’14, November 04 - 07 2014, Dallas/Fort
Worth, TX, USA Copyright 2014 ACM 978-1-4503-3131-9/14/1...$15.00
http://dx.doi.org/10.1145/2666310.2666424

border might not wrap the city and the city falls outside
the boundary or a city that must be outside the bound-
ary of the country being simplified falls inside the boundary
of the country after simplification. The paper deals with
the problem of geometric simplification where a set of con-
straints are given and the reduction has to be done such
that these constraints are not violated. Generic algorithms
like Douglas-Peucker algorithm [2] does not allow such con-
straints. They also have a flexible parameter ε which can be
varied to obtain different results. The set of constraints that
we consider in this paper are the points in the same plane as
that of the geometry, and the reductions has to be carried
out so that these points do not change the topological rela-
tionship with respect to the polygons containing them. A
plain and simple idea would be to introduce the constraint
check into every step of reduction in the generic algorithm.
This as we see later introduces computational and algorith-
mic overhead. This paper proposes a new algorithm which
is computationally better than the naive approach of check-
ing for constraint violation for every polygon and point. A
proof of correctness and a performance analysis of the new
algorithm on various measures are also included.
The remainder of this paper consists of six sections. Sec-
tion 2 presents the problem statement, whereas Section 3
discusses the related work on addressing this category of
problems. Section 4 presents the proposed algorithms for
geometry simplification, whereas Section 5 is devoted to the
computational performance of the proposed algorithms. Fi-
nally, Section 6 and 7 includes the result and major conclud-
ing remarks respectively.

2. PROBLEM STATEMENT
Given a set of curves L, each curve as a sequence of points,
and a set of points C in the same plane - called constraint
points, find a simplification of the set of curves such that
each point in C maintains their topological relationships
with every curve in the set L. Here, simplification of a curve
refers to eliminating points from the curve so as to reduce
the number of points in the representation of the curve. The
curves in L will be non-intersecting except at the end points.
The constraint points will never lie on the curves. The Algo-
rithm has been developed as a solution to the SIGSPATIAL
CUP 2014 [1].

3. RELATED WORK
There are a number of algorithms used to reduce curves/lines
approximated by a certain set of points, the most recog-

nized being Douglas Peucker algorithm [2]. It is a recursive
algorithm that removes points which are too close to the
“shape of the geometry” and removes all points which do
not contribute much to the shape. There are other algo-
rithms using a similar approach with slight variations, in-
cluding Visvalingam-Whyatt algorithm [3], which tries to
remove the minimum area triangles out of all the triangles
formed by every 3 consecutive points in the curve. Un-
like Douglas - Peucker algorithm which removes all points
which do not meet the requirement, this algorithm provides
us with the flexibility of removing a fixed number of points
from the curve. Other well-known algorithms are Reumann-
Witkam [5] algorithm, Lang simplification [5] algorithm etc.
None of these algorithms include any external topological
constraints and need to be extended suitably.

4. OUR APPROACH - MOVING WINDOW
GEOMETRY SIMPLIFICATION (MWGS)
ALGORITHM

4.1 Overview
The key idea of our approach is to move a window along the
X-axis over the given set of points. At each step, the points
inside the window are removed, when its removal does not
violate any of the given constraints. For the problem state-
ment given above, the following terminologies are defined

• L: Set of curves that form a set of polygons depicting
regions on Map

• C : Set of constraint points (like cities)

• E : Event List, List of all points in all curves sorted
along X-axis left to right

• W : The Window of arbitrary size under consideration
for simplification from Event List E

• WL,WR: Refers to the left or right edge of W (indexes
into the array E)

• A: Active List contains segments of the curves in L
falling in windowW betweenWL,WR constructed from
E at every event, A= {s11, s12, ..s21, s22..., sn1, snm}
where
sij : Segment j may contain one or more consecutive
points of curve i falling between window W , segments
of same curve are mutually exclusive, shares no points
|A|: Total points in from all segments in A

• Cw: Constraint points within W

• Cwij : Constraint points in W that fall within the BB
of segment sij

The essential idea of the algorithm, called Moving Window
Geometry Simplifier (MWGS), is as follows:

• Consider only a limited portion of L falling in the win-
dow W

• Simplify these portions without violating any constraints
due to C and other points in A

• Move the edges of the window to the right, either ex-
panding the window or shifting the window as a whole

Clearly

|A|+ |Cw| << |L|+ |C|

WR

curve 1

curve 2

curve 3

cp1

cp2

cp3

p1

p2

p4
p8

p12

p6

p6

p9

p9

p13

WL

p3

p10

p5

p7

p11

Figure 1: Illustrating our Algorithm
.

Hence we have effectively scaled down the number of com-
parison required from the points on the whole region to
points within the window.
In order to accomplish this sweep along the X-axis, the
points on every curve are sorted by their x-value into E
and move along this list using an index. As we move from
left to right of this list, we keep track of the segments of
each curve that we encounter. A segment is a consecutive
list of points from the same curve. As soon as we have a
segment of 3 (or more) points, we try to reduce the segment
by removing the middle point(s) by checking for constraints.
The advantage here is that we check for only the constraint
points which fall under the x-window of the segment under
consideration. This “sweep line” based spatial algorithm or
plane-sweep algorithm are extensively used in computational
geometry. [4] discusses many applications of this algorithm.
A figure explaining the algorithm can be found in Figure 1.
The segment s11 = {p2, p4, p8} of the curve 1 is being re-
duced. The algorithm in effect considers for all points within
the window between WL and WR checking if any of them
falls inside the triangle formed by the segment. The Active
List will contain segments s11 = {p2, p4, p8}, s21 = {p2, p6},
s22 = {p7, p5}. Curve 3 has no active segments in window.
Curve 1, 2, 3 shares one end point p1.

4.2 Implementation Details
The major task in the implementation of this algorithm is to
identify segments on the curve as we move from left to right
along X-axis. For this we create a Active List A containing
multiple segments of curves. We have a sweep line index
moving along the Event List E (analogous to the sweep line),
and for each point encountered we try to find the segment
it extends for the corresponding curve. If it does not extend
any segment it is added as a new segment of that curve.
There might be cases where the point might be extending
two segments(one forward and the other backward), then we
merge the two segments and make them a single segment.
Now in each step, we extend a segment this way, so when-
ever the segment under consider has a length greater than 2,
there is a possibility of reduction of one of the intermediate
points in the segment.

Algorithm 1 geometry generalization (L,C)

1: E← sort by x(All points in L)
2: C← sort by x(C)
3: while sweep line index < E.size() do
4: p← E[sweep line index]
5: n← curve id of the point p
6: c← set of all segments of curve n in A to which point
p is consecutive in original curve

7: if |c| = 0 then
8: sn1.add(p)
9: A.add(sn1)

10: end if
11: if |c| = 1 then
12: sni ← c[1]
13: sni.add(p)
14: end if
15: if |c| = 2 then
16: c[1].add(p)
17: sni ← merge(c[1], c[2])
18: A.add(sni)
19: A.remove(c[1])
20: A.remove(c[2])
21: end if
22: if sni.size() > 2 then
23: remove point from segment(sni)
24: end if
25: sweep line index = sweep line index + 1
26: end while

The remove point from segment(segment s) routine takes
a segment and tries to remove points from this segment.
This routine will construct triangles from consecutive points.
If a triangle does not contain any constraint point or points
from other curves then the second point of the triangle can
be removed from the segment. If a constraint point ’p’ lies
inside the triangle, it would mean that removing the second
point in the triangle will change the topological relation of
p and curve. If a point from one of the other curves lies
inside the triangle, the reduction would result in intersection
of curves. In no other cases will an intersection of curves
occur and hence the constraints for the reductions are always
satisfied.

Algorithm 2 remove point from segment(segment s)

1: for each consecutive triplet t in s do
2: minx ←leftmost point(t)
3: maxx ←rightmost point(t)
4: cp←getallPointsBetween(min x,max x)
5: for each Point c in cp do
6: if not insideTriangle(t,c) then
7: remove point(E,t[1])
8: remove point(s,t[1])
9: else

10: remove point(s,t[0])
11: end if
12: end for
13: end for

The implementation of getallPointsBetween returns all the

Table 1: Results on Different Data Sets for single
threaded Implementation

Total
Points |E|

Constraint
Points |C|

Points Re-
moved

Time
Taken(ms)

992 26 925 11.934307
1564 127 1432 15.291183
8531 151 7539 52.951826
28014 356 25182 271.408981
28323 1607 23353 251.468033

points between min x and max x - points from other curves
and constraint points. Points from other curves can be ob-
tained by returning all points between min x and max x in
Event ListE. For getting constraint points between min x
and max x any two dimensional metric structure can be
used.

It may be noted that the only place where a geometric-
topology-check is encountered in the whole algorithm is within
the insideTriangle routine. This insideTriangle check has
been preferred because, unlike a insidePolygon routine, this
check is constant time and computationally efficient.

5. PERFORMANCE
The performance of our implementation was tested on a per-
sonal computer with Intel i5 quad-core CPU, 8GB RAM
running Windows 7 operating system. The data sets used
for testing were provided by SIGSPATIAL [1] as a part of
GIS CUP 2014. All results were obtained by running imple-
mentation on the five data sets provided.

The initial implementation of the algorithm was a naive ap-
proach, processing in a single thread. It was observed that
as the size of the data increased, the Event List process-
ing took more time and hence there was a necessity to scale
down the size of the problem. The running time for the test
data sets is shown in Table 1. It may also be noted that the
time taken for reduction is low for a set with higher num-
ber of constraint points and approximately same number of
curve points because constraint violation is checked exhaus-
tively in a window.

An interesting property about the algorithm is that it is
highly parallelizable. This concurrency can be achieved by
slicing the whole region(from left most point to rightmost
point) into 2 or more regions along X-axis and processing
these regions individually and simultaneously. Each con-
current instance can process each slice as an independent
region and these results can later be merged to obtain the
overall simplification. This feature has been used heavily in
our implementation for the SIGSPATIAL competition, slic-
ing the whole area into n equal regions along the X-axis
and running the MWGS algorithm over these n regions and
concurrently.

In fact, it may be noted that the time taken to complete one
phase (that is the sweep line crosses the rightmost point in
the region) depends on the number of points in each region
and hence reducing the number of points for each phase, us-
ing region ‘slicing’, will reduce the time taken. In fact after
processing these slices, there are more possibilities for reduc-
tion on the edges of these slices, which can be reduced on a

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35

T
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

No of slices

concurrent processing of slices
sequential processing of slices

Figure 2: Impact of Parallelizing the algorithm

separate pass. It is advisable to split the entire region into n
regions, where n is the number of cores available for process-
ing. Figure 3 shows the impact of parallelizing code. The
average amount of time taken for reducing points reduces as
number of threads are increased.

It was observed that I/O was taking considerable time com-
pared to total simplification time. So, in order to optimize
I/O, we materialized producer consumer paradigm as, read-
ing file as producer and parsing the curves as consumer. I/O
and parsing took almost 60% of the total runtime. Table 2
gives details on the I/O performance before and after imple-
menting the producer consumer paradigm, where Ts denotes
time without I/O threading and Tt denotes time with I/O
threading. It is interesting that the only geometric opera-
tion done in the whole algorithm is ‘point-in-triangle’ which
is highly optimizable unlike a generic ‘point-in-polygon’ al-
gorithm. Clearly, the parallelized version does better than
the sequential version. In fact the performance of parallel
version depends on the available cores on the system, hence
its advantage stabilizes after it reaches eight threads on an
8 core system.

Table 2: I/O Times for different input sizes
Total
Points |E|

Constraint
Points |C|

Ts(ms) Tt(ms)

992 26 8.296340 3.137035
1564 127 10.783785 2.643387
8531 151 22.067841 3.836287
28014 356 40.215298 7.873544
28323 1607 46.305616 8.770454

6. RESULT
The implementation of MWGS algorithm could reduce more
than 90% of the total number of points in all test cases. In
fact the idea of trying to reduce maximum number of point
in one pass of the data a good ‘number-of-reduced-points to
time’ ratio. The results for different data sets can be seen in
Table 3. From the last two rows of the table, it may be noted
that the number of constraint points and curve topology has

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 T

im
e

 t
a

k
e

n
 t

o
 r

e
d

u
c
e

 a
 p

o
in

t

No of Constraint Points

1 Thread
2 Threads
3 Threads
4 Threads
8 Threads

Figure 3: Comparison on Parallelizing the algorithm

Table 3: Overall Performance
Total
Points |E|

Constraint
Points |C|

Points Re-
moved

Time
Taken(ms)

992 26 884 4.904054
1564 127 1308 8.561237
8531 151 7538 21.094188
28014 356 25179 87.295281
28323 1607 23336 95.198980

a major impact on the performance of the algorithm.

7. CONCLUSIONS AND FUTURE WORK
The paper introduced a new algorithm named MWGS algo-
rithm which can be used for reducing general curves under
constraints. The algorithm was shown to be highly paral-
lelizable and was quick and performed exceptionally well on
large number of constraint points. Note that the algorithm
can be improved by using efficient data structures such as
spatial trees to efficiently find points in a window. Even the
implementation of parallelized code can be improved by us-
ing more robust slicing algorithms that ensure equal load on
parallel instances.

8. REFERENCES
[1] Problem statement for sigspatial 2014. http://

mypages.iit.edu/~xzhang22/GISCUP2014/index.php.

[2] D. Douglas and T. Peucker. Algorithms for the
reduction of the number of points required to represent
a digitized line or its caricature. The Canadian
Cartographer, 10(2):112–122, 1973.

[3] J. D. W. M Visvalingam. Line generalisation by
repeated elimination of the smallest area. CISRG
Discussion Paper Series No 10, 1992.

[4] P. Rigaux, M. Scholl, and A. Voisard. Spatial
Databases: With Application to GIS. Series in Data
Management Systems. Morgan Kaufmann Publishers,
2002.

[5] W. Shi and C. Cheung. Performance evaluation of line
simplification algorithms for vector generalization. The
Cartographic Journal, 43(1):27–44, 2006.

