
A Fast Algorithm of Geometry Generalization

Yuwei Wang†§ Danhuai Guo† Kuien Liu‡ Yan Xiong†

†Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
§University of Chinese Academy of Sciences, Beijing 100049, China

‡Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
{ahwangyuwei, guodanhuai}@cnic.cn, kuien@iscas.ac.cn, xiongyan@cnic.cn

ABSTRACT
Map generalization is commonly used in many GIS appli-
cations to produce maps with less detail so as to reduce
the mapping complexity. Different from common simpli-
fying strategies which simplify individual geometry objects
separately, in this paper we consider the problem of general-
izing the geometry objects under the topological constraints
among the geometries and given constraining points. We
propose a Cross-line algorithm to simplify the map while
preserving the topological constraints. The proposed algo-
rithm is extensively evaluated on five real map datasets and
large synthetic datasets, and the results show that our pro-
posed approach can greatly simplify the map with extremely
high correctness and excellent efficiency.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial Databases and
GIS

General Terms
Algorithms, Performance

Keywords
Geometry simplification, topological constraint

1. INTRODUCTION
In many mapping applications, a continuing challenge re-

lates to rapidly mapping a large amount of geometry objects
within a user’s acceptable response time. A well known so-
lution is map generalization [5, 1], which automatically and
rapidly generalizes the map with less detail according to the
map scale. The generalization reduces the complexity of the
cartographic objects while preserving the general shape of
the map.
Geometry generalization is a well known approach of map

generalization, which reduces the complexity of the geome-
tries while meeting an accuracy tolerance. Many algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SIGSPATIAL ’14 Dallas/Fort Worth, TX, USA
Copyright 2014 ACM 978-1-4503-3131-9/14/11 ...$15.00.
http://dx.doi.org/10.1145/2666310.2666420

for geometry generalization have been widely used such as
the Douglas-Peucker algorithm (DP) [3] and the Visvalingam-
Whyatt algorithm (VW) [6]. DP uses a divide-and-conquer
strategy to simplify a polyline which is denoted as series of
vertices ⟨p1, p2, . . . , pn⟩. Given a distance threshold ϵ, D-
P removes the vertices of the polyline as many as possible
while preserving that the deviation between the simplified
polyline and the original polyline does not exceed ϵ [4]. Ini-
tially, DP tries to use the line segment p1pn as the final
result. Then, DP examines whether the maximum distance
of Pi(1 ≤ i ≤ n) to the line segment p1pn exceeds ϵ. If it
does not exceed ϵ, the process will terminate and return p1pn
as the result. Otherwise, the vertex pi will be retained, and
the original polyline is divided at pi as two sub-polylines
⟨p1, p2, . . . , pi⟩ and ⟨pi, pi+1, . . . , pn⟩. The simplification is
recursively executed on the two sub-polylines separately. In-
stead of the maximum distance, VW considers the change
of the area between the line and the simplified line after re-
moving a vertex pi, and the change is defined as the effective
area of pi. Given a number k of vertices to keep, VM itera-
tively removes the vertex which has minimal effective area,
and recalculates the effective areas of the retained vertices.
The process is repeated until the number of retained vertices
reaches k.

These generalization algorithms including DP and VW,
only consider the simplification of individual geometry and
omit the relations between the geometries. This will cause
some confusions due to the change of the original topologi-
cal relations among the geometries, and hence mislead users.
Considering the simplification of administrative boundaries
[1], each administrative region contains a set of landmarks.
If we simplify the boundaries independently, the member-
ships of some landmarks close to the boundaries w.r.t. the
administrative regions may change. The change is not ac-
cepted in many critical applications.

In this paper, we consider the simplification of the ge-
ometries under the topological constraints. More specifical-
ly, given a large amount of geometries to be simplified and
some Constraining Points (CPs), we try to simplify original
geometries to a large extent while preserving the topologi-
cal constraints among the geometries and the CPs. Because
the polygon is a special form of the polyline, we could only
emphasize the simplification of the polyline. We propose an
efficient simplification algorithm named Cross-line. The
algorithm simplifies the polylines in the horizontal and ver-
tical directions sequentially. The basic idea is as follows:
when simplifying a polyline w.r.t. a CP, we use a horizon-
tal or vertical line across the CP to divide the polyline and

then the consecutive intermediate vertices lie in the same
side of the line can be removed. We generalize the process
to simplification with multiple CPs and we argue that in
most cases the topological relations remain unchanged. The
main contributions presented in this paper are:

• We propose a Cross-line algorithm to simplify the ge-
ometries under the topological constraints of the ge-
ometries and the CPs, and further introduce some s-
trategies to enhance the algorithm.

• We validate the effectiveness and efficiency of the pro-
posed algorithm on five real map datasets and large
synthetic datasets, and the results show that our algo-
rithm has great accuracy and excellent efficiency.

The rest of the paper is organized as follows. Section
2 gives the description of the problem. Section 3 presents
the proposed algorithm. Section 4 shows our experimental
results and Section 5 summarizes this paper.

2. PROBLEM DESCRIPTION

Definition 1. A polyline L is a sequence of vertices ⟨P1,
P2,. . . , Pn⟩ where each vertex consists a coordinate pair
⟨x, y⟩.

Definition 2. A simplified polyline L′ of a polyline L =
⟨P1, P2, . . . , Pn⟩ is a subsequence of L, i.e. L′ = ⟨Pk1 , . . . ,
Pki−1 , Pki , . . . , Pkm⟩ , where ki−1 < ki, k1 = 1 and km = n.

Definition 3. The topological relations consists of in-
tersection relations between polylines and inclusion re-
lations between the CPs and the enclosed regions surround-
ed by some polylines. Here, we say that two polylines inter-
sect with each other when one crosses the other except at
the end vertices.

Given a set of CPs {CP1, CP2, . . . , CPm} and a set of
polylines {L1, L2, . . . , Lk} in which the polylines do not
intersect with each other, our objective is to generate sim-
plified polylines {L′

1, L′
2, . . . , L′

k} with as few vertices as
possible while preserving topological relations. As the orig-
inal polylines do not intersect, for the intersection relations
we need guarantee that the simplified polylines do not in-
tersect.

3. PROPOSED ALGORITHM: CROSS-LINE

3.1 Basic Process of Simplification Algorithm
First, we consider the inclusion relations involving a poly-

line L = ⟨P1, P2,. . . ,Pn⟩. Obviously, only the CPs which lie
in the bounding box (BBOX) of L will influence the simpli-
fication of L. This scene can be classified into three cases:
There are no (Case 1), one (Case 2), or more than one
(Case 3) CPs in the BBOX.
For Case 1, we can directly remove all intermediate ver-

tices on the polyline. For Case 2, we design a two-stage
strategy to remove all intermediate vertices w.r.t. the CP
(i.e. CPi). First, we utilize a straight line across CPi (e.g.
the vertical line X = CPi.x named Y-Line)to partition the
space. Along L we sequentially look for the segments PkPk+1

which intersects with the line. Considering two such adja-
cent segments PkPk+1 and PjPj+1, we remove all the ver-
tices i.e. Pl(k + 1 < l < j) between them, and obtain a

simplified polyline L′. For further simplification, we use an-
other line across CPi (e.g. the horizontal line Y = CPi.y
named X-Line) to execute the same process on L′. Theo-
retically, the line with any angle could be used. Here, we
use X-Line and Y-Line because this leads to small computa-
tional cost for examining the intersection between the lines
and the segments of L. Figure 1(a), where some intermedi-
ate vertices are highlighted, gives a sample of three polylines
and a CP. Considering L2, we first draw a Y-line across CP
and get three intersecting segments P108P109, P138P139 and
P151P152. We remove the intermediate vertices outside the
segments and get L′

2 in Figure 2(a). Then, we simplify L′
2 to

L′′
2 in Figure 3(a) using the X-line. The inclusion relations

are guaranteed by Lemma 1.

Lemma 1. Let L = ⟨P1, P2,. . . , Pn⟩ be a polyline with
BBOX B, and CPi is a CP within B. The simplification
of L using Cross-line will not change the inclusion relations
between CPi and the surrounded regions related to the L.

Proof. The lemma is easy to be verified. Consider the
simplification of the polyline w.r.t. the first line AB across
CPi. Assume that PkPk+1 and PjPj+1 (k+1 <= j) are two
adjacent segments which both intersect with the line. The
vertices Pk+2, Pk+3, · · · , Pj lie on the same side of L (Even
if Pk+1 or Pj is on the line, the Cross-line method acts the
same). Removing the vertex Pl(k + 1 < l < j) will not
change any inclusion relations w.r.t. CPi. Further, utilizing
another line CD across CPi to simplify L′ to L′′ is a similar
process and therefore is also valid.

We extend the simplification of Case 2 to Case 3. Figure
1(b), Figure 2(b) and Figure 3(b) show an example with two
CPs. Parallel X/Y-lines are drawn across the CPs, and are
considered simultaneously, and segments intersecting with
any line are retained. Note that we can not simplify a poly-
line w.r.t. the CPs one by one, because the simplification
w.r.t. a CP might cause the topology change w.r.t. others.

For the intersection relations, we assert that in most cases
the polylines would not intersect after simplifying all poly-
lines using Cross-line. Figures 1∼3 illuminate the assertion.
The assertion is also well validated in our experiments. A
possibly better manner is to consider the vertices of other
polylines as CPs when simplifying a polyline, but this will
increase the complexity of the algorithm enormously.

(a) Runtime (b) Memory require-
ment

Figure 1: The performance w.r.t. the extendible
time threshold ext.

(a) Runtime (b) Memory require-
ment

Figure 2: The performance w.r.t. the extendible
time threshold ext.

(a) Runtime (b) Memory require-
ment

Figure 3: The performance w.r.t. the extendible
time threshold ext.

3.2 Enhancement of the Basic Cross-line
We design a heuristic strategy to decide the order of the

lines used to improve the efficiency of Cross-line. We com-
pare the width and height of the BBOX of L. If the value of
the height is larger than that of the width, we call L a high
line. Otherwise, we call L a wide line. If L is high, we use
X-Line first. Otherwise, Y-line is first used. For example,
L2 in Figure 1(a) is a high line. If we use X-line first, the
L′

2 will has four vertices rather than eight vertices in 2(a).
This would reduce the number of vertices that need to be
processed in the next stage.
The basic process of Cross-line can handle most polylines,

but there are still some special cases. The first concerns
the polygon(i.e. the polyline with two identical terminals)
whose BBOX containes no CP. When maximizing the sim-
plification, the basic Cross-line would simplify the polygon
as a vertex in this case. This can be avoided by retaining
two intermediate vertices. The second case is that a sim-
plified polyline becomes coincident with others. This occurs
when two polylines are simplified to two coincident lines
with two vertices (called two-vertex polylines). To avoid
coincidence, we first record all raw polylines with only t-
wo vertices. When a two-vertex polyline is generated, we
then examine whether it coincides with existing two-vertex
polylines. If it does, we retain an intermediate vertex in it.
Otherwise, we record it as a two-vertex polyline. For L2 and
L3 in Figure 1(a), if CP1 does not exist, we would simplify
L2 as two vertices and simplify L3 as three vertices.

Algorithm 1: Cross-line

Input: A polyline set S1 = {L1, L2, · · · , Ln}, a set of
CPs S2 = {CP1, CP2, . . . , CPm}

Output: A set of simplified polylines R
1 grid = buildGridIndex(S2); // build a grid-based

index for S2

2 S2 = collectTwoV ertex(S1); // record the

information of existing two-vertex polylines

3 for Li ∈ CS do
4 mbr = buildBBOX(Li) ; // get BBOX of Li

5 S′
2 = pointsInBBOX(mbr, grid) ; // search for

a subset of CPs in BBOX of Li

6 if isHigh(mbr) then
7 L′

i = simpifyX(Li, S
′
2); // use X-lines first

8 L′′
i = simpifyY (L′

i, S
′
2); // then use Y-lines

9 else
10 L′

i = simpifyY (Li, S
′
2); // use Y-lines first

11 L′′
i = simpifyX(L′

i, S
′
2); // then use X-lines

12 if only2sameV (L′′
i) then retain2Middle(L′′);

13 if isTwoV ertex(L′′
i) then // L′′

i has 2 vertices

14 if coincident(L′′
i , S2) then

// retain a middle vertex for L′′
i

15 retain1Middle(L′′
i);

16 else
17 updateS2(L′′

i , S2);

18 R.add(L′′
i);

19 return R;

It is easy to see that the parallelization of Cross-line is s-
traightforward. We can partition the set of polylines direct-
ly and then use general parallelization architecture such as
Open Multi-Processing (OpenMP) [2]. For coincidence de-
tection of the two-vertex polylines, we need to store existing
simplified two-vertex polylines in a common memory. Each
processing unit in the parallelization architecture needs to
detect the coincidence and update the common memory.

3.3 Analysis of Cross-line
The process of Cross-line is shown in Algorithm 1. For

fast search of the CPs in the BBOX of a polyline, we index
the points using a grid-based structure (Line 1). S2 is the
common structure to store the two-vertex polylines. In order
to detect coincidence quickly, S2 is constructed as a hash
table which hashes the union of two end vertices of a two-
vertex polyline to a bucket. Lines 6∼11 are the core steps
of Cross-line which simplify a polyline using X-lines or Y-
lines first. The coincidence handling is implemented in Lines
13∼17.

For a polyline Li, Cross-line detects its intersection with
X/Y-lines for the CPs in S′

2. The average cost for all poly-
lines in Lines 6∼11 is O(KM), where K is the average of
|S′

2| and M is the average length of Li. The cost in Lines
12∼17 is O(1) due to the use of the hash table. Hence, the
overall time complexity of Cross-line is O(KN) where N is
number of vertices in input. It is easy to see that the space
complexity is O(m+N) where m is the number of CPs.

4. EXPERIMENTS
We systematically evaluate Cross-line on five real bound-

Table 1: The description of the five experimental datasets and the results of Cross-line1 and Cross-line2

Dataset
Number
of vertices

Number of
polylines

Number
of CPs

Cross-line1 Cross-line2
R (ms) C (%) A (%) P R (ms) C (%) A (%) P

Dataset1 992 27 26 2.26 93.4 100 410.2 3.83 93.4 100 242.0
Dataset2 1564 46 127 3.79 92.9 93.4 353.8 5.74 91.5 100 249.3
Dataset3 8531 476 151 5.21 88.5 99.9 1447.8 7.95 88.4 100 948.9
Dataset4 28014 1353 356 9.11 90.0 99.9 2758.8 10.8 89.9 100 2333.9
Dataset5 28323 2331 1607 10.47 82.6 100 2235.2 11.53 82.6 100 2028.0

ary data of ACM SIGSPATIAL Cup 2014 [1] and large syn-
thetic datasets expanded from the real datasets. The statis-
tics of the datasets is shown in Columns 1∼4 of Table 1. In
this paper, we use OpenMP with four threads to parallelize
Cross-line. We compare two versions of Cross-line: Cross-
line without (Cross-line1)/with (Cross-line2) coincidence
detection as mentioned in Section 3.2. For Cross-line1, Lines
2 and 13∼17 in Algorithm 1 will be removed. The algorith-
m is implemented in C++ and executed on a machine with
Intel(R) Core 2 Quad CPU Q8400@ 64bit 2.66 GHz.
We evaluate Cross-line in the following aspects: the run-

time R, the simplification capacity C (the ratio of the total
number of removed vertices to the total number of vertices),
the accuracy A (the ratio of the total number of correctly re-
moved vertices to the total number of removed vertices), and
the overall performance P (the total number of removed ver-
tices divided by the runtime). The statistics of Cross-line1
and Cross-line2 is shown in Table 1. We can see that both
versions have extremely high simplification capacities and
accuracies. The results show Cross-line can guarantee the
topological relations in most cases. Comparing with Cross-
line2, we can see that Cross-line1 introduces only extreme-
ly few errors and brings significantly better overall perfor-
mance. This is because that the coincidence detection has
a high computational cost even for O(1) time complexity.
Dataset 4 has the minimal ratio of the number of CPs to the
number of vertices, so it generates a greater proportion of
two-vertex polylines. Hence, Dataset 4 leads to the biggest
difference of runtime for Cross-line1 and Cross-line2.

Figure 4: The runtime of Cross-line1 and Cross-line2
w.r.t. the data sizes (0.05 and 0.1 in the labels indi-
cate the ratio of the number of CPs to the number
of vertices).

We assess the efficiency of Cross-line on large synthetic
datasets with various numbers of vertices and CPs. The
results are shown in Figure 4. We can see that the runtime
of both Cross-Line1 and Cross-Line2 increases linearly w.r.t.
the number of vertices. When the number of CPs increases
(i.e. varying the ratio of CPs to the number of vertices from

0.05 to 0.1 in Figure 4), the change of runtime is not obvious.
There are two reasons for that. On one hand more CPs lead
to more CPs in the bounding box of a polyline. On the
other hand less vertices could be removed due to the greater
chance of intersection with a X/Y-line for a segment.

5. CONCLUSIONS
In this paper, we propose a new algorithm for geome-

try simplification called Cross-line to simplify large num-
ber of geometries under the topological constraints of given
constraining points and the geometry themselves. The ex-
perimental results show that the Cross-line algorithm has
extremely high simplification capacity and accuracy. Mean-
while, Cross-line achieves very high computational efficiency,
and this prompts us to adapt the algorithm for online map
generalization.

6. ACKNOWLEDGMENTS
We would like to thank ACM SIGSPATIAL Cup 2014

organizers for the interesting competition. This work was
supported by the National Natural Science Foundation of
China (Nos. 41371386, 61202064 and 91324008), the Na-
tional High Technology Research and Development Program
of China (863 Program) (No. 2013AA01A603), and the S-
trategic Priority Research Program of the Chinese Academy
of Sciences (No. XDA06010600).

7. REFERENCES
[1] ACM sigspatial cup 2014. Available from

http://mypages.iit.edu/~xzhang22/GISCUP2014/.
Accessed April 1, 2014.

[2] B. Chapman, G. Jost, and R. Van Der Pas. Using
OpenMP: portable shared memory parallel
programming, volume 10. MIT press, 2008.

[3] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to represent
a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and
Geovisualization, 10(2):112–122, 1973.

[4] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T.
Shen. Discovery of convoys in trajectory databases.
Proceedings of the VLDB Endowment, 1(1):1068–1080,
2008.

[5] W. A. Mackaness, A. Ruas, and L. T. Sarjakoski.
Generalisation of geographic information: cartographic
modelling and applications. Elsevier, 2011.

[6] M. Visvalingam and J. Whyatt. Line generalisation by
repeated elimination of points. The Cartographic
Journal, 30(1):46–51, 1993.

