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ABSTRACT 

Map Generalization is one of the most fundamental technologies 

for modern digital maps. It can effectively reduce the storage 

space and fit to different applications according to their scale 

requirement. This paper presents an efficient solution for this 

problem that won the ACM SIGSPATIAL CUP 2014. Given the 

original geometries which are represented by sampling points 

sequence, this method divides the boundaries into many small 

segments based on their topological characteristics and constriants. 

It attempts to minimize the number of sampling points by 

simplifying the given map and constraining points. In addition, 

the method also employs many optimization techniques to reduce 

the total latency, like memory pool, parallel computing and string 

parsing.  Experimental results on real datasets demonstrate the 

effectiveness and efficiency of the proposed method. 
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1. INTRODUCTION 

1.1 Background 
Map generalization (i.e., map simplification) [2] is a technique 

that some key information is selected and kept on a map so that 

the generalized map can adapt to the scale of the display medium. 

By default, not all intricate geographical details are preserved, but 

the relationships between the geometries should be represented in 

the most faithful recognizable ways. Here, how to efficiently 

identify insignificant items  and remove them (i.e., preserve the 

distinguishing items) is the main challenge [3-7].  

1.2 Problem Definition 

Consider the MA state’s map shown in Figure 1 that displays a set 

of state boundaries at a very detailed level. Some states share 

boundaries with other states and clearly the state boundaries do 

not overlap with each other. The red points represent the cities 

near the boundaries.  

 

Figure 1. Visualization of MA state’s Points and Boundaries 

To facilitate map simplification, it is often desirable to break the 

state boundaries into different line geometries so that all shared 

boundaries are represented as unique line geometries. These lines 

are then simplified and connected back together to form the state 

boundaries. In this way, the state boundaries will still preserve the 

non-overlapping property they had before the boundary being 

simplified. However, this does not guarantee that the cities still 

maintain their relative position with respect to their state 

boundaries. 

In this paper, we investigate the following problem [1]. If there’re 

a set of linear geometries that bound polygonal regions and a set 

of constraining points. The objective is to simplify the linear 

geometries such that the relationship between the constraining 

points and linear geometries before and after the simplification 

does not change. In addition, the topological relationship between 

the original set of input linear geometries does not change after 

the simplification. 

1.3  

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. Copyrights 

for components of this work owned by others than ACM must be 

honored. Abstracting with credit is permitted. To copy otherwise, or 

republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. Request permissions from 

Permissions@acm.org. 

SIGSPATIAL'14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA 

Copyright 2014 ACM 1-58113-000-0/00/0010 …$15.00. 

http://dx.doi.org/10.1145/2666310.2666423 



1l

2l
3l

 

1l

2l
1p

 

(a). without constraining point (b). with constraining point 

Figure 2. Problem Definition 

As shown in Figure 2(a), when there is no nearby constraining 

point, the line segments (i.e., l1 and l2) which comprise  polygonal 

lines can be simplified to l3. In contrast, as shown in Figure 2(b), 

if there is constraining point (i.e., p1) in-between the line 

segments, we probably need further examination to determine if 

the points on the line segments can be simplified (i.e., eliminated). 

Specifically, in Figure 2(b), we cannot simplify l1 and l2 to l3 

anymore. 

2. Proposed Approach 

2.1 Preprocessing 

  

Figure 3. MBR of different line geometries 

Via preprocessing, we aim to quickly eliminate those points that 

have no constraining points around. After finding those points, we 

can simplify the corresponding polygonal line by only keeping 

the starting point and the ending point of each such line segment.  

In order to quickly find those points (i.e., polygonal line), we 

employ the Minimum Bounding Rectangle (MBR) to locate the 

line segments which have no internal constraining points.  

Case 1. Specifically, a MBR is constructed by including all the 

points of a polygonal line. If there exists no constraining point 

inside the constructed MBR, then the corresponding polygonal 

line can be directly simplified by only keeping its starting point 

and its ending point, which is the mostly simplified polygonal line 

(i.e., line segment). For example, as shown in Figure 3, the 

polygonal line l1 can be simplified by only keeping its starting 

point and its ending point.  

Case 2. However, if there exist internal constraining points, we 

have to consider which points from the polygonal line can be 

simplified (i.e., eliminated). In this case, we employ the divide 

and conquer paradigm according to an observation that only the 

points near a constraining point which is inside the constructed 

MBR should be considered together. In contrast, if a point is far 

away from a constraining point, then to eliminate the point or not 

probably has nothing to do with the constraining point. For 

example, in Figure 3, the polygonal line l3 cannot be simplified 

with the method used in case 1. We dub it case 2. In this case, we 

need to further examine the position relationship between the 

constraining points and the polygonal line. Sometimes, though 

there exist constraining points inside the MBR, the polygonal line 

can still be simplified by only keeping its starting point and 

ending point (e.g. the l2 shown in the figure 3). Sometimes, 

however, some points of the polygonal line can be discarded 

while the other points (nearby the constraining points) cannot be 

discarded (e.g. the l3 shown in the figure 3). Thus, we need to 

further apply fine-grained algorithms to determine. 

As a conclusion for the preprocessing, we distinguish case 1 and 

case 2. For case 1, we can directly simplify the polygonal line. 

For case 2, we need to do further investigation. 

2.2 Simplification 
Simplification is the core step of our approach which is 

responsible for discarding the points of polygonal lines in case 2. 

The simplication is further composed of two substeps: partitioning 

and constraint recognition.  

 

 Figure 4. Partitioning 

Partitioning. The partitioning step splits the original polygonal 

line into several sub polygonal lines where the number of sub 

polygonal lines is heuristically determined. We introduce this step 

to convert case 2 into case 1 mentioned in the preprocessing part. 

Because it is obvious that after partitioning the long polygonal 

line into several polygonal lines we can expect each sub 

polygonal line has less nearby constraining points (i.e., the 

corresponding MBR has less or none included constraining 

points). As illustrated in Figure 4, after partitioning the original 

polygonal line into three sub polygonal lines, the third polygonal 

line (included in the MBR3) has no constraining point. If we split 

the original polygonal line into more sub polygonal lines, we 

should have less inside constraining points. However, the 

partitioning itself may become the most time-consuming step. To 

balance the time consumption, we propose that a long polygonal 

line (denoted by PL) should be splitted into m segments. 
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where Ncp denotes the number of constraining points included in 

the MBR determined by PL, and Nsp denotes the number of points 
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of PL. The motivation of this equation is straightforward, for 

m means the average number of points nearby each constraining 

point included in the MBR. 

After computing m, the previous computed MBR with respect to 

the polygonal line is equally split into m cells alongside the x axis  

or y axis. 

Constraint recognition. In this step, we aim to clearly detect if a 

point of the polygonal line can be discarded via recognizing if 

there exists a constraining point nearby that makes the point 

undeletable. 

 

(a) case 3   (b) case 4 

Figure 5. Constraint recognition 

Figure 5 illustrates the basic idea behind the constraint 

recognition step. Overall, we employ a triangle determined by 

three consecutive points of the polygonal line to detect if there 

exists a constraint point inside the triangle. 

Case 2-1. As shown in Figure 5(a), if no constraining point inside 

the triangle determined by the three consecutive points (i.e., PA, 

PB and PC), then we can simplify the three points by removing the 

second point (i.e., only keep the starting and ending points).  

Case 2-2. As shown in Figure 5(b), if there is any constraining 

point inside the triangle determined by the three consecutive 

points (i.e., PA, PB and PC), then we have to keep the first point 

(i.e., PA if we examine the points from PA to PB then PC; 

otherwise, PC if we examine the points from PC to PB then PA). 

Please notice that the examination direction can be arbitrary for it 

will not influence the simplified result. 

As aforementioned in the case 2-2, after examining the three 

consecutive points of a polygonal line, we move forward 

alongside the previously defined direction (e.g. PA→PB→PC or PC

→PB→PA) and examine the next three consecutive points, where 

each iteration only tries to remove one point (i.e. the 

second/middle point).  

Specifically, the whole process can be described by the following 

poseducode. First (line 1-3), the total number of a polygonal line 

is computed and corresponding MBR is incrementally obtained.  

If  there is a trival polygonal line, then we should return it directly 

(line 4-5). Otherwise, we further split it into multiple segments 

according to the huestically computed m (line 6-8) and examine 

each partition separately (line 9-13). 

Algorithm 1 Simplification 

Input: a line geometry SPs and constraining points set CPs 

Output: a simplified line geometry 

1.  for each sampling point p of a polygonal line SPs do 

2.     MBR.extend(p); 

3.     SPs.num++; 

4.  if (2 == SPs.num || MBR don’t contain any p in CPs) 

5.     return SPs.start and SPs.end; 

6.  else  

7.     m=Nsp/ Ncp; 

8.     equally split the previously computed MBR into m 

ceil(CPs.num); 

9.     for every partition P in the SPs 

10.       if MBR don’t contain any p in CPs  

11.           Retain Points Set RPS.insert(P.start and P.end); 

12.      else RPS.insert(every point in P) 

13.   constraint recognition (RPS); 

14. return RPS; 
However, some special cases (dentoed by S.C.) require extra 

attention and hence corresponding detection algorithms are 

devised to deal with these special cases. Figure 6 and 7 

demostrate the special cases we have found so far. 

1l

2l

 

Figure 6. Special Case 1 

S.C. 1. Since we should always keep the topological relationships 

between the original set of input linear geometries after the 

simplification, the two partially overlapping polygonal lines (i.e., 

l1 and l2) cannot be simplified into two points (i.e., only keep the 

starting and ending points) simoutaneously. Otherwise, the two 

lines will coincide which clearly violates the original topological 

relationships between them, since a part of l2 locates above l1. 

Therefore, in order to detect S.C.1, we have to examine the 

starting points and ending points of the polygonal lines which are 

included in the same MBR. In this case, we need to keep one 

more point which is not located both lines for l2. 
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Figure 7. Special Case 2 

S.C. 2. Likewise, if the original linear geometry is a circle-like 

structure, then we cannot simplify it as two points (i.e., only keep 

the starting and ending points). Otherwise, the corresponding 

island in the map disappears. We have to keep at least three points 

of the circle-like structure to make it look like an island. This 

special case can be easily detected by checking if the starting 

point is same as the ending point. 

The special case detection procedure is invoked before the 

partitioning phase. 
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2.3 Some supplementary optimization 
IO optimization: In GIS, the geometries is usually representd in 

the GML format which is a modeling language. We optimize the 

document parsing with only one-time read from disk.  In addition, 

we have implemented a simple but efficient atof function without 

considering variety of complex cases for floating number. 

Parallelized process: OpenMP is an implementation of 

multithreading, a method of parallelizing the computing task. In 

Map Generalization, the data loading and geometries 

preprocessing can be divided into several unrelated task. We set 

up 4 threads to finish those computing task according to the 

experiment environment. In addition, in order to minimize the 

cost of thread switching and communications, we design the 

multiprocess’s calculation  to be data independent.  

Memory pool: When we parse line and point geometry from input 

data files,  it is costly to initialize and organize them into the data 

structure used by the algorithm. We design the memory pool to 

speed up the initialization process without requesting allocation of 

resources through the system every time.  

3. Experiment 
In this section we present the effectiveness of simplification 

algorithm (Topology Partitioning and Constraints Recognition) 

and other optimization strategies in terms of data size and running 

time, and finally we also verify the scalability of proposed 

method in different size of datasets. 

In the experiments, we use training data sets 3 provided by ACM 

SIGSPATIAL Cup 2014 [1]. It contains the real line geometries 

data from boundary of the counties in GA state, USA and some 

point geometries which are used to constrain the line 

simplification process. The input lines geometries have a total of 

8531 vertices and form 476 lines. Point geometries in this dataset 

is 151 in all. In order to test the actual performance of the 

algorithm, we expanded the original data set 50-fold to simulate 

application’s data scale. Our implementation is written in C++ on 

Visual Studio express platform, experimental results were taken 

on a computer with Intel Core i7 Quad CPU 2600 3.1 GHz 64bit 

and 2 GB RAM. 

 

Figure 8. Effectiveness of the algorithm and optimization 

To evaluate the method’s performance, we set up multiple 

comparative experiments on the effect of the algorithm and 

various optimization strategies which are proposed in this paper. 

As shown in Figure 8, the Topology Partitioning algorithm reduce 

the simplification time to 17.64% as the orginal method using 

traversing the line geometries. However, loading and output 

comprises the most time-consuming parts of the overall process. 

We optimize the loading process via parallelization and the time 

reduces nearly 50%. Memory pool is also effective for loading 

and simplication, contributing toabout 30% improvement.  

Figure 9 demonstrates the trend of different parts of this method 

with the growth of data size. It is clear that each part nearly 

increases linear with the data size’s growth, loading and output 

process is the most significant increasing part. 

 
Figure 9. Method Scalability 

4. CONCLUSIONS 
In this paper, we propose an effective map generalization method 

using topology partitioning and constraints recognition. The 

experimental results demonstrate that the method achieves 

exciting effects compared to traversing line geometries. 
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