
An Efficient Method of Map Generalization Using Topology
Partitioning and Constraints Recognition

Hongtai Zhang1,2 Jian Dai1,2 Kuien Liu1 Zhiming Ding1 Huidan Liu1

1Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

{hongtai,daijian,kuien,zhiming,huidan}@nfs.iscas.ac.cn

ABSTRACT

Map Generalization is one of the most fundamental technologies

for modern digital maps. It can effectively reduce the storage

space and fit to different applications according to their scale

requirement. This paper presents an efficient solution for this

problem that won the ACM SIGSPATIAL CUP 2014. Given the

original geometries which are represented by sampling points

sequence, this method divides the boundaries into many small

segments based on their topological characteristics and constriants.

It attempts to minimize the number of sampling points by

simplifying the given map and constraining points. In addition,

the method also employs many optimization techniques to reduce

the total latency, like memory pool, parallel computing and string

parsing. Experimental results on real datasets demonstrate the

effectiveness and efficiency of the proposed method.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and GIS

General Terms

Algorithms, Performance

Keywords

Topology Partitioning, Map Generalization, GIS, Cartography

1. INTRODUCTION

1.1 Background
Map generalization (i.e., map simplification) [2] is a technique

that some key information is selected and kept on a map so that

the generalized map can adapt to the scale of the display medium.

By default, not all intricate geographical details are preserved, but

the relationships between the geometries should be represented in

the most faithful recognizable ways. Here, how to efficiently

identify insignificant items and remove them (i.e., preserve the

distinguishing items) is the main challenge [3-7].

1.2 Problem Definition

Consider the MA state’s map shown in Figure 1 that displays a set

of state boundaries at a very detailed level. Some states share

boundaries with other states and clearly the state boundaries do

not overlap with each other. The red points represent the cities

near the boundaries.

Figure 1. Visualization of MA state’s Points and Boundaries

To facilitate map simplification, it is often desirable to break the

state boundaries into different line geometries so that all shared

boundaries are represented as unique line geometries. These lines

are then simplified and connected back together to form the state

boundaries. In this way, the state boundaries will still preserve the

non-overlapping property they had before the boundary being

simplified. However, this does not guarantee that the cities still

maintain their relative position with respect to their state

boundaries.

In this paper, we investigate the following problem [1]. If there’re

a set of linear geometries that bound polygonal regions and a set

of constraining points. The objective is to simplify the linear

geometries such that the relationship between the constraining

points and linear geometries before and after the simplification

does not change. In addition, the topological relationship between

the original set of input linear geometries does not change after

the simplification.

1.3

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

SIGSPATIAL'14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA

Copyright 2014 ACM 1-58113-000-0/00/0010 …$15.00.

http://dx.doi.org/10.1145/2666310.2666423

1l

2l
3l

1l

2l
1p

(a). without constraining point (b). with constraining point

Figure 2. Problem Definition

As shown in Figure 2(a), when there is no nearby constraining

point, the line segments (i.e., l1 and l2) which comprise polygonal

lines can be simplified to l3. In contrast, as shown in Figure 2(b),

if there is constraining point (i.e., p1) in-between the line

segments, we probably need further examination to determine if

the points on the line segments can be simplified (i.e., eliminated).

Specifically, in Figure 2(b), we cannot simplify l1 and l2 to l3

anymore.

2. Proposed Approach

2.1 Preprocessing

Figure 3. MBR of different line geometries

Via preprocessing, we aim to quickly eliminate those points that

have no constraining points around. After finding those points, we

can simplify the corresponding polygonal line by only keeping

the starting point and the ending point of each such line segment.

In order to quickly find those points (i.e., polygonal line), we

employ the Minimum Bounding Rectangle (MBR) to locate the

line segments which have no internal constraining points.

Case 1. Specifically, a MBR is constructed by including all the

points of a polygonal line. If there exists no constraining point

inside the constructed MBR, then the corresponding polygonal

line can be directly simplified by only keeping its starting point

and its ending point, which is the mostly simplified polygonal line

(i.e., line segment). For example, as shown in Figure 3, the

polygonal line l1 can be simplified by only keeping its starting

point and its ending point.

Case 2. However, if there exist internal constraining points, we

have to consider which points from the polygonal line can be

simplified (i.e., eliminated). In this case, we employ the divide

and conquer paradigm according to an observation that only the

points near a constraining point which is inside the constructed

MBR should be considered together. In contrast, if a point is far

away from a constraining point, then to eliminate the point or not

probably has nothing to do with the constraining point. For

example, in Figure 3, the polygonal line l3 cannot be simplified

with the method used in case 1. We dub it case 2. In this case, we

need to further examine the position relationship between the

constraining points and the polygonal line. Sometimes, though

there exist constraining points inside the MBR, the polygonal line

can still be simplified by only keeping its starting point and

ending point (e.g. the l2 shown in the figure 3). Sometimes,

however, some points of the polygonal line can be discarded

while the other points (nearby the constraining points) cannot be

discarded (e.g. the l3 shown in the figure 3). Thus, we need to

further apply fine-grained algorithms to determine.

As a conclusion for the preprocessing, we distinguish case 1 and

case 2. For case 1, we can directly simplify the polygonal line.

For case 2, we need to do further investigation.

2.2 Simplification
Simplification is the core step of our approach which is

responsible for discarding the points of polygonal lines in case 2.

The simplication is further composed of two substeps: partitioning

and constraint recognition.

 Figure 4. Partitioning

Partitioning. The partitioning step splits the original polygonal

line into several sub polygonal lines where the number of sub

polygonal lines is heuristically determined. We introduce this step

to convert case 2 into case 1 mentioned in the preprocessing part.

Because it is obvious that after partitioning the long polygonal

line into several polygonal lines we can expect each sub

polygonal line has less nearby constraining points (i.e., the

corresponding MBR has less or none included constraining

points). As illustrated in Figure 4, after partitioning the original

polygonal line into three sub polygonal lines, the third polygonal

line (included in the MBR3) has no constraining point. If we split

the original polygonal line into more sub polygonal lines, we

should have less inside constraining points. However, the

partitioning itself may become the most time-consuming step. To

balance the time consumption, we propose that a long polygonal

line (denoted by PL) should be splitted into m segments.

sp

cp

N
m

N

 
  
  

where Ncp denotes the number of constraining points included in

the MBR determined by PL, and Nsp denotes the number of points

MBR1

MBR2

MBR3

CP1

CP2

Ps

Pe

l1

l2

l3

of PL. The motivation of this equation is straightforward, for

m means the average number of points nearby each constraining

point included in the MBR.

After computing m, the previous computed MBR with respect to

the polygonal line is equally split into m cells alongside the x axis

or y axis.

Constraint recognition. In this step, we aim to clearly detect if a

point of the polygonal line can be discarded via recognizing if

there exists a constraining point nearby that makes the point

undeletable.

(a) case 3 (b) case 4

Figure 5. Constraint recognition

Figure 5 illustrates the basic idea behind the constraint

recognition step. Overall, we employ a triangle determined by

three consecutive points of the polygonal line to detect if there

exists a constraint point inside the triangle.

Case 2-1. As shown in Figure 5(a), if no constraining point inside

the triangle determined by the three consecutive points (i.e., PA,

PB and PC), then we can simplify the three points by removing the

second point (i.e., only keep the starting and ending points).

Case 2-2. As shown in Figure 5(b), if there is any constraining

point inside the triangle determined by the three consecutive

points (i.e., PA, PB and PC), then we have to keep the first point

(i.e., PA if we examine the points from PA to PB then PC;

otherwise, PC if we examine the points from PC to PB then PA).

Please notice that the examination direction can be arbitrary for it

will not influence the simplified result.

As aforementioned in the case 2-2, after examining the three

consecutive points of a polygonal line, we move forward

alongside the previously defined direction (e.g. PA→PB→PC or PC

→PB→PA) and examine the next three consecutive points, where

each iteration only tries to remove one point (i.e. the

second/middle point).

Specifically, the whole process can be described by the following

poseducode. First (line 1-3), the total number of a polygonal line

is computed and corresponding MBR is incrementally obtained.

If there is a trival polygonal line, then we should return it directly

(line 4-5). Otherwise, we further split it into multiple segments

according to the huestically computed m (line 6-8) and examine

each partition separately (line 9-13).

Algorithm 1 Simplification

Input: a line geometry SPs and constraining points set CPs

Output: a simplified line geometry

1. for each sampling point p of a polygonal line SPs do

2. MBR.extend(p);

3. SPs.num++;

4. if (2 == SPs.num || MBR don’t contain any p in CPs)

5. return SPs.start and SPs.end;

6. else

7. m=Nsp/ Ncp;

8. equally split the previously computed MBR into m

ceil(CPs.num);

9. for every partition P in the SPs

10. if MBR don’t contain any p in CPs

11. Retain Points Set RPS.insert(P.start and P.end);

12. else RPS.insert(every point in P)

13. constraint recognition (RPS);

14. return RPS;
However, some special cases (dentoed by S.C.) require extra

attention and hence corresponding detection algorithms are

devised to deal with these special cases. Figure 6 and 7

demostrate the special cases we have found so far.

1l

2l

Figure 6. Special Case 1

S.C. 1. Since we should always keep the topological relationships

between the original set of input linear geometries after the

simplification, the two partially overlapping polygonal lines (i.e.,

l1 and l2) cannot be simplified into two points (i.e., only keep the

starting and ending points) simoutaneously. Otherwise, the two

lines will coincide which clearly violates the original topological

relationships between them, since a part of l2 locates above l1.

Therefore, in order to detect S.C.1, we have to examine the

starting points and ending points of the polygonal lines which are

included in the same MBR. In this case, we need to keep one

more point which is not located both lines for l2.

AB

C

D

E

F

G

Figure 7. Special Case 2

S.C. 2. Likewise, if the original linear geometry is a circle-like

structure, then we cannot simplify it as two points (i.e., only keep

the starting and ending points). Otherwise, the corresponding

island in the map disappears. We have to keep at least three points

of the circle-like structure to make it look like an island. This

special case can be easily detected by checking if the starting

point is same as the ending point.

The special case detection procedure is invoked before the

partitioning phase.

PA

PB

PC

PA PB

PC

2.3 Some supplementary optimization
IO optimization: In GIS, the geometries is usually representd in

the GML format which is a modeling language. We optimize the

document parsing with only one-time read from disk. In addition,

we have implemented a simple but efficient atof function without

considering variety of complex cases for floating number.

Parallelized process: OpenMP is an implementation of

multithreading, a method of parallelizing the computing task. In

Map Generalization, the data loading and geometries

preprocessing can be divided into several unrelated task. We set

up 4 threads to finish those computing task according to the

experiment environment. In addition, in order to minimize the

cost of thread switching and communications, we design the

multiprocess’s calculation to be data independent.

Memory pool: When we parse line and point geometry from input

data files, it is costly to initialize and organize them into the data

structure used by the algorithm. We design the memory pool to

speed up the initialization process without requesting allocation of

resources through the system every time.

3. Experiment
In this section we present the effectiveness of simplification

algorithm (Topology Partitioning and Constraints Recognition)

and other optimization strategies in terms of data size and running

time, and finally we also verify the scalability of proposed

method in different size of datasets.

In the experiments, we use training data sets 3 provided by ACM

SIGSPATIAL Cup 2014 [1]. It contains the real line geometries

data from boundary of the counties in GA state, USA and some

point geometries which are used to constrain the line

simplification process. The input lines geometries have a total of

8531 vertices and form 476 lines. Point geometries in this dataset

is 151 in all. In order to test the actual performance of the

algorithm, we expanded the original data set 50-fold to simulate

application’s data scale. Our implementation is written in C++ on

Visual Studio express platform, experimental results were taken

on a computer with Intel Core i7 Quad CPU 2600 3.1 GHz 64bit

and 2 GB RAM.

Figure 8. Effectiveness of the algorithm and optimization

To evaluate the method’s performance, we set up multiple

comparative experiments on the effect of the algorithm and

various optimization strategies which are proposed in this paper.

As shown in Figure 8, the Topology Partitioning algorithm reduce

the simplification time to 17.64% as the orginal method using

traversing the line geometries. However, loading and output

comprises the most time-consuming parts of the overall process.

We optimize the loading process via parallelization and the time

reduces nearly 50%. Memory pool is also effective for loading

and simplication, contributing toabout 30% improvement.

Figure 9 demonstrates the trend of different parts of this method

with the growth of data size. It is clear that each part nearly

increases linear with the data size’s growth, loading and output

process is the most significant increasing part.

Figure 9. Method Scalability

4. CONCLUSIONS
In this paper, we propose an effective map generalization method

using topology partitioning and constraints recognition. The

experimental results demonstrate that the method achieves

exciting effects compared to traversing line geometries.

5. ACKNOWLEDGMENTS
We would like to thank the ACM SIGSPATIAL Cup 2014

organizers for their valuable efforts during the competition. This

work was supported by the China National 973 program

2014CB340301, the China National 863 program

2013AA01A603, and the National Science Foundation (NSF)

China Grants 61202064 ,41371386 and 91324008.

6. REFERENCES
[1] ACM SIGSPATIAL Cup 2014

http://mypages.iit.edu/~xzhang22/GISCUP2014/index.php

[2] Buttenfield, B. P., & McMaster, R. B. (Eds.). (1991). Map

Generalization: making rules for knowledge representation.

New York: John Wiley and Sons.

[3] Urs Ramer, "An iterative procedure for the polygonal

approximation of plane curves", Computer Graphics and

Image Processing, 1(3), 244–256 (1972) doi:10.1016/S0146-

664X(72)80017-0.

[4] David Douglas & Thomas Peucker, "Algorithms for the

reduction of the number of points required to represent a

digitized line or its caricature", The Canadian Cartographer

10(2), 112–122 (1973).

[5] Jones, C. B., Bundy, G. L., & Ware, M. J. (1995). Map

generalization with a triangulated data structure. Cartography

and Geographic Information Systems, 22(4), 317-331.

[6] Buttenfield, B. P., & McMaster, R. B. (Eds.). (1991). Map

Generalization: Making rules for knowledge representation.

New York: Longman Scientific & Technical.

[7] Liu, K., Li, Y., He, F., Xu, J., & Ding, Z. (2012, November).

Effective map-matching on the most simplified road network.

In Proceedings of the 20th International Conference on

Advances in Geographic Information Systems (pp. 609-612).

