Learning Symbolic Descriptions of Activities from
Examples in WAAS

Jongmoo Choi and Gérard Medioni
Institute for Robotics and Intelligent Systems
University of Southern California, USA
{jongmooc,medioni}@usc.edu

ABSTRACT

We present an automatic system that learns symbolic repre-
sentations of activities from examples in Wide Area Aerial
Surveillance (WAAS). In the previous work, we presented
an ERM (Entity Relationship Models)-based activity recog-
nition system in which finding an activity is equivalent to
sending a query, defined by SQL statements, to a Rela-
tional DataBase Management System (RDBMS). The sys-
tem enables us to identify spatial and geo-spatial activities
in WAAS as long as activities are carefully defined by hu-
man operators. Here, we show how to infer a structured
definition of an activity from examples provided by a user.
Our system randomly generates a set of possible SQL state-
ments using a logic generator in a MCMC framework, uses
a memory-based RDBMS to validate generated SQL state-
ments with the input data/database, and selects the best
answer that allows the RDBMS to explain the input posi-
tive examples while excluding negative examples. We have
evaluated our system on real visual tracks. Our system can
find activity definitions from input examples and associated
query results including motion patterns (e.g., “loop”) and
geospatial activities (e.g., “parking in a lot”).

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications -
Spatial database and GIS

General Terms

Algorithms, Experimentation

Keywords

wide area aerial surveillance, activity recognition, activity
recognition in WAAS, rule and pattern mining, SQL from
data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

SIGSPATIAL’ 14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-3131-9/14/11 ...$15.00
http://dx.doi.org/10.1145/2666310.2666434

1. INTRODUCTION

We aim to provide a system that automatically finds sym-
bolic definitions of activities given examples in WAAS (Wide
Area Aerial Surveillance) scenarios.

In the previous research, we have developed EAR (En-
tity relationship models-based Activity Recognition) frame-
work [Choi et al. 2012]. We extract a set of atomic portions
of a track (“tracklets’) from video input, along with physical
attributes, and store them into a standard RDBMS (Rela-
tional Database Management System). To infer activities,
we define relationships between the database entities, which
capture the geo-spatial relationships between tracklets and
and geographic information. The key limitation of this ap-
proach is that each activity needs to be carefully crafted and
expressed by a human operator, which limits the efficiency
and applicability.

In this paper, we present an automatic system that learns
symbolic representations of activities from examples in Wide
Area Aerial video Surveillance (WAAS). We do not aim to
build a universal learning framework but instead leverage
experts domain knowledge on WAAS applications. Instead
of putting implicit knowledge on the final stage (activity
definition), we design meaningful, efficient building blocks
enabling to produce complex activity definitions. We then
generate a set of activity representations and find the best
one that explains input data.

Given positive and negative examples, our system ran-
domly generates a set of possible SQL statements using a
logic generator in a MCMC (Markov Chain Monte Carlo)
framework [Gilks 2005], uses a memory-based RDBMS to
validate a generated SQL with few example data, and se-
lects the best answer that allows the RDBMS to produce
the input positive examples while not producing negative
examples.

We have implemented our framework and validated the
approach on real visual tracks and GPS datasets. In our
experiments, our system allows us to find motion patterns
and geospatial activities from real visual tracks, with very
few example data as input.

2. RELATED WORK

We summarize related work on rule mining from data.
Related work on activity recognition and activity recognition
in wide area surveillance can be found in [Choi et al. 2012].

Association rule learning is a well researched method for
discovering interesting relations between variables in large
databases [Agrawal et al. 1993]. As opposed to association
rule learning applications, our problem has complex activity

Interaction {E+, E-, keywords}
ls.

100

Attributed

Tracklets Skarpies

in RDBMS
RDBMS MCMC

Temporary —| sQL |. Logic generation | _
result by axioms T —

p

Validation {
Updating weighting of the rules

“New activity definition™
1. Rule gencration

2. Weightingrules
- 3. Tuming on/off rules
database

Figure 1: Overview of the proposed approach.

patterns (e.g., geographic context, sequence, multiple ac-
tors) and a limited number of positive examples.

Generating rules from unstructured raw data is a diffi-
cult problem. To make the problem more tractable, many
works have focused on finding operators while a background
knowledge setting is kept. A hybrid approach combining
AT planning and evolutionary optimization, within an in-
teractive storytelling framework, is presented to generate
planning operators [Giannatos et al. 2012]. Rule extrac-
tion methods from trained neural networks have been pro-
posed [Chorowski and Zurada 2011].

In our approach, the problem of extracting rules from data
is cast as a search problem with operators, input examples,
and background data. Our approach is efficient and prac-
tical for WAAS applications because of the utilized domain
knowledge. Moreover, this framework can be extended by
replacing a domain specific set of rewriting rules.

3. PRELIMINARIES

We summarize methods for tracklets computation and ge-
ographic object extraction. We then explain the basic con-
cept of EAR framework.

Computing tracklets from imagery. The atomic spatio-

temporal information in our system is called a tracklet, a
segmented portion of a track representing vehicle’s “instan-
taneous” motion, such as going straight, turning left or turn-
ing right. Each tracklet has a collection of attributes z; =
{A1, A2, -+, Am}, where an element \; presents a physical
property such as time, location, and speed. We use a state
of the art real-time tracker [Prokaj et al. 2011], which has
been used by Lawrence Livermore National Lab.

Extracting geographic objects. Given a ROI (Region
Of Interest) for an activity inference application, we extract
a set of geographic objects (e.g., buildings, roads, parking
lots, schools) from OpenStreetMap [Haklay and Weber 2008]
and store into our RDBMS along with key attributes (e.g.,
name, id, type, latitude, longitude). A road is represented a
set of road segments and a large object, having an arbitrary
shape of the area (e.g., a parking lot), is represented as a set
of points. All geo-objects are stored and indexed into the
RDBMS by an off-line processing step.

EAR (ERM-based Activity Recognition. In the
EAR framework, an activity a; is defined as a collection
of tracklets obeying certain properties [Choi et al. 2012]:
a; = {z|z € Q;,C;(z) > 60,}, where Q;, C;(z) € [0,1], and

0; represent the relationship associated with the activity,
the confidence function and the recognition threshold, re-
spectively. The relationship €2; links between the attributes
of entities, which include both the physical properties of
tracklets and the geospatial data. We can define relation-
ships that are not explicitly represented in the ERM. Some
examples can be found in [Choi et al. 2012].

The ERM-based representation implies that inferring an
activity is a search problem to find a subset of tracklets from
entire data set, which satisfies certain conditions. ERM is
implemented as a standard RDBMS and we can express set
operations by SQL to find an activity from our database.
The activity recognition problem is equivalent to sending
queries to the RDBMS.

4. OUR APPROACH: MCMC-LOGIC SAM-
PLING FROM AXIOMS

We propose an innovative framework that allows us to
find activity definitions without relying on experts’ explicit
SQL design. The input to our system is a few positive and
negative examples of tracked vehicles. An optional natu-
ral language description can be provided. Fig. 1 shows an
overview of the system. The system randomly generates a
set of possible SQL statements using a logic generator in a
MCMC framework, uses a memory-based RDBMS to vali-
date a generated SQL with few example data, and select the
best answer that allows the RDBMS to produce the input
positive examples while not producing negative examples.

The key idea is that we randomly generate logic represen-
tations (SQL statements corresponding to the ERM) using
a set of axioms and select the best representation that fits
to the input examples using a series of DBMS queries. In
general, this bottom-up search is a combinatorial problem
and intractable. Our rewriting rules allow us to generate
only feasible logic statements which are consistent with the
input data.

A simple ontology database can be used to reduce the
search space, which is not presented in this paper.

4.1 Logic generation from axioms

We use a set of rewriting rules (axioms) to generate a set
of logic statements and convert each logic representation to a
corresponding SQL statement that can be evaluated by the
RDBMS. Each activity is represented by SQL statements
in this ERM-based activity recognition framework. A SQL
statement has a WHERE clause that represents a set of
properties to define the activity. We represent the WHERE
clause using a binary tree. Each node in the tree has a pair of
sub-expressions and/or values. We define a set of rewriting
rules:

e— {e,N,e}
e — {v,N, e}
e — {v,N,v}
e— {e,N,e}

v = {2id(t), =, y.id(t)} (1)

v — {dist.La(z,y), >, dist.acc(z,y)}

v — {x.speed, >, s.speed_limit}

v = {z.pos, La_dist(z,y) < 0,y.pos}

.
where e, N, v represent an expression (or operand), an op-
erator (e.g., logical AND), and a value, respectively. An ex-

pression (e) can be replaced by a value, an operator, and an
expression: ({v,0,e}). A value can be replaced by a physi-
cally meaningful computation on the input tracklets and/or
geo-objects. For instance, a value (v) can be replaced by
identity comparison ({z.id(t),=,y.id(t)}).

Since we generate a logic statement corresponding to the
WHERE clause, the original problem, how to find a SQL
statement to represent an activity, is cast to how to find a
feasible set of rewriting rules and how to combine the rules.

This procedure is explained by a language generation (context-

free language) using the type-2 grammar (or context-free
grammar). A context-free grammar is defined by rules of
the form A — ~ with a nonterminal A and a string - of ter-
minals and nonterminals. This context-free languages are
the theoretical basis for the phrase structure of most pro-
gramming languages.

For simplicity, the right side of a rule containing value
(v) can be expressed by a string. For example, the rule
v — {x.pos, Lo_dist(z,y) < 6,y.pos} is implemented by
v — “((abs(T1.latitude — G .latitude) + abs(T1.longitude —
G1.longitude)) < 0.0001 x 5)”, where T is the first tracklet,
G is the first geo-object, and 0.0001 x 5 is a threshold con-
trolling the distance between the tracklet and the geo-object.
We use a set of different numbers for the thresholds (e.g.,
0.0001 x 1,0.0001 x 2,---) in our implementation so that
our framework automatically finds reasonable thresholds for
different types of activities.

4.2 Efficient random search with constraints

Our RDBMS (R), containing all extracted tracklets and
geo-objects, returns an answer (a query result, (r;)) given a
SQL statement (g;). We define a cost function (f := f(r;) =
f(gi|R)) for a SQL statement, which allows us to examine all
generated SQL statements. For efficient search, we propose
to use MCMC (Markov Chain Monte Carlo) algorithm along
with some techniques that reduce the search space.

4.2.1 MCMC (Markov Chain Monte Carlo)

The search algorithm is based on data-driven MCMC (Markov

Chain Monte Carlo) method [Gilks 2005], which searches for
an optimal SQL description to each input set of examples.
The MCMC sampling generates samples by our searching
heuristics and select a final one with the highest likelihood.
The cost of each SQL statement is a function of the output
results generated by the SQL and RDBMS.

4.2.2 Efficient search techniques

To reduce the size of the search space, we propose to use
several techniques in our search framework.

Exclusive rules. We randomly generate a SQL state-
ment from a set of rewriting rules. We begin from the start-
ing expression (e) and replace it with one of all possible rules
(e.g., e = (e,N,e) = ((z ==y),N,e)---. It is possible that
a single SQL statement contains repeated expressions (e.g.,
((zx == y),N,(x == y))) or meaningless expressions (e.g.,
((x ==v),U, (2! = y))). To avoid this redundancy or infea-
sible expressions, we define types of rules, such as identity,
geography, distance, turn, group exclusive rules that cannot
coexist in a single SQL, and sample only one of rules from
the same type of rules for a SQL statement.

We also use an integer counter representing the possible
number of occurrence in a single SQL statement. For in-

stance, the identity comparison between two tracklets (z.id(t) =

y.id(t)) should be used only once for the same pair of the
tracklets whereas expansion of a binary relation e — (e, N, €)
can happen multiple times (e.g., > 5).

SQL simplification and hashing. We define a specific
set of rewriting rules to simplify a generated SQL statement.
For instance, (1 N 1) is simplified by (1). We also use a
hash table to avoid repeating evaluation of the identical logic
representation.

4.3 Score function

We define a score function that maximizes the overlap
between the result (R) and positive examples (Pos) while
minimizing the overlap with the negative examples (Neg).

The overlap between (R) and (Pos) is defined by the ratio
between the number of samples (tracklets) in the intersec-

tion of (R) and (Pos): %. Similarly, the overlapping

(B) between (R) and (Neg) is defined as (1 — %). To

control generalization, we define a function that returns null
(¢) if the number of outputs is greater than a threshold:

_J0 if #(R)/4(5) > 0
8(c) = { M(R) else, (2)

where f(-) and X are the number of tracklets and a control
parameter, respectively. Finally, the score is defined as §(A+
B).

S. EXPERIMENTAL RESULTS

We have implemented our framework and validated the
approach on real data. In off-line processing step, we ex-
tracted tracklets with attributes and inserted them into a
RDBMS. We also extracted geo-objects using OpenStreetMap
from the corresponding area and inserted them into the
database. In on-line testing step, given input positive/negative
examples, our system runs the MCMC-based search module
with an in-memory RDBMS, and provides a visualization
result using Google Earth [Lisle 2006].

Data. We tested on a real dataset with simple motion
patterns (e.g., loop, 3-point-turn) and geospatial activities
(e.g., parking in a lot, leaving a parking lot, and in-n-out of
a parking lot). The dataset is a subset of tracking results
extracted from the CLIF 2006 dataset [AFRL 2006]. The
footprint of the area where we computed tracks is about
1 km?, and its duration is about 8 minutes. Each track
is on average 1 minute long. The total number of tracks
estimated in the sequence of interest is more than 8000.

We manually defined parking lots and inserted into the
database. Since a parking lot can have an arbitrary shape,
we used a set of points to cover an entire parking area. Each
point is stored with the parking lot ID in an off-line process-
ing step.

We used 32 rewriting rules including “Is a parking lot”
and “distance between tracklet and object”. Each distance
measure is represented with three levels of thresholds.

Finding valid sets. We tested whether our system re-
turns valid sets given few positive/negative examples. We
used a set of labeled data (“U-turn”, “loop”, “2-point-turn”,
“3-point-turn”, “entry”, and “exit” [Choi et al. 2012]) and
inserted all data into the database. We selected 2 ~ 3 typi-
cal positive examples and arbitrary selected (< 10) negative
examples.

We first selected 2 typical positive examples for “loop”
and selected 6 negative examples (2 “exit”, 3 “entry”, and

Figure 2: Examples of geospatial activities: “parking
in a lot (id=16)” (left) and “leaving a parking lot
(id=5987)” (right). The two tracks move toward
different directions: right-to-left (left) and down-to-

up (right).

Figure 3: Identified results as “parking in a lot” us-
ing our proposed method: a correct result (left) and
a wrong result (right). The car went to the lot and
came our from the lot (right).

1 “3-point-turn”). In this experiment, we generated a large
number of SQL statements, run each SQL, and evaluated
result without using the MCMC framework. Our system
generated 200K SQL statements and returned 58 ~ 93 valid
answers (0.029% ~ 0.047%). Although many valid answers
showed false alarms, we were able to reject these false alarms
by using the result as new negative examples.

Geospatial activities. Here, we did not explicitly de-
fine 3 activities, using SQL, before conducting experiments.
We first gathered a set of tracks that contain interactions
between a vehicle and a parking lot as shown in Fig. 2. As-
suming that “parking in a lot” is the target activity, we then
selected few positive examples (id = {16, 34, 515}) and neg-
ative examples (id = {907, 5987, 42, 2116}) as input to our
system.

Our system identified similar activities from entire database
(id = {3846, 155, 20, ...}). Fig. 3 (left) (id = 3846) shows
a correctly identified activity. However, the result included
some false alarms (id = {62, 632}) as shown in Fig. 3 (right)
(id = 632). These false accepted results “in-n-out of a park-
ing lot” activities.

The reconstructed SQL WHERE clause is

(((1T2.stop = 1AND

((abs(T2.latitude — G1.latitude)+

abs(T2.longitude — G1.longitude)) < 0.0004 x 2)) AN D
T2.frame — T1.frame > 30)AN D

(((T1.track_id = T2.track_id)AND

G1.type = 100))),

®3)

where G1.type = 100 means that the type of GIS object is
“parking lot”.

To show an interactive refinement, we added the wrong re-
sult (id = 632) as an additional negative example to the orig-
inal set. After adding new negative examples, our systems
returned improved results where all “in-n-out of a parking
lot” activities were classified as negatives (id = {62, 632}).
The updated SQL includes relations among three tracklets
whereas the previous SQL concerns only relations between
two tracklets.

We have also analyzed the descriptive power, the discrim-
inant power, and the computational complexity of our ap-
proach. It seems that our approach can be applied to large
scale real problems.

6. CONCLUSION

We presented an automatic system that learns symbolic
representations of activities from examples in Wide Area
Aerial Surveillance (WAAS). We validated our approach on
real tracking data with motion patterns and complex geospa-
tial activities. We will work on further validation with a
large database and complex activities. We will also show
the convergence property of our search framework.

Acknowledgment

This work was supported in part by grant DE-NA0001683
from the U.S. Department of Energy.

7. REFERENCES

[AFRL 2006] AFRL. 2006. Columbus Large Image Format
(CLIF) 2006 Dataset Overview,
https://www.sdms.afrl.af.mil. (2006).

[Agrawal et al. 1993] Rakesh Agrawal, Tomasz Imielinski,
and Arun Swami. 1993. Mining association rules
between sets of items in large databases. In ACM
SIGMOD Record, Vol. 22. ACM, 207-216.

[Choi et al. 2012] Jongmoo Choi, Yann Dumortier, Jan
Prokaj, and Gérard Medioni. 2012. Activity
recognition in wide aerial video surveillance using
entity relationship models. In Proceedings of the 20th
International Conference on Advances in Geographic
Information Systems. ACM, 466—469.

[Chorowski and Zurada 2011] Jan Chorowski and Jacek M
Zurada. 2011. Extracting rules from neural networks
as decision diagrams. Neural Networks, IEEE
Transactions on 22, 12 (2011), 2435-2446.

[Giannatos et al. 2012] Spyridon Giannatos, Yun-Gyung
Cheong, Mark J Nelson, and Georgios N Yannakakis.
2012. Generating narrative action schemas for
suspense. In Proceedings of the Artificial Intelligence
and Interactive Digital Entertainment Conference.

[Gilks 2005] Walter R Gilks. 2005. Markov chain monte
carlo. Wiley Online Library.

[Haklay and Weber 2008] Mordechai Haklay and Patrick
Weber. 2008. Openstreetmap: User-generated street
maps. Pervasive Computing, IEEE 7, 4 (2008), 12-18.

[Lisle 2006] Richard J Lisle. 2006. Google Earth: a new
geological resource. Geology today 22, 1 (2006), 29-32.

[Prokaj et al. 2011] J. Prokaj, M. Duchaineau, and G.
Medioni. 2011. Inferring tracklets for multi-object
tracking. In CVPRW. 37-44.

