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ABSTRACT 

Quality control for near-real-time spatial-temporal data is often 

presented from the perspective of the original owner and provider 

of the data, and focuses on general techniques for outlier detection 

or uses domain-specific knowledge and rules to assess quality. 

The impact of quality control on the data aggregator and 

redistributor is neglected. The focus of this paper is to define and 

demonstrate quality control measures for real-time, spatial-

temporal data from the perspective of the aggregator to provide 

tools for assessment and optimization of system operation and 

data redistribution. We define simple measures that account for 

temporal completeness and spatial coverage. The measures and 

methods developed are tested on real-world data and applications.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 

mining, spatial databases and GIS. 

General Terms 
Algorithms, Measurement, Timeliness, Completeness, Coverage, 

Reliability. 

Keywords 
Data Quality; Data Stream Processing, Load-Shedding, Spatial-

Temporal Data 

1. INTRODUCTION 
With the proliferation of sensor networks and the evolving 

“Internet of Things” as well as the ease of aggregating and 

redistributing data from multiple providers, increased attention 

must be given to quality control from the perspective of the 

aggregator and disseminator of data, and to the impact of quality 

control on their processes and products. Quality control measures, 

if included at all, are generally presented from the perspective of 

the original data provider with a focus on sensor accuracy, 

precision and other measures assessing the direct performance of 

the sensor. Spatial-temporal data, used in the absence of quality 

control measures, will yield questionable or poor results. We must 

investigate ways to derive quality control measures from provided 

data including sensor observations and timestamps which account 

for spatial and temporal aspects of applications. 

Our Contribution: In this paper, we present specific spatial-

temporal quality control measures, applicable to a wide variety of 

spatial-temporal provider data distribution mechanisms. We 

present practical methods using these quality control measures 

and demonstrate their utility. 

Scope: We do not attempt to correct erroneous data or improve 

collection at the source. Others state correctly that correction at 

the source is the best way to improve data quality. [1] Our 

objective in this paper is to make the most of the data from a 

provider as-is. We do not perform outlier detection or otherwise 

attempt to assess accuracy, precision or other direct quality 

measures on individual sensors. Instead we use provider quality 

control descriptors to label “bad” data. In separate work, we 

tackle to problem of identifying “bad” data. [2][3] Our interest is 

that of data aggregator/consumer, and we work within the 

relevant constraints of what can and cannot be controlled from 

this role. 

Outline: This paper is organized as follows: Section 2 provides 

background from a real life domain and related work, and sets the 

stage for our approach, which is presented in Section 3. In Section 

4 we present our experimental results and analyze performance. 

In Section 5 we present conclusions and future work. 

2. BACKGROUND 
Motivation: Since 2003, the Western Transportation Institute 

(WTI) at Montana State University (MSU), in partnership with 

the California Department of Transportation (Caltrans), has 

developed web-based systems such as WeatherShare 

(http://www.weathershare.org) for the delivery of information 

from Department Of Transportation (DOT) field devices and data 

from other public sources including current weather conditions 

and forecasts. These systems present traveler information to the 

traveling public and assist DOT personnel with roadway 

maintenance and operations. As such, it is critical that they 

display quality information.  

WeatherShare aggregates Caltrans RWIS data along with weather 

data from other third-party aggregation sources such as NOAA’s 

Meteorological Assimilation Data Ingest System (MADIS) 

(http://madis.noaa.gov/) to present a unified view of current 

weather conditions from approximately 2000 stations within 

California. There are several key questions regarding the use of 

the MADIS data: 1) What is the impact of using MADIS quality 

control measures to filter out bad data on the performance of our 

systems? 2) What schedule should we follow in downloading the 

MADIS data so-as to ensure levels of performance while 
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minimizing the amount of data consumed? 3) How does the 

MADIS data compare to that from other providers such 

MesoWest? Can we use MesoWest in place of MADIS, or should 

we continue to use both? In this paper we address the first two 

questions and lay the groundwork for answering questions such 

as the third, which will be addressed in future work. 

Literature Review: Data quality from the perspective of the 

consumer is presented subjectively in [4], as a comprehensive 

framework of data quality attributes. [5] presents a more recent 

survey and summary of data quality dimensions from the 

literature, and points out varying definitions for dimensions such 

as timeliness and completeness. [6] presents overlap and 

differences between Quality of Data and Quality of Information 

(QoI). While these papers are useful in general, they do not 

include specific, comprehensive measures that can be applied to 

our spatial-temporal situation. 

[7] provides a comprehensive review of spatial data quality, 

includes some treatment of temporal aspects, and distinguishes 

between internal and external quality. The authors also cite and 

expand on prior work which presented six characteristics of 

external quality for geospatial databases. [8] is relevant because 

it presents sources of uncertainty in spatial-data mining, and these 

sources can also be viewed as sources of data quality problems. 

The closest work in relation to ours is presented in 

[9][10][11][12], addressing to the transfer and management 

challenges of including quality control information in data 

streams and in optimal, quality-based load-shedding for data 

streams. Specific measures presented include accuracy, 

confidence, completeness, data volume and timeliness.  

None of these approaches directly addresses quality control for 

spatial-temporal data that is immediately applicable to our 

situation.  

3. OUR APPROACH 
We focus our approach on information available to the consumer 

of sensor data from a provider. While bounding the scope of our 

interests, we are cognizant of the complex system through which 

sensor readings are provided.  

3.1 Observations 
We first define two types of observations to distinguish between 

an (original) observation recorded directly by a sensor in the field 

and a (provided) observation from a provider. The key distinction 

is the timestamps, although conversion of units and format may 

yield further differences. We represent an original observation 𝑜 

as a 4-tuple, 𝑜 = (𝑠, 𝑡, 𝑙, 𝑣) = (𝑜𝑠, 𝑜𝑡, 𝑜𝑙 , 𝑜𝑣), consisting of the 

source (station/sensor), (original) timestamp, location, and a 

sensor value. We represent a provided observation 𝜔 as a 3-

tuple, 𝜔 = (𝜏, 𝑜, 𝜑, ) = (𝜔𝜏 , 𝜔𝑜 , 𝜔𝜑), consisting of the provider 

timestamp, an original observation, and quality control indicators 

for the observation from the provider. The provider timestamp 

indicates the time at which the observation is made available by 

the provider. The quality control indicators are a set of provider-

generated assessments of the quality of the observation. Specific 

definition of these indicators is provider-dependent. 

3.2 Provider Distribution Mechanisms 
We intend that our approach be applicable to a variety of general 

provider distribution mechanisms, whether they be push- or pull-

oriented relative to the consumer. This includes single site/sensor 

streams and aggregate streams, as well as files. As implied by our 

definition of provider observations, we require that a timestamp 

be included or readily attainable to indicate the precise time at 

which the provider makes each observation available. For 

instance, the timestamp could be the modification time for a 

published file. 

3.3 Quality Measures 
We first present quality measures relative to an individual site / 

sensor and extend these measures to form a basis for aggregates 

over time and space. In this paper, we use provide quality control 

indicators to assess accuracy. In separate work we present 

alternate approaches for assessment of accuracy. [2][3]  

First we define lag. We use a measure similar to timeliness in [9] 

with the caveat that we are principally interested in lag relative to 

a data provider. Lag is the difference between the time when an 

observation occurs and it becomes available from the provider. 

For a provided observation 𝜔 = (𝜏, 𝑜, 𝜑, ) where 𝑜 =
(𝑜𝑠 , 𝑜𝑡, 𝑜𝑙 , 𝑜𝑣), we define  

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑙𝑎𝑔(𝜔 ) =  𝜏 − 𝑜𝑡.  

The second measure we define is temporal completeness, which 

indicates how well a time interval is covered by observations. 

Window completeness is defined in [9] and [10] as the ratio of the 

number of “originally measured, not-interpolated” values to the 

containing (time) window size. For example, a station might 

provide 4 observations per hour. This isn’t very informative – the 

result for a burst of 4 successive observations one minute apart 

within an hour is the same as that for 4 observations spaced 15 

minutes apart. Instead, we define (temporal) completeness using 

lag. Let 𝑂 be a set of original observations. We define the current 

observation at time 𝑐 as  

𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑂, 𝑐 ) = arg max 𝑜∈𝑂 {𝑜𝑡: 𝑜𝑡 ≤ 𝑐}.  

If we assume a time interval 𝐼, then we define: 

𝑙𝑎𝑔_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠(𝑂, 𝐼 ) =
∑ 𝑙𝑎𝑔(𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑂, 𝑡), 𝑡)𝑡∈𝐼

|𝐼|
 

This measure is similar to granularity in [9]. Alternative measures 

such as a sum or maximum and more elaborate measures using 

decay and autocorrelation are possible. These measures are more 

informative than a simple rate because they provide indications 

of the age of observations over time. Our measure is defined in 

terms of sets of observations and can be applied to sets that are 

restricted based on provider quality control indicators. For 

instance, we may restrict our attention to observations that have 

fully “passed” provider quality control. Doing so can help us 

assess the impact of provider quality control. 

Last, we define (spatial) coverage. [7] restates a characteristic 

from Bedard and Valliere where coverage is a measure that 

“evaluates whether the territory and the period for which the data 

exists, the ‘where’ and ‘when’ meet user needs.” This is important 

because it addresses both spatial and temporal aspects. 

We can compute lag and completeness for observations from 

locations within a cell in a spatial grid and define aggregates that 

include both spatial and temporal aspects of our data.  

Assume a time interval 𝐼 and a geographic area of interest 𝐺. 

Assume a partition {𝐺1, 𝐺2, … , 𝐺𝑛} of 𝐺. Let 𝑂 be a set of 

observations from this geographic region. Partition 𝑂 as 𝑃 =
{𝑂1, 𝑂2, … , 𝑂𝑛}: 𝑂𝑖 = {𝑜 ∈ 𝑂: 𝑜𝑙 ∈ 𝐺𝑖}. Then measures such as 

the following can be used to describe spatial coverage relative to 

the spatial partition {𝐺1, 𝐺2, … , 𝐺𝑛}: 

𝑙𝑎𝑔_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑃, 𝐼, 𝑂) =
∑ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠(𝑂𝑖 , 𝐼 )𝑛

𝑖=1

𝑛
 



𝑙𝑎𝑔_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑃, 𝐼, 𝑂) = 𝑚𝑖𝑛𝑖=1
𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠(𝑂𝑖 , 𝐼 )  

𝑙𝑎𝑔_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑃, 𝐼, 𝑂, 𝑐) = 

|{𝑖: 𝑖 ∈ {1, … , 𝑛}, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠(𝑂𝑖 , 𝐼 ) > 𝑐}|  

4. EXPERIMENTAL RESULTS 

4.1 Data 
We test our measures by direct application to several challenges 

we face on the various Weathershare projects, using data from 

MADIS.[13]  

MADIS stores files by hour – all observations for a given hour go 

into the same file. Each file contains only one copy of an 

individual observation, so there is no duplication within the files. 

Subsequent file versions contain observations that were included 

in prior versions as well as new observations, resulting in 

duplication. MADIS provides multiple levels of quality control 

checks. [14][15] A single original observation may result in 

multiple provided observations corresponding to times at which 

the containing hourly file is updated. The quality control value 

may change as subsequent quality control checks are applied 

We restrict our attention to a grid consisting of fifty-six 1° 

Latitude x 1° Longitude cells which overlap with California. This 

grid includes cells overlapping the Pacific Ocean, Mexico, 

Nevada and Arizona. A finer grid or non-uniform partitions could 

also be used. There are sensors located in all of these cells. We 

use air temperature for this investigation. We further restrict our 

attention to the time period between 3/5/2014 16:22 GMT and 

3/17/2014 17:19 GMT. During this period, we downloaded and 

stored every MADIS file from the Mesonet subset as the file was 

updated, and kept separate copies corresponding to each update. 

4.2 Use of Quality Control Measures 
For each cell in the grid, we compute completeness as the average 

lag (in seconds) of data within the cell over all time units within 

the period for which we collected data: 

𝑙𝑎𝑔_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠(𝑂, 𝐼 ) =
∑ 𝑙𝑎𝑔(𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑂, 𝑡), 𝑡)𝑡∈𝐼

|𝐼|
 

We compute over the set of all observations within a cell as if they 

are from a single source corresponding to the cell. The most 

recent observation from any site within the cell will be counted as 

the current observation for the cell since we desire to cover the 

map in a fashion that gives equal attention to each cell, and does 

not over-represent cells containing many sensors. We assess 

coverage using summary statistics over all the cells. Data is 

analyzed for all data versus QC-passed data. 

4.3 Results 

4.3.1 Impact of Provider QC 
Let Ω represent a set of provider observations 𝜔 satisfying a set 

of restrictions on location and time. Then let Ω𝑄𝐶 represent the 

subset of Ω that has passed all provider quality control checks.  

If we use all data as-is, including data that has not passed quality 

control, 75% of the cells show an average lag of less than 15 

minutes (900 seconds). The greatest average lag is nearly 45 

minutes (2700 seconds). If we only use data that has passed 

quality control, 75% of the cells show an average lag no more 

than 24 minutes (1440 seconds). The greatest average lag is 66 

minutes (3960 seconds). In general, there is a 10 minute or greater 

additional lag for using data that has passed provider quality 

control versus using all data. This lag is suspected to be due to 

batch processing of quality control. In the extreme case (41 

minutes), the lag is likely attributable to a higher proportion of 

bad data in that cell and/or delayed communication. 

Recognizing that dependency on provider quality control results 

in a 10 minute or greater lag penalty, it does seem best to 

implement quality control mechanisms in our system so long as 

they can be implemented in a timely manner. 

4.3.2 Coverage of Maps / Gap Analysis 
We can look at the results from individual cells to better assess 

the timely coverage of the map and determine where gaps in 

coverage exist. For both the Ω and Ω𝑄𝐶 datasets there are eight 

outliers greater than Q3 +1.5 IQR. Seven of these occur in low-

population desert areas, with five overlapping the Nevada border 

near Death Valley, and another two in the Southern-most portion 

of California, east of Los Angeles and San Diego. One cell 

corresponds to a low-population coastal area approximately half 

way between San Francisco and Los Angeles. The latter is also 

an outlier in terms of the difference between the Ω and Ω𝑄𝐶 

averages, with a difference of over 41 minutes. This extreme 

value indicates that the cell does not include sensors that report 

observations passing quality control in a timely manner, due to 

bad data and/or slow reporting. Awareness of this deficiency 

allows us to better focus on things we can control such as our 

download schedule. 

4.3.3 Download Schedule 
In Figure 1, we show lag by minute (average over all cells) for 

both the Ω and the Ω𝑄𝐶 data sets. There are several apparent 

patterns. For the Ω dataset, the least lag occurs at 8 minutes after 

the hour. As a result, if we were to make just one download, it 

would be optimal to do this at 8 minutes after the hour. There are 

other times with low lag including 23, 38, and 54 minutes after 

the hour. And there are further good times including 44, 59 and 4 

minutes after the hour and several others, with an apparent 15 

minute period. We attribute this pattern to different schedules for 

data import, batch output and other batch processing. For the Ω𝑄𝐶 

data set, the pattern is clearer, and doesn’t correspond exactly to 

that for the Ω data set. 4, 20, 33 and 49 yield local best times. We 

speculate that there is a batch process that runs approximately 

every 15 minutes, and an optimal download schedule should take 

this into account. See Figure 1. 

 

Figure 1: Average Lag_Coverage at each Minute During the 

Hour 



For the 𝛀 data set, it is debatable whether more than four 

download times would improve coverage sufficient to merit the 

added bandwidth. For the Ω𝑄𝐶 data set, the optimal schedule for 

four downloads yields coverage that is only 45 seconds greater 

than the best possible, yet it requires less than half the bandwidth. 

There is little reason to do more than four downloads per hour, 

since the additional bandwidth required to do so results in little 

improvement in Lag_Coverage. See Figure 2.  

 

Figure 2: Lag_Coverage versus Download Size for Optimal 

Download Schedules 

By restricting ourselves to only the file for the current hour and 

the prior hour we can get comparable results. For the Ω dataset, 

the {8,23,38,54} schedule yields a Lag_Coverage of 1082.2 

seconds, which is less than 2 seconds greater than that for the 

same schedule when downloading all new files at those times. 

However, the overall download size will be only 4.9 GB, as 

compared to 27.8 GB. For the Ω𝑄𝐶 dataset, the {4,20,33,49} 

schedule yields a Lag_Coverage of 1517.2 seconds, which is also 

less than 2 seconds worse than the same schedule when 

downloading all new files at those times.The download size is 4.2 

GB compared to 26.9 GB. These results are even better when 

compared against downloading all files at all times, which would 

consume 67.8 GB.  

5. CONCLUSIONS AND FUTURE WORK 
The simple measures we present in this paper were demonstrated 

as useful in helping to solve complex problems related to 

bandwidth/load-shedding relative to visual coverage of a map 

with data acquired from a third-party provider. These measures 

help to reveal underlying patterns related to acquisition, 

processing and provision of data by the provider. These measures 

can be implemented in a simple manner and are applicable to a 

wide variety of situations for consumers of spatial-temporal data 

from third-party data providers. 

In future work we will use these measures to analyze data from 

multiple providers with overlapping data. Given two data 

providers with similar and overlapping but non-identical 

offerings of spatial-temporal data, we are interested in 

determining if data from one provider can be used in lieu of that 

from the other or if both are necessary. 

We also intend to investigate methods for detecting bad metadata. 

In terms of spatial and temporal attributes, we will identify data 

for which the timestamps or the locations are incorrect. The 

approaches we used in this paper, combined with methods we 

developed in [2] and [3] provide a foundation we can build upon 

for this task.  
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