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ABSTRACT
We describe a method that predicts the location of user-generated
content using textual features alone. Unlike previous methods for
geotagging text documents, our proposed method is not sensitive
to how we discretize space. We also discover that spatial resolu-
tion has an impact on the prediction accuracy, which allows us to
trade-off the spatial resolution of the predicted location against our
confidence about its accuracy. Our method can be used to estimate
the error in document’s predicted location, enabling us to filter out
poor quality predictions. We evaluate the proposed method exten-
sively on user-generated content collected from two different social
media sites, Flickr and Twitter. Our evaluation examines its perfor-
mance on the geotagging task and with respect to different parame-
ters. We achieve state-of-the-art results for all three tasks: location
prediction, error estimation and result ranking and also provide a
theoretical explanation of the effect of spatial resolution factor on
geotagging accuracy. Our findings provide valuable insights into
the design of geotagging systems and their quality control.
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1. INTRODUCTION
We describe a method that places on the map short text docu-

ments, such as photos and posts shared in social media, by predict-
ing their location and also estimates the quality of the prediction by
giving its confidence and prediction error. The method starts by es-
timating the spatial probability density of document terms using a
training set of geotagged documents. Then, given a new document,
it predicts as its location one that maximizes the confidence of the
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prediction. We show that this method is as simple as the popular
alternative, Naive Bayes, but leads to better performance on the lo-
cation prediction task and moreover, allows us to directly estimate
the quality of predictions.

Previous methods used to automatically identify the location of
text documents fall into two main classes. The first uses gazeteers
to extract place names from text. The second class of methods
for geotagging documents uses statistical models, such as classi-
fication, to associate terms with places. This approach can more
accurately estimates geographic location of social media content
than the gazetteer-based approaches [5]. However, one challenge
faced by these methods is that of scale: changing scale can signif-
icantly affect spatial statistics and classification results. While a
variety of solutions were proposed (e.g., using entropy at all spa-
tial scales [6]), they are often ad hoc or limited by the assump-
tions they make (e.g., assuming a specific form of the probability
distribution). Our approach addresses these challenges with non-
parametric estimation of spatial density distribution.

2. PREDICTION CONFIDENCE
Given a new document with some textual features or terms, such

as a tag ‘california’, we can predict its location and moreover esti-
mate the quality of the prediction. We integrate PDF of the features
over some region of radius r, and return as document’s predicted
location the center of the region that maximizes this value, which
we call confidence. The radius r controls the error of the predic-
tion and gives its spatial resolution. The confidence represents our
certainty about the prediction at that spatial resolution, i.e., the like-
lihood that document’s true location falls within the region of ra-
dius r centered on the predicted location. There exists a trade-off
between resolution scale and the degree of confidence. We can in-
crease the confidence of the prediction by increasing the resolution
scale r. For example, we can increase confidence to 100% by set-
ting r very large.

To estimate confidence from discrete samples, we calculate the
likelihood of finding a sample within a circle of radius r (spatial
resolution) by counting the fraction of training samples that fall
within the circle.

Confidence(x, r, w) = Nw(x, r)/Nw

Here, Nw is the number of samples containing a feature w, and
Nw(x, r) is the number of samples with a feature w within cir-
cle of radius r centered at location x. Note that we can raise the
confidence by increasing the spatial resolution: since Nw remains
constant, but Nw(x, r) increases monotonically with r.

Figure 1(a) illustrates the calculation. Here, red points are sam-
ples of feature w1. Given a new document with a single w1, the
confidence of the predicted location x at the specified spatial res-
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Figure 1: Illustrations of confidence estimation from (a) sam-
ples and from (b) the probability density function.

olution is 40%, which is the fraction of training samples that fall
within the circle centered at x.

In practice, the training set of documents containing terms W ,
e.g., photos with tags {‘california’,‘john’,‘2007’, ‘iphone’,‘hbd’},
may be very sparse. As a result, we may not have enough samples
to predict their location with high confidence. Instead, we assume
that we can approximate the probability density function of terms
by combining the individual PDFs of each term. If we know the
true PDF that generated the document with terms W , we can com-
pute the prediction confidence at location x with spatial resolution
r as:

Confidence(x0, r,W ) =

∫
R

fW (x) dx. (1)

Here x0 is the location at which we want to measure prediction con-
fidence, and r is the given spatial resolution. The function fW (x)
is the probability density function of documents with terms W . A
detailed discussion of fW (x) estimation is provided in the next sec-
tion. The region R is the set of locations with distances to x0 that
are less than r: R = {x ∈ X|dist(x0, x) ≤ r}.

Another view of confidence, Confidence(x0, r,W ), is that it
is the probability mass of fW (x0) within a circle of radius r cen-
tered at x0. Depending on the specific density distribution, the pre-
dicted location will vary with r. We illustrate this point with a one-
dimensional example in Figure 1(b). The example can be easily
generalized to two-dimensional geographic space.

The predicted location is the center of a segment of length 2r
that gives the highest confidence, i.e., area under the PDF curve
in this one-dimensional example. The predicted location depends
significantly on the choice of r in this example. When r is small,
e.g., r = 0.01, we will predict location at x = 3, because this
location results in the largest probability mass at that value of r.
However, when r = 1, location x = 0 is preferred over x = 3,
because the probability mass at that location (black area) is larger
than at x = 3 (red area).

We calculate the integral of fW (x) numerically using the Rie-
mann sum. The accuracy of the sum depends on the grid size pa-
rameter used to discretize space. We empirically investigate this
dependence in Section 3.

2.1 Confidence-based Location Prediction
The most likely location of a document containing features W is

the location x that maximizes confidence:

xpredict = argmax
x∈X

Confidence(x, r,W )

The set X of possible locations can be computed by discretizing
space into small grids, or we can assume that X is a set of locations

of training samples of terms W . The confidence can be computed
from integral of fW (x) described in the previous section.

In practice, we do not know the true density fW (x). We can only
approximate it. Below we describe a simple method that is easy to
implement and relatively fast in practice. Improving accuracy of
PDF estimation is the subject for future research. There are two
important choices for estimating fW (x). The first choice is how to
model the combined PDF of all terms w ∈ W . We use the mixture
model to approximate fW (x) as the weighted sum of individual
PDFs fw(x):

fW (x) =
∑
w∈W

λwfw(x), (2)

where λw is the weight of term w, which represents the impor-
tance of that term. For example, it is obvious that the term ‘califor-
nia’ should have the highest weight in a photo tagged {‘california’,
‘iphone’, ‘ramen’}, because it is the most geographically indicative
term. Thus, we can incorporate the feature selection into this model
by giving such terms a higher weight. For simplicity, in this section,
we assume that all terms are weighted equally, and λw = 1/|W |.
The second modeling choice is how to describe, fw(x), the spatial
distribution of each term w. In this work, fw(x) is estimated by the
histogram method.

2.2 Prediction Error
When placing documents on the map, it is useful to give the er-

ror associated with the predicted location. We employ the confi-
dence prediction framework to estimate the location error. First,
we estimate the probability mass around the predicted location, as
described above. If the predicted location has moderate probabil-
ity mass within a small spatial resolution r, it is likely that this
predicted location has low error. If another location has the same
probability mass but at a larger spatial resolution, we can infer that
this prediction has a higher error than the first prediction.

We can dynamically adjust the resolution scale to optimize pre-
diction confidence. We start by setting the error to minimum spa-
tial resolution r. If the probability mass at this error bound is
higher than threshold, we report the estimated error as r. If not, we
increase the spatial resolution until the probability mass exceeds
threshold. The confidence error estimation method is:

x = predicted location
e = estimated error
while Confidence(x, r,W ) < θ do

e = r
r = r + ∆

end while
The estimated error increases at every iteration until the confi-

dence value exceeds the threshold. The algorithm is guaranteed
to terminate if θ < 1 because Confidence() is a monotonically
increasing function of r and always reaches 1 for large enough r.

2.3 Adaptive Resolution Prediction
The most appropriate level of granularity at which a document

should be localized is generally not known beforehand and must be
estimated [7]. For example, if only tag available for a document
is ‘lax’, we should set the spatial resolution, r, to a landmark level
instead of a city level. Adaptive resolution prediction provides a
solution to this problem by searching for the smallest spatial reso-
lution that make the prediction confidence high enough:

x = predicted location
r = spatial resolution
while Confidence(x, r,W ) < θ do

x = argmaxx∈X Confidence(x, r,W )



r = r + ∆
end while
Weighted confidence prediction:We can improve the performance

of the location prediction algorithm by giving more weight to terms
that are more predictive of a document’s location. One popular
procedure for identifying place names is to measure how well-
localized the probability density function fw(x) is. We can esti-
mate how well-localized the term w is by calculating the uncer-
tainty of x using continuous entropy:

Hw(x) =

∫
X

f̂w(x) ln f̂w(x) dx. (3)

As in any nonparametric smoothing application, the statistical prop-
erties of estimators such as f̂w(x), dependent on the choice of the
bandwidth parameter h, and will, in turn, affect estimated entropy.
An inappropriate value of h may lead to an estimator with a large
bias or variance or both. The optimal bandwidth can be obtained
by using the Least Squares Cross Validation method (LSCV) [8].

We integrate feature selection into the confidence prediction frame-
work called weighted confidence prediction. Instead of using uni-
form weights in the mixture model Eq. 2, we give high entropy
features (above some threshold) a low weight, because they are
probably not indicative of places.

3. EVALUATION
We used Flickr and Twitter data to evaluate the performance of

the proposed geotagging method. The Flickr data came from the
placing task competition in the MediaEval2013 workshop. 1 We
used the third test set with 53,000 documents in our experiments.
We filtered out documents that did not contain any textual informa-
tion, because our method does not have anything to go on in pre-
dicting their location. After filtering, there were 45,742 documents
in the test set. The Twitter data set contained tweets we collected
using twitter4j, a Java library for the Twitter API. After filtering,
there were 44,289 documents in the Twitter test set

We evaluate how well the proposed location prediction method
performs with respect to different parameter values and also how
accurate its predictions are compared to the baseline. The five
experiments presented below summarize our findings. All experi-
ments were carried out on both Flickr and Twitter data sets. Follow-
ing convention [2], we report the bandwidth and spatial resolution
(error bound) in the units of degrees and location errors in kilome-
ters. While the spatial extent of one degree is location-dependent,
for simplicity we take it to be approximately 100km.

The first experiment tested the effect of the histogram discretiza-
tion parameter, the bandwidth h, on the accuracy of the proposed
method. We hypothesize that bandwidth does not affect prediction
accuracy very much. As long as bandwidth is relatively smaller
than the spatial resolution scale r, predictions made using differ-
ent bandwidths should be approximately the same. This is because
bandwidth only affects the value of the Riemann sum used to cal-
culate the confidence, not the predicted location itself.

The results confirm our hypothesis. At the r = 100km error
level, prediction accuracy is 0.6 and approximately same regardless
of grid size. The result can be interpreted that the algorithm can
predict 60 of 100 documents with less than 100km error. Below the
50km error level, finer bandwidths produce more accurate results,
probably due to better accuracy of the Riemann sum. Thus, we
can choose h → 0 to obtain a good accuracy at small level without
sacrificing the accuracy at larger error bounds. However, small grid

1http://www.multimediaeval.org/mediaeval2013/

size can increase computational time due to larger search space and
Riemann sum computation.

In the second experiment we test the effect of spatial resolution
of the prediction on its accuracy. We hypothesize that we can maxi-
mize accuracy at different spatial granularity levels by changing the
error bound r. There is no optimal error bound for the prediction:
for example, we may want to sacrifice accuracy at larger spatial
resolutions to obtain better accuracy at finer resolutions. Theoret-
ically, the error bound r leads to the maximum accuracy at that
resolution, because we are maximizing confidence, or the mass of
the PDF in a circle of radius r. Results in both data sets confirm our
hypothesis about the relationship between the spatial resolution, r,
and prediction accuracy at some error levels. Thus, if we want more
accurate predictions at a finer-grained level, for example, at a city-
level rather than country-level, we should set the error bound lower.
For example, to maximize prediction accuracy at 10km, we have to
set the spatial resolution to r = 0.1◦ (10km). However, if we are
interested in getting the country-level of the prediction right, we
should set the error bound at a larger value, e.g., r = 5◦ (500km).

In the third experiment we compare variations of the proposed
location prediction method to the Naive Bayes (NB) baseline. Specif-
ically, we compare the fixed error bound confidence-based location
prediction method , to term-weighted, to adaptive confidence pre-
diction with the baseline. The baseline has two parameters: grid
size and the smoothing parameter. We set the grid size to 1◦ × 1◦

and smooth densities using the add-one method. The fixed confi-
dence prediction has two parameters: bandwidth, h, which we set
to 0.01◦, and the spatial resolution, r, which we set to r = 0.5.

The weight confidence prediction has two additional parameters:
weights and weight threshold. We use weight to wi = 1 to high
entropy features and other features wi = 2. We rank the features
according to their entropy and set the first 20% to be high entropy
features in both data sets. Summation of weights in a document is
then normalized to be 1.

The adaptive confidence prediction has three parameters: band-
width (h), maximum spatial resolution (rmax) and confidence thresh-
old (θ). We set bandwidth, h, to 0.01◦, the maximum spatial reso-
lution to rmax = 0.5, and confidence threshold to θ = 0.2.

Figure 2 reports results of this experiment in the two data sets.
The proposed confidence prediction method outperforms the base-
line significantly on Flickr data at all granularity levels. For Flickr
data, the accuracy of the normal confidence prediction is signifi-
cantly higher than baseline. The weighted mixture model leads to
only a slight improvement. A possible reason for this is that non-
place tags are uniformly distributed, reducing their weights may
not change the mode’s location. However, these tags can change
the calculated confidence values.

Next, in the forth experiment , we compare error estimates pro-
duced by the Naive Bayes’s top n method (the variation method) [4]
and the proposed method. We use the Kendall-Tau correlation sug-
gested in [4] to compute the correlation between the actual errors
the estimated errors. Higher correlation means better estimation.
Alternatively, we can view error estimation as a decision problem,
i.e., decide whether location error is lower than a specified bound
or not? We set the boundary decision to the median of each method
to have the same number of positive and negative classes. Accu-
racy [1] is used to evaluate performance.

For Flickr data, the proposed confidence prediction framework
is better than baseline according to both metrics. Error estimation
can be used to rank the quality of prediction results. In some sit-
uations, we may improve prediction quality by sacrificing cover-
age, in other words, by filtering out documents whose locations we
cannot precisely predict, we retain a small fraction of documents
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Figure 2: Evaluating the performances of four different meth-
ods: normal, weight, adaptive confidence prediction and add-
one smoothing Naive Bayes classifier on the prediction error

Method Data Set Correlation Accuracy Median(km)
Variation Twitter 0.2460 0.5033 56
Confidence Twitter 0.5528 0.8067 33
Weight Twitter 0.5556 0.8097 33
Variation Flickr 0.2912 0.5066 102
Confidence Flickr 0.3864 0.6789 34
Weight Flickr 0.4221 0.6797 33

Table 1: Evaluating the performances of three different meth-
ods: normal confidence, weight confidence and Variation
method on the predicted error estimation task. The Kendall-
Tau correlation and accuracy metric is used to evaluate the per-
formance.

whose predicted locations we believe to be close their actual loca-
tions. In the final experiment, we evaluated this aspect of the error
estimation task.

We sorted locations predicted by each method based on their es-
timated errors. We sorted predictions in an ascending order of their
estimated errors, with lowest error predictions at the top of the list.
Then, we select the top 75% results to see the performance im-
provements. The baseline variation has the lowest improvement
on both data sets. The state-of-the-art Probability ratio [3] has a
comparable performance to the proposed method in both data sets.

4. CONCLUSION
In this paper, we propose a framework for predicting the loca-

tion of a document that allows us to estimate the confidence of
the prediction and its error. This allows us to determine whether
the document is placable on the map or not: if the confidence is

Method Data Set Acc Acc 75% Improve
Variation Twitter 0.5805 0.6676 15.0
PR Ratio Twitter 0.5805 0.7305 25.8
CP Twitter 0.5892 0.7501 27.3
Weight CP Twitter 0.5892 0.7508 27.4
Variation Flickr 0.4990 0.5617 12.5
PR Ratio Flickr 0.4990 0.6028 20.8
CP Flickr 0.6420 0.7719 20.5
Weight CP Flickr 0.6546 0.7983 21.9

Table 2: Comparing the performances of four different meth-
ods: normal confidence, weight confidence, Variation and
Probability Ratio method on the result ranking task. All ac-
curacies are reported at the error level = 100km. Acc column
reports the accuracy before filtering. Acc75% column reports
the accuracy after filtering 25% of results.

low, and error is high, then the document cannot be accurately geo-
tagged. Our framework also allows us to predict at different levels
of spatial granularity. Using calculated confidence values, we can
adaptively find the granularity level appropriate for a given docu-
ment’s features.

Confidence prediction framework shows promising results . We
evaluated its performance in two different social media data sets
on three different tasks: location estimation, error estimation and
result ranking. We showed that the proposed method outperforms
the baseline on all three tasks.
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