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ABSTRACT
OpenStreetMap (OSM) has been demonstrated to be a valu-
able source of spatial data in the context of many applica-
tions. However concerns still exist regarding the quality of
such data and this has limited the proliferation of its use.
Consequently much research has been invested in the devel-
opment of methods for assessing and/or improving the qual-
ity of OSM data. However most of these methods require
ground-truth data, which, in many cases, may not be avail-
able. In this paper we present a novel solution for OSM data
quality assessment that does not require ground-truth data.
We consider the semantic accuracy of OSM street network
data, and in particular, the associated semantic class (road
class) information. A machine learning model is proposed
that learns the geometrical and topological characteristics
of different semantic classes of streets. This model is sub-
sequently used to accurately determine if a street has been
assigned a correct/incorrect semantic class.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks; I.5.4 [Artificial
Intelligence]: Pattern Recognition—applications

General Terms
Reliability, Verification

Keywords
OpenStreetMap, Data Quality, Street Network Analysis, Ma-
chine Learning

1. INTRODUCTION
The OpenStreetMap (OSM) project is perhaps one of the
most successful examples of crowdsourcing in the spatial do-
main. Although some parts of the OSM database have been
mass imported from sources, such as the TIGER database of
the US Census Bureau, most of the data is produced by vol-
unteers with little or no professional skills in effective map-
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ping practices. This raises some genuine concerns regarding
the quality of this data and has limited the proliferation of
its use.

Streets comprise the single most important feature in the
OSM database. Street network information is fundamental
for many applications such as navigation, network analysis,
and map generalization, just to name a few. However, the
use of street network data in such applications is only pos-
sible if the associated semantic information is correct. The
basic semantic information of a street is its class such as a
motorway, a primary road, or a residential road, etc. This
information indicates several things about a street: its pos-
sible neighborhoods, its permissible driving speeds, and the
level of map generalization at which it should be displayed.
Semantic information in OSM is recorded using tags. An
OSM tag consists of a key=value pair; here, key represents
some feature and value details this feature. In particular,
the key ‘highway’ is commonly used to describe the class
of a road (e.g., highway=residential). The main objective
of the presented study is to assess the quality of the val-
ues associated with the highway key in OSM street network
data.

Quality assessment is an important research problem: know-
ing that the data is of high quality allows people to use
it with confidence, while knowing that it is of poor qual-
ity warns them of potential risks. Most of the current ap-
proaches for OSM data quality assessment [5, 6] require ref-
erencing to ‘accurate’ ground truth, which may be unavail-
able. And even if the ground truth is available, an effective
comparison is difficult because both datasets must first be
registered, that is, correct correspondence between objects
must first be determined before the objects in question can
be compared [8]. Moreover, most of the current approaches
focus on assessing the geometric accuracy and completeness
of OSM data and little has been done to assess its seman-
tic accuracy. In this paper, we propose a fully automated
method for assessing the semantic accuracy of the values as-
sociated with the highway key of OSM street networks which
does not require referencing to ground truth.

In this work we consider connected sets of street segments
of uniform semantic class where we define a street segment
as the section of a street between two intersections, or be-
tween a dead-end and an intersection. We hypothesize that
the highway key value for street segments is implicitly rep-
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Figure 1: A section of street network from OSM London. (a) Five different road classes can be seen:
secondary(red), tertiary(magenta), residential(green), footway(yellow), service(cyan). (b) Two connected
sets of street segments, one each from tertiary and residential classes have been redrawn for comparisons.

resented in these sets. Figure 1(a) shows a small part of
the London OSM street network consisting of several road
classes each represented using a different colour. Several
simple distinguishing characteristics of these road classes are
evident. For example, in Figure 1(b), we compare two con-
nected sets of street segments belonging to two different road
classes: tertiary (magenta) and residential (green). The con-
nected set of segments corresponding to the residential class
has more dead-ends as compared to the set corresponding
to the tertiary class. Similarly, the overall linearity for the
tertiary set of street segments is much higher than the resi-
dential set where we define linearity as the degree to which
the street segments in question have a shape similar to that
of a straight line. Furthermore, the residential set is only
connected to the tertiary set whereas the tertiary set is con-
nected to both the residential and secondary sets of street
segments. This example suggests that the characteristics of
connected sets of segments of uniform class vary as a func-
tion of class.

The research question we ask is: Can we effectively mea-
sure the aforementioned characteristics and subsequently
use them to determine street classes? As described above,
the characteristics enabling distiction between road classes
are a function of a connected set of street segments where
all elements of a particular set have the same semantic class.
However, such information relating to semantic class is im-
plicitly represented in the street network. Therefore, the
measurement of such characteristics requires two steps: firstly,
determining the sets which are implicitly represented in the
street network and secondly, measuring the characteristics
of these sets that allow us to differentiate between differ-
ent semantic classes. In order to extract connected sets of
streets of uniform class we construct a multi-granular repre-
sentation of the street network [7]. Subsequently we extract
characteristics from these sets which allow us to discrimi-
nate between different classes. Later, we develop a machine
learning model to learn the characteristics specific to various
road classes. Finally, we use this model to assess the values
associated with the highway tag in the OSM database. Our
results show that while it is easy to learn and distinguish
between certain classes of roads, there are some overlapping
classes (i.e. roads that cannot be distinguished from each
other using the proposed characteristics).

2. STREET NETWORK REPRESENTATION
Data representation is often considered as the first step to-
wards knowledge discovery. Street networks are usually rep-
resented using a graph. The two predominant graph based
street network representations are the primal and the dual
forms [2]. We are interested in inferring the road class asso-
ciated with connected sets of street segments by analysing
the geometrical and topological properties of these sets. The
primal representation provides such properties but only with
respect to single street segments. On the other hand, the
dual representation provides us the desired sets but does
not represent such properties. Therefore, it is necessary to
construct and link both representations. An approach for
achieving this was presented by Jilani et al [7] in the form
of a multi-granular representation for street networks. This
is essentially a two-layered representation which combines
both the primal and the dual forms of street network rep-
resentations. The criterion for set identification of street
segments follows a named-typed approach: adjacent street
segments having same name and class are identified as sets
of street segments for the dual graph. At the basic level
of granularity, in a multi-granular representation, lies a pri-
mal graph. On top of this primal graph rests a dual graph.
Adjacent street segments having same name and same road
class correspond to a single vertex in the dual graph. Every
vertex of the dual graph is a subgraph in itself. All the spa-
tial properties of the entire network are retained. Moreover,
the spatial properties for connected sets of street segments
become explicit in this representation. While the topological
properties of a connected set can be extracted from the top
layer (dual), the geometric properties can be obtained by
referring to the primal subgraph structure contained within
the vertices of the dual graph.

Having obtained the multi-granular representation for a street
network, as discussed above, we extract a set of geometri-
cal and topological characteristics for the corresponding sets
of street segments that are representative of their semantic
class. In the following section we describe the specific char-
acteristics extracted.

3. ROAD CLASS CHARACTERISTICS
The road class characteristics used in this study can be di-
vided into two broad categories: geometrical and topolog-



ical. The choice for these characteristics is based mainly
on our observation, domain knowledge, and computational
efficiency.

3.1 Geometrical Characteristics
The geometrical characteristics of a road include its shape,
size, and other spatial properties such as absolute and rela-
tive positions of various road segments. In order to obtain
this information for sets of street segments we extracted four
characteristic using the multigranular street network repre-
sentation. These include length, number of dead-ends, num-
ber of intersections, and linearity.

Length: Length is a fundamental spatial property and is an
important distinguishing characteristic between road classes.
Some classes such as residential roads and footways tend to
be much shorter in length than others such as motorways,
trunk roads etc.

Number of dead-ends: A street with a dead-end or cul-
de-sac provides essentially only in/out access but no through
traffic. Cul-de-sacs have been studied from urban design and
traffic engineering perspectives [3] and can suggest informa-
tion regarding a street’s shape and its role in the overall
transportation flow. Certain roads such as residential tend
to have more cul-de-sacs as compared to others such as pri-
mary and tertiary which carry the vast majority of traffic.

Number of intersections: The number of intersections
contained within a set of street segments are an indicative
of its shape. The set of street segments with a higher number
of intersections is in general more connected.

Linearity: Some road classes such as motorways tend to
be more linear as compared to other road classes such as
residential. We used the method proposed by Zunic and
Rosin [10] for calculating linearity of sets of street segments.
This method is especially useful in our case as it does not
require strictly defined end-points of the curve in question.

3.2 Topological Characteristics
The most important topological characteristic for a street
network is connectivity between various street segments com-
prising the network. The topological characteristic used in
this paper comprises of identifying the semantic classes asso-
ciated with other sets of street segments directly connected
to the set in question. A bag-of-words model [9] for each set
of street segments is constructed using the multi-granular
street network representation. The words in this bag consist
of road classes corresponding to the sets of street segments
directly connected to the set in question.

4. LEARNING ROAD CLASSES
Having obtained the characteristics for sets of street seg-
ments as described in the previous section, we adopt a data
driven approach to learn the characteristics specific to vari-
ous street classes from OSM data. This is achieved by using
a supervised learning methodology to learn from the OSM
street network data itself the road class information implicit
in the characteristics of the data.

The success of a given supervised learning technique signifi-
cantly depends on the availability of good training data i.e.,

data with correct labels. The quality of OSM data for Lon-
don has been shown to be high [1, 6]. Hence, we have used
the London OSM street network data for developing our
model. The OSM wiki page lists 42 possible values that can
be associated with the highway key. The extracted data con-
tained 38 of these values. 17 of these values were dropped
in our experiments owing to the corresponding small pro-
portion of sets of street segments (less than 10 in a dataset
consisting of over 70,000 instances). Hence, in the develop-
ment of our model only 21 highway key values (road classes)
have been considered.

The entire London OSM database was divided into three
parts: training, validation and test set in 60-20-20 percent-
age split. Training and validation sets were used for devel-
oping the model. The validation set was specifically used
to tune the parameters of the model learnt on training data
and to ensure model generalization. The test set, as will
be described in Section 5, was used for assessing the perfor-
mance of the developed model on new (unseen) data. Algo-
rithms representative of various machine learning families
were compared in terms of ROC area [9] to identify the
algorithm that may best tackle the task of learning road
classes. The algorithms evaluated were neural networks,
support vector machines, naive bayes, nearest neighbour and
decision trees. Of these, the decision trees gave optimal per-
formance. We further tried to improve the performance of
decision trees by mixing them with ensemble techniques such
as boosting and random forest. Of these, the random forest
based model performed the best and hence was chosen as the
final model for assessing the semantic accuracy of highway
key in OSM database.

5. RESULTS AND DISCUSSION
The developed model was applied on two different datasets:
firstly, to the test set obtained from the London OSM street
network (as described above) and secondly, to the OSM
street network of East Sussex (another English city). A
demonstration of model performance on a small part of Lon-
don test set is shown in Figure 2. Correctly classified street
segments are represented using solid lines whereas incor-
rectly classified segments are represented by dashed lines.
Classification results for the entire London test set are shown
in Table 1. We will now discuss these results in some detail
with respect to the classification accuracy and comparison
with a baseline.

Accuracy is obtained by dividing the number of correctly
predicted instances with the total number of actual instances
in the test set for a given class. While the accuracy is quite
high (>70 percent) for certain road classes such as motor-
way links, tertiary links, steps, living streets, unclassified
roads, and tertiary roads, the class-wise accuracy for cer-
tain road classes such as tracks, secondary links, secondary
roads, paths, footways, cycleways, and bridleways can be
considered poor (< 40 percent). However, these varying
classification accuracies are not surprising. While there are
usually 4-10 classes in the overall street network in most of
the traditional maps [4], the OSM road classification is quite
fine (21 classes considered in this study; 42 available in the
OSM catalogue). Hence, some of the road classes in OSM
are geometrically and topologically very similar and difficult
to model.



Figure 2: Classification results on a small part of the
test set.

Finally, accuracy in itself is not a very meaningful criterion
for analysing the classification results as it does not consider
the costs associated with misclassification. The complexity
of the given problem should be taken into account. Our
test data is highly skewed (3 motorways, 8617 residential
roads) and we are trying to learn 21 different road classes.
Hence, in order to assess the significance of our technique
we used a baseline criterion and analysed our model perfor-
mance with respect to this baseline. We used a frequency
baseline which for a given class is the ratio of number of
instances contained in this class to the total number of in-
stances in the actual test set. A comparison of the Accuracy
and Baseline columns of Table 1 reveals that the developed
model performs significantly better than the baseline for all
the 21 road classes considered. The results presented here
are for the test set obtained from the London OSM street
network. Similar results were obtained for the OSM street
network of East Sussex.

6. CONCLUSIONS AND FUTURE WORK
In this paper we proposed a machine learning based solution
for assessing the semantic quality of OSM data. In particu-
lar, we addressed the semantic accuracy of road networks by
analysing the values associated with the ‘highway’ tag. We
envisaged that the geometrical and topological characteris-
tics of connected sets of street segments are representative of
their semantic class. A novel multigranular street network
representation was used to extract these characteristics and
a machine learning model was trained to learn them. This
model was later applied to test data to determine if the
semantic classes associated with streets are correct. Our
experiments demonstrated that while it is easy to learn cer-
tain street classes such as motorways, motorway links, ter-
tiary roads, tertiary links, steps, living streets and unclas-
sified roads, certain road classes such as secondary roads,
secondary links etc cannot be modelled correctly using the
proposed charateristics. However, the developed model per-
forms significantly better than a frequency baseline for all
21 street classes considered in this research.
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