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ABSTRACT

This paper presents the optimization and parallelization of
the multiple observer siting program, originally developed by
Franklin and Vogt. Siting is a compute-intensive application
with a large amount of inherent parallelism. The advan-
tage of parallelization is not only a faster program but also
the ability to solve bigger problems. We have parallelized
the program using two different techniques: OpenMP, us-
ing multi-core CPUs, and CUDA, using a general purpose
graphics processing unit (GPGPU). Experiment results show
that both techniques are very effective. Using the OpenMP
program, we are able to site tens of thousands of observers on
a 16385 x 16385 terrain in less than 2 minutes, on our work-
station with two CPUs and one GPU. The CUDA program
achieves the same in about 30 seconds.
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1.3.5 [Computer Graphics|: Computational Geometry and
Object Modeling—geometric algorithms, languages, and sys-
tems
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1. INTRODUCTION

The purpose of multiple observer siting [2, 4, 5] is to place
a number of observers to cover some targets on or above
a terrain represented as a digital elevation map (DEM).
Assuming observers and targets are placed only at terrain
points, the number of possible positions is the terrain size.
The objective is either to cover as many targets as possible
using a certain number of observers, or to cover a certain
number of targets using as few observers as possible. Usually,
an observer covers a target that is visible, or has direct line
of sight (LOS) from the observer, within a certain radius of
interest. If the targets are all points of the terrain, then the
targets visible from an observer constitute the viewshed of
the observer. Define the area of the terrain to be the terrain
size. The number of targets covered by an observer is the area
of the terrain covered by the observer, which is the viewshed
area of the observer if the targets are all the terrain points.
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Multiple observer siting is useful in the placement of radio
transmission towers, mobile ad hoc networks, environmental
monitoring sites, and various other applications.

2. RELATED WORK

In parallel terrain visibility, Llobera et al. [9] proposed a
method of computing the viewshed at all points of a terrain,
called the inherent viewshed or total viewshed, using a cul-
ster of computers. Tabik et al. [18, 19] proposed a parallel
horizon algorithm based on the algorithm of Stewart [16]
that computes the horizon at all points of a terrain, and an
algorithm to compute the total viewshed at all points of a ter-
rain. Lu et al. [10] proposed a multi-core LOS and viewshed
algorithm on the Cell Broadband Engine (CBE) processor.
Many tried to accelerate LOS or viewshed computations
using traditional or general purpose computing on the GPU.
Salomon et al. [6, 14, 15, 20] proposed a method to accelerate
LOS computations on TINs using the GPU for computer
generated forces (CGF). The algorithm combines GPU ren-
dering into depth buffer for conservative visibility culling and
CPU ray casting for exact visibility computations. Later,
they precompute visibility by dividing the terrain into square
regions and computing a region-to-region visibility map for
each region. Finally, they use dynamic bounding volume
hierarchies (D-BVH) for fast refitting to support moving and
deforming objects, and axis aligned bounding boxes (AABB)
as bounding volumes for fast LOS computations. Fang et al.
[1] proposed an algorithm for real-time computing and ren-
dering of the viewshed using a depth buffer and vertex and
pixel shaders. Strnad [17] proposed two implementations of
viewshed computation on the GPU, which support multiple
viewpoints and the composition of viewsheds.

On multiple observer siting, Lebeck et al. [7] proposed an
algorithm for computing highly occluded paths on a terrain
with unknown observer positions. They define the path cost
as the sum of point visibility along a path and compute the
minimum cost path using Dijkstra’s algorithm. They com-
pute the approximate viewshed of an observer by simplifying
the terrain adaptively and accelerate it using the GPU. To
guess observer positions, they use a topology based approach
for maxima and saddle points, a coverage based approach for
good coverage points, or a combination of the two. Magal-
hées et al. [11] and Pena et al. [12, 13] proposed a local search
heuristic to increase the percentage of a terrain covered by
a given number k of observers. Given a set of candidate
observers, each subset of k observers is a solution S, and
a neighbor of S can be created by replacing an observer in
S with one not in S. Starting from an initial solution, the
local search heuristic repeatedly replaces the current solution
with its largest coverage neighbor, until there is no larger
neighbor. In this way, it finds a local maximum solution.



3. MULTIPLE OBSERVER SITING

Franklin and Vogt [5] developed a software package that
places observers to maximally cover the area of a terrain.
Define the visibility index of a point to be the viewshed area
of an observer at the point, divided by the total number of
points within radius of interest. It first computes an approx-
imate visibility index for each point, and then selects some
points with high visibiliby indexes as candidate positions for
observers, called tentative observers. After that, it computes
the viewshed of each tentative observer, and incrementally
selects observers from the tentative observers to cover the ter-
rain. As a result, it has four programs that run in sequence:
VIX, FINDMAX, VIEWSHED and SITE.

VIX computes the approximate visibility index, the value of
which is in [0, 255]. The input parameters are: the number of
rows and columns of the terrain, nrows; the radius of interest,
rot; the observer and target height above the terrain, ht; and
the number of random visibility tests for each point, ntests.
Taking each point as an observer, VIX randomly picks ntests
targets within roi and computes their visibility, and calculates
the ratio of visible targets times 255 as the approximate visi-
bility index. FINDMAX selects a set of tentative observers
with high visibility indexes. Points with the highest visibility
indexes are often close together. To space tentative observers
out over the terrain, FINDMAX divides it into square blocks
and selects a fixed number of most visible points in each
block as tentative observers. The additional input parame-
ters are the number of tentative observers, nwanted, and the
width of a block, blocksize. The program adjusts the values
of nwanted and blocksize so that each block has the same
number of tentative observers. VIEWSHED computes the
viewshed of each tentative observer. The algorithm is based
on the R2 program of Franklin and Ray [3]. SITE selects
a set of observers from the tentative observers to cover the
terrain. It uses a greedy algorithm that selects one observer
at a time. In each step, SITE computes the area of the union
of each unused observer viewshed and the cumulative view-
shed. Then it finds the unused observer whose viewshed has
the largest union area and adds it to the selected observers.
Finally, it updates the cumulative viewshed as its union with
the added observer viewshed. The program stops when it
has reached a specified number of observers or coverage of
the terrain (the area of the cumulative viewshed over the
size of the terrain), or no more observers can be added to
increase the area of the cumulative viewshed.

4. PARALLEL MULTI-OBSERVER SITING

Multiple observer siting is a compute-intensive application
with a lot of inherent parallelism. It is possible to reduce
the running time greatly by implementing it in parallel,
the advantages of which include not only a faster program,
but also the abilities to use higher resolution terrains and
compute more accurate visibility indexes, and to select more
tentative observers. We have used two different techniques to
parallelize the program: OpenMP, an API for shared memory
parallel programming, using multi-core CPUs, and CUDA, a
parallel computing architecture, using the general purpose
programming capability of NVIDIA GPUs.

4.1 Improved Sequential Program
Before parallelization, we have made a few improvements to
the sequential program. First, we combine the four programs

into one to eliminate intermediate I/O’s. The resulting pro-
gram has four functions: VIX, FINDMAX, VIEWSHED, and
SITE. VIX is very time consuming but, since the visibility
index is an approximation, we can approximate more. In-
stead of computing the exact visibility of each random target
around an observer, we compute its approximate visibility
by evaluating a subset of points along the line of sight, with
a distance stride between adjacent points. This is similar
to volumetric ray marching in Computer Graphics, where
the values of equidistant sample points along a viewing ray
are evaluated and combined to produce the value of a pixel.
stride = 1 is exact visibility. How we select stride and how
it affects the result of siting will be elaborated in section 5.1.
To represent observer and the cumulative viewsheds, we use
one bit per pixel and pack each row to complete words. If
rows are not packed, some operations are easier but bound-
ary detection is harder. A word of an observer viewshed is
usually not aligned with a word of the cumulative viewshed.
SITE is also very time consuming. Two modifications to the
algorithm greatly reduce its time complexity. First, the time
to compute the union of a viewshed V' and the cumulative
viewshed C' is O(nrows?). However, to find the top observer,
we can just search for the viewshed that adds the largest
extra area to the cumulative viewshed. The extra area of
V' can be computed as the set difference V' — Cy, where
Cv is the corresponding area on the cumulative viewshed.
It is implemented as (V or Cy) xor Cy and the time is
O(roi?). Second, not all tentative observers need to have
the extra area recomputed in each iteration. The ones that
need update are within 2 X roi of the last added observer.
If the distance of a tentative observer to the last addition
is larger than 2 X roi, then its extra area remains the same.
The OpenMP adaptation of the program mainly has a few
compiler directives more than the sequential program.

4.2 CUDA Program

To work in CUDA, a kernel function has to be defined and
executed by a large number of threads on the GPU. It is
natural to assign a thread to each point in VIX and a kernel
function is defined to compute the visibility index of a point.
We assign a thread block to each terrain block in FINDMAX.
At first, we defined a kernel function to sort points by visibil-
ity index. Then we found that if we only want a few tentative
observers in each terrain block, it is faster to search for them
one by one. In VIEWSHED, we use a CUDA thread block to
compute the viewshed of a tentative observer. A kernel func-
tion is defined that computes a sector of a viewshed. In SITE,
the section that updates extra areas is implemented first. The
initial implementation assigns a thread block to an observer
and performs poorly due to unbalanced workload. Assigning
multiple observers to a thread block improves the situation,
but does not solve the problem. To separate the two tasks
of the section, finding observers for update and updating
them, we implement them in two kernels and launch one
kernel from another using dynamic parallelism. Whenever
an observer that needs update is found, a kernel is launched
with a single thread block to compute its extra area. Then we
implement a kernel for the section that searches for the top
observer, using loop unrolling for parallel reduction. Finally,
we implement a kernel to update the cumulative viewshed.
Like the kernel that computes the extra area, it only needs
as many threads as the number of rows of a viewshed and
is far from having enough parallelism. However, updating



Table 1: Running time of VIX (in seconds), coverage
(%) and number of observers of the CUDA program,
with different values of stride and ntests

stride Time  Cov. Obs. Time  Cov. Obs.
ntests = 20 ntests = 50
1 58.82 95.04 25279 143.16  95.93 25128
2 34.02 95.09 25294 81.99 96.00 25155
4 21.11  95.14 25313 49.08 95.97 25229
8 13.89 95.11 25385 30.89 95.91 25279
21 8.16 95.65 25417 16.72 96.42 25282
ntests = 120 ntests = 255
1 339.64 96.45 25108 72297 96.79 25008
2 193.16 96.49 25130 410.78 96.81 25047
4 114.39 96.48 25137 241.94 96.80 25070
8 70.76  96.37 25214 148.66 96.71 25129
2° 36.61 96.84 25239 75.01 97.06 25197

the cumulative viewshed on the CPU and transferring it to
the GPU is even slower. As a result, there are three kernel
calls in each iteration of SITFE, but data transfers between
the GPU and the CPU are mostly eliminated.

5. EXPERIMENTS

The test machine has dual Intel Xeon E5-2687W CPUs with
a total of 16 cores, 128 GB of memory, and an NVIDIA Tesla
K20Xm GPU accelerator with 14 streaming multiprocessors
and 2688 CUDA cores. The operating system is Ubuntu 12.04.
The programs are compiled with g++ 4.6.4 optimization
level 2 (-02). The test terrains are 1025 x 1025, 2049 x 2049,
4097 x 4097, 8193 x 8193 and 16385 x 16385 Puget Sound
terrains downsized from a 16385 x 16385 Puget Sound terrain
of Lindstrom and Pascucci [8], which was extracted from
Washington State 10-meter DEMs from the USGS. The unit
of value is integer decimeter.

5.1 The Visibility Index

We use the CUDA program to test the effect of stride because
it is the fastest. We run the program until no more observers
can be added to increase the area of the cumulative viewshed,
and record the running time of VIX, the coverage, and the
number of selected observers. We first tested constant values
of stride from 1 to 16 using different ntests and found that
stride = 1,2,4,8,16 are more effective than other values.
We also found the first point along the line of sight very
important to the accuracy of visibility. In fact, points nearer
to the observer are more important so that evaluation points
should be denser towards the observer (the same is true
for points nearer to the target). Therefore, we also tested
stride that grows exponentially: stride = ¢!, where c is a
consant and 7 = 0,1,2,... for points 1,2,3,... from the
observer. Table 1 shows the results with stride = 1,2,4,8,2°
and ntests = 20, 50,120, 255. The terrain is 16385 x 16385
and the parameters are the same as in the next subsection.
In general, a larger stride produces less accurate visibility
indexes in less time, and obtains less coverage using more
observers. As ntests and the accuracy of visibility indexes
increase, the coverage increases and the number of observers
decreases. We choose stride = 2 and ntests = 30.

5.2 The Programs
We test the sequential program on the test terrains with
parameters fixed at roi = 200, ht = 20, ntests = 30 and

Table 2: Running time of the four parts and total
time of the sequential program (in seconds)

ro1=200, ht=20, ntests=30, blocksize=100

nrows 1025 2049 4097 8193 16385
nwanted 100 400 1681 6724 26896
Initialization 0.04 0.15 0.58 2.40 9.24
VIX 2.10 8.67 37.28 163.29 704.63
FINDMAX 0.00 0.02 0.06 0.27 1.11
VIEWSHED 0.56 2.51 11.47 54.35 232.91
SITE 0.03 0.18 0.90 4.64 27.57
Total time 2.73 11.53 50.30 22498 975.52
Coverage (%) 73.5 81.2 88.5 92.9 96.1
Observers 100 400 1681 6678 25374

Table 3: Running time of the four parts and total
time of the OpenMP program (in seconds)

ro1=200, ht=20, ntests=30, blocksize=100
nrows 1025 2049 4097 8193 16385

VIX 0.12 0.41 1.78 8.79  41.03
FINDMAX 0.00 0.00 0.01 0.02 0.08
VIEWSHED 0.03 0.11 0.49 2.19 9.61
SITE 0.04 0.23 0.49 2.65 15.52
Total time 0.23 0.92 341 16.12 75.67

blocksize = 100, and one tentative observer per block. The
radius of interest is twice the width of a block, so there is a
fair amount of overlap between viewsheds. roi and blocksize
are fixed so that the visible range decreases and the number
of tentative observers increases as the terrain resolution in-
creases. The number of terrain blocks and the number of
tentative observers is nwanted = 100, 400, 1681, 6724, 26896
respectively. The program is run until the area of the cu-
mulative viewshed can not be increased. Table 2 shows the
running time of the four parts and the total time, as well as
coverage and number of selected observers. The total time
includes initialization, mostly reading data and creating data
structures, which is the same for all the programs. VIX and
VIEWSHED are the most time-consuming parts.

We test the OpenMP program with the same tests as the se-
quential program and Table 3 shows the running time of each
part and the total time. It is much faster than the sequential
program and VIX and SITE are the most time-consuming
parts. A CUDA kernel is called with an execution configu-
ration that specifies the number of thread blocks, dimgrid,
and the number of threads per block, dimblock. We tested
various values as dimblock and selected a relatively good
execution configuration for each kernel. Table 4 shows the
running time of the CUDA program. It is much faster than
the sequential program except for the first test. Compared
to the OpenMP program, it is slower for the three smaller
tests but is faster for the two larger tests. We can see that it
requires a reasonable amount of parallelism and a sufficient
problem size to be cost-effective. As the OpenMP program,
VIX and SITE are the most time-consuming parts.

Table 4: Running time of the four parts and total
time of the CUDA program (in seconds)

ro1=200, ht=20, ntests=30, blocksize=100
nrows 1025 2049 4097 8193 16385

VIX 236 236 259 393 11.11
FINDMAX 0.00 0.00 0.01 0.03 0.11
VIEWSHED 0.01 0.04 0.17 0.66 2.84
SITE 0.02 0.08 0.36 1.42 6.08
Total time 2.45 267 3.84 856 29.61
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Figure 1: Total running time of the programs.

Table 5: Speedup of the running time of the
OpenMP program and the CUDA program

The OpenMP program

nrows 1025 2049 4097 8193 16385
VIX 17.7  21.0 209 18.6 17.2
FINDMAX 2.1 3.3  12.7 11.2 14.1
VIEWSHED  20.8 225 232 248 24.2
SITE 0.8 0.8 1.8 1.7 1.8
Total time 11.7 125 14.8 14.0 12.9
Four parts 14.1 149 179 16.3 14.6
The CUDA program
nrows 1025 2049 4097 8193 16385
VIX 0.9 3.7 144 416 63.4
FINDMAX 2.9 5.1 6.6 9.7 10.4
VIEWSHED 46.1 60.3 67.8 82.8 82.0
SITE 1.5 2.1 2.5 3.3 4.5
Total time 1.1 4.3 131 263 32.9
Four parts 1.1 46 159 369 48.0

5.3 OpenMP and CUDA Program Speedups

Finally, we compare the running time of the programs. Fig-
ure 1 shows the line chart of the total time with the vertical
axis in logarithmic scale. The lines of the sequential pro-
gram and the OpenMP program are almost straight, which
indicates the exponential growth of time with the terrain
width, or linear growth with the terrain size. The line of
the CUDA program is nearly flat at first, then rises to the
slope of the other lines. Table 5 shows the speedups of the
OpenMP program and the CUDA program relative to the
sequential program. The OpenMP program has about 11-15
times speedup in total time. Because initialization is not
parallelized, we also compare the sum of four part time. The
CUDA program has about 1-33 times speedup in total time.
Unlike the OpenMP program, the speedup increases with
the terrain width, which makes us speculate that higher
speedups are possible with larger tests. However, the test
size is limited by the memory of the GPU.

6. CONCLUSIONS

We have improved and parallelized the siting program using
OpenMP and CUDA. The results show that both techniques
are effective ways to accelerate it, which also shows the
inherent parallelism of multiple observer siting. The OpenMP
program is easy to implement and achieves a speedup of
about 13 times with the 16385 x 16385 terrain. The CUDA
program is much more complex to implement and requires
properly selected execution configurations, but it achieves a
speedup of about 33 times. We expect the CUDA program
to achieve higher speedups as the ratio of computation to
memory transfer increases, for example, when the radius of
interest or the number of tentative observers increases.
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