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ABSTRACT
Many real world systems or web services can be represent-
ed as a network such as social networks and transportation
networks. In the past decade, many algorithms have been
developed to detect the communities in a network. Howev-
er, the impact of locations on community has not been fully
investigated by the research literature. In this paper, we
propose a method to determine if a location-based commu-
nity detection method is suitable for a given network and
provide a new community detection algorithm that pushes
the location information into the community detection. We
test our proposed method on both synthetic data and real
world network datasets. The results show that the commu-
nities detected by our method distribute in a smaller area
compared with the traditional methods and have the similar
or higher tightness on network connections.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
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1. INTRODUCTION
Many real world systems or web services can be represented
as a network such as social networks, the World Wide Web,
and biological networks. Detecting communities from net-
works has received considerable attention and is the main
focus of many research efforts in the past decade [1, 4, 2].
Generally, the goal of community detection is to find the
subgraphs with tight internal connection based on node con-
nections, labels of nodes, and the weights. However, the for-
mation of many real world networks is greatly influenced by
the geographic locations of the nodes which has not been
fully investigated by the currently literature. We observe
that the nodes in a tightly connected community tend to be
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more close to each other in space as well. Location can have
different impact on social networks and the impact can be
quantified and used in community detection. Introducing
locations of nodes to community detection can improve the
performance of detection on real world networks. In this pa-
per, we propose community detection methods that take the
locations of the nodes into consideration with the main goal
of improving the quality of the detection results in terms
of average internal degree, accuracy, and geographic span of
detected communities.

We focus on finding communities with nodes distributing
in a small range of area and at the same time, keeping
the connection tightness of the nodes in the community.
This paper makes the following contributions: 1) Develop-
ing the algorithms to detect communities with locality on
large location-tagged networks; 2) Given a location-tagged
network, we proposed a new measurement called Total Vari-
ation Difference to help determine if the network has a lo-
cality property and a location-based community detection
method is suitable. 3) We propose optimization techniques
and indexing method to allow the algorithm to scale well for
large networks. It took around 30 seconds to detect com-
munities from a real network of 20,000 nodes; 4) We test
our proposed method on both synthetic data and real world
network datasets. The results show that the communities
detected by our method distribute in a smaller area com-
pared with the traditional methods and have the similar or
higher tightness on network connections. In the following
sections, we will introduce some related works(section 2),
our method(section 3), the experiment results(section 4),
and the conclusion (section 5).

2. RELATED WORK
Community detection: In the past decade, many algo-
rithms have been developed to detect communities in a net-
work. For complete discussion of various algorithms, please
refer to [2]. Aaron et al. provide a hierarchical clustering
approach to detect communities using internal density in [1].
The internal density is the number of edges inside a commu-
nity in a network. The basic idea is to increase the ratio of
the edges in communities during the hierarchical clustering
process using Equation 1:

Q =
1

2m

∑
vw

[Avw −
kvkw
2m

]δ(cv, cw) (1)

where Avw is the adjacency matrix of the network and kv
is the degree of node v. cv represents the community of n-



ode v and δ(cv, cw) is 1 if cv = cw. m is the number of
edges in the whole network G. Another popular algorith-
m [4] is based on iteratively removing “unimportant” edges.
The basic assumption of this method is that communities
are weakly connected by a few edges. In [3], the authors de-
fine the similarity between nodes using their degrees and the
number of common neighborhood. The sum of the similar-
ities of edges inside or outside a community was defined as
internal or external similarity of a community. These works
do not consider locations of nodes in a network.

In the last few years, some researchers have studied the
geographic constraints on real world networks. In [5], the
authors build a network based on the cell phone communi-
cation records. Then they study the relationship between
distance and the call/text tie probability. In [6], the authors
define the concepts of node locality and geographic cluster-
ing coefficient. Then they show the value distribution of
these two coefficients with respect to the degree of nodes.
Their study shows that people tend to build connections
with other nearby users.

3. THE ALGORITHM
We denote the network as G = (N,E,L), where N is the
set of nodes, E is the edge set, and L is the location set of
the nodes. To determine whether the locations of nodes will
help in community detection, we will analyze the locality
of the network first. Then we propose our locality-based
method. We follow the hierarchical clustering framework
combined with the location information. A good division
of the network produces communities with higher ratio of
internal edges and smaller geographical scope.

3.1 Network Locality
The formation of connections in many real world networks
are influenced by the location of nodes in the network. How-
ever, some networks are more location influenced than oth-
ers. So before we provide the location-based community
detection algorithm, we need to analyze the influence of the
location on networks to see the degree of influence. This will
be helpful in determining if location based community de-
tection is a suitable method. Here, we use network locality
defined below to measure the relationship between location
and connection in a network.

Definition 1 (Network Locality). In a network G,
we use two indexes to measure its locality: Total Variation
Difference (TVD) and the Inflection Distance. Let F (dis)
be the cumulative distribution function (CDF) of distance
between any two nodes in G and Fc(dis) be the CDF of the
distance between connected nodes in G, the total variation
distance is defined as:

TV D(F, Fc) = max(Fc(dis)− F (dis)) (2)

and the Inflection distance is defined as the distance where
Fc(dis)− F (dis) achieves the maximum value.

We can see that a higher value of the total variation distance
indicates the network is more geographically close because
connected nodes in nearby locations have higher percent-
ages. When the total variation difference is close to zero,
the connection has little relationship with the locations of
nodes. We analyze the network locality of two real datasets:
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(a) Twitter: the total varia-
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Figure 1: The cumulative distribution function of distance
between every user pair/friend pair on Twitter and Gowalla.

Gowalla and Twitter. The Gowalla dataset is a 99,563 users’
friendship network and the Twitter dataset contain 148,860
users. In Figure 1, we plot the cumulative distribution func-
tion of distance between every user pairs and friend pairs. In
the Twitter dataset, the total variation distance is 0.315 and
the inflection distance is 4, 180km. Compared with Twitter,
the Gowalla network is more close geographically since it
has a higher TV D, 0.533, and a smaller inflection distance
580km. This phenomenon illustrates that users in Gowalla
tend to build friend relations with others who are geograph-
ically close to them compared with Twitter. In other words,
the locations of nodes have greater influence on the network
structure in Gowalla. We suggest applying our method on
the networks with the TVD larger than 0.25.

3.2 Connection Locality
To take location into account in community detection, first
we define the concept of connection locality to qualify the
graphic closeness between nodes.

Definition 2 (Connection Locality). Let disvw be
the geographic distance between nodes v and w. Let σ be
the average distance between all user pairs. The connection
locality can be defined as Lvw = exp(−disvw/σ).

And then we measure the geographic and network closeness
of the communities using the following equation:

CG =
1∑

vw AvwLvw

∑
vw

AvwLvwδ(cv, cw) (3)

We can see that this method is equivalent to assign each
edge in network G with the locality as weight. Inspired by
the method in [1], we introduce the expected value of CG

to avoid the situation that the largest value of CG will be
achieved when all the nodes belong to the same community.
The expected value of CG is obtained from a random connec-
tion network. The probability of an edge existing between a
node pair is kvkw/2m. Since we already know the locations
of the nodes, the expect value for each edge is lvwkvkw/2m
and the expect value of CG is the sum of the expect val-
ue of all the edges. Let ω =

∑
vw AvwLvw, we define the

modularity Q as:

Q =
1

ω

∑
vw

[AvwLvw −
kvkw
2m

Lvw]δ(cv, cw) (4)

3.3 Node Similarity
To enhance the influence of network structure, here we de-
fine the node similarity between nodes pair by the common
neighbors and their degrees:



Definition 3 (Node Similarity). Let Γv be the set
of neighbors of vertex v. The similarity of two nodes is cal-
culated by their common neighbors and their degrees as:
Svw = |Γv ∩ Γw|/

√
|Γv||Γw|

To apply the node similarity in our modularity, we also need
to calculate the expect value under random connection net-
work. Assuming node i has ki neighbors, the probability of
node i is connected to v (w) is kvki/2m (kwki/2m). So the

probability of node i connected to both v and w is kvki
2m

kwki
2m

.
The expected value of Svw is the sum of the probabilities of
both v and w connected to any other node i:

Svw =
|Γv ∩ Γw|√
|Γv||Γw|

=
√
kvkw

∑
i 6=v&i 6=w

k2
i /4m

2 (5)

In practice, we use τ =
∑

i k
2
i /4m

2 instead of
∑

i 6=v&i6=w k
2
i /4m

2

because they have similar value on larger networks.

We then revise ω as
∑

vw AvwSvwLvw, and the new modu-
larity Qs is defined as:

Qs =
1

2ω

∑
vw

[AvwSvwLvw − L(v, w)
kvkw
2m

τ
√
kvkw]δ(cv, cw)

(6)

In this paper, we only consider the node similarity between
connected nodes for the following reasons: (1) Relation of
2-degree neighbors (the node pairs which are connected but
share at least one common neighbors) introduce many new
connections. The number of 2-degree neighbors is much
more than directly connected neighbors and will significant-
ly increase the computation complexity. (2) The influence
of 2-degree neighbors is much smaller than directly connect-
ed ones. Based on our investigation, the average distance
between 2-degree neighbors are three to times times longer
than directly connected neighbors even when they have the
same node similarity.

3.4 Optimization
In [1], the authors provide an efficient method to implemen-
t their model. They maintain and update a matrix ∆Qij

which records the change of Q after combing the communi-
ties i and j. We can rewrite the modularity in Equation 6
into Equation 7. By analyzing the modularity, we can see
that after we combine two communities i and j, the change
of Qs includes two parts: 1) the connections between these
two communities will increase the value of Qs (the first part
in Equation 7) and 2) the value generated by node pairs
from communities i and j (the second part).

Q =
1

2ω

∑
vw

AvwSvwLvwδ(cv, cw)

− 1

2ω

∑
vw

L(v, w)
kvkw
2m

τ
√
kvkwδ(cv, cw)

(7)

The combination of two disconnected communities will not
increase the value of Q, so we only keep the ∆Qij if there
is at least one edge between them. At first, every node is a
community and the ∆Q between each connected node pair

is: Lij [
Sij

2ω
− τ(kikj)

1.5

4ωm
]. After we combine communities i

and j, we need to update all the communities k which are
connected to i or j. We use (ij) to denote the community

generated by combining i and j and use ∆Qk,(ij) to denote
the new ∆Q value between k and (ij). If the community k
is connected to both i and j, we can get the new ∆Qk,(ij)

by ∆Qik + ∆Qjk. If k is only connected to one of them, e.g.
i, we do not have Qjk since they are disconnected. So we
need to calculate it as:

∆Qjk = − 1

2ω

∑
vw

τL(v, w)
(kvkw)1.5

2m
δ(cv, j)δ(cw, k) (8)

And then we can update the ∆Qk,(ij) by:

∆Qk,(ij) = ∆Qik + ∆Qjk (9)

We will stop the hierarchical clustering process when the
modularity Q achieve its maximum value, which means that
the largest ∆Qij is less than zero.

4. EXPERIMENT
In this section, we test our method on synthetic networks
and two real world social network datasets described before:
Twitter and Gowalla. We use three different measurements
to evaluate the results: 1) Geographic Span: the average
distance of the nodes in community c to the centroid (x̄, ȳ)
of all the nodes in this community; 2)Average Internal De-
gree: the internal degree of a node v means its neighbors
in the same community. The average internal degree of a
community c is the average value of the internal degrees of
all the nodes in c. 3) Accuracy: Since we do not have a
class label of the real world datasets, we only apply this on
the synthetic networks. We implemented four community
detection methods in our experiments: 1) Randomly select
nodes as community (Random). 2) The method proposed in
[1] (Clauset’s Method). 3) The method discussed in section
3 using Equation 4 as the modularity Q (Connection Local-
ity). 4) The method discussed in section 3 with Equation 6
as the modularity (Node Similarity).

Table 1: Accuracy of different community detection methods

Ω Clauset’s Connection Locality Node Similarity
1 16.24 16.63 18.38
3 16.48 22.82 24.63
5 17.72 22.40 28.77
10 22.16 25.14 26.60
30 32.84 19.76 24.42

+∞ 36.04 19.20 19.76

4.1 Tests on Synthetic Networks
First we test the methods on the generated networks because
a synthetic datasets allow for better parameter control. We
generate the networks on a 50× 50 grid with 2,500 nodes in
it. For each node, we randomly assign a community label to
it and there are 10 different community labels. We generate
the probability of an edge existing between node v and w as
pe = αpce

−disvw/Ω. If v and w have the same label, pc will
be set to 0.5 and if not, pc will be set to 0.1. The component
e−disvw/Ω is used to control the influence of the locations of
nodes. If the value of Ω is small, the value of e−disvw/Ω will
be greatly influenced by the distance between v and w. We
make the number of average degree around 15 by adjust the
value of α.



Table 1 shows the accuracy of different algorithms on dif-
ferent generated networks. We can see when the Ω is less
than 10, which means the building of connections is great-
ly influenced by the location of nodes, our two methods
can achieve a similar or higher accuracy than the Clauset’s
method. With the increasing of the value of Ω, the accuracy
of Clauset’s method performance better than our methods.
So we recommend to evaluate the influence of geographic
information first as described in section 3.1 before applying
our methods. We also records the geographic span and aver-
age internal degree in different cases. In all levels of influence
(Ω) that the geographic location on network structure, the
connection locality method have the smallest geographic s-
pan. The geographic span of the node similarity method
is smaller than the Clauset’s method but larger than the
connection locality method.

4.2 Twitter and Gowalla Network
In the real world, the factors which can influence the network
structure can be very complex. We now test the algorithms
on the networks generated by some real world applications,
the Twitter and the Gowalla network. Since we do not have
a community label for the real world dataset, we only apply
the geographic span and the average internal degree of the
communities to evaluate the detection results.
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Figure 2: Analyzing the community detection results of dif-
ferent methods on the Twitter and Gowalla Network.

In Figure 2(a), we demonstrate the geographic span of dif-
ferent sizes (number of nodes in the community) of commu-
nities. From this figure we can see that under the random
case, the geographic span is much larger and increases quick-
ly to 800 kilometers. The communities detected by Clauset’s
method has a smaller geographic span. It begin with 280 k-
ilometers when the community size is 2 but increases quickly
when the community size become larger. Finally, the geo-
graphic span fluctuates between 500 to 600 kilometers. The
two methods proposed in this paper have the best perfor-
mance on controlling the geographic span on communities.
Although the geographic span increases quickly when the
community size becomes larger, these two method can keep
the span much smaller than Clauset’s method and the ran-
dom case, especially for the method with the Equation 4

as the modularity. The geographic spans in different sizes
of communities are only half of Clauset’s method. Com-
pared with the Twitter network, the geographic information
in Gowalla has greater influence on the network structure.
From Figure 2(c), we can see that our methods have a strong
effect on limiting the geographic span of communities. Both
the two methods can keep the span around or less than 200
kilometers. Especially for the connection locality method,
even when the community size is very large, it can still keep
the geographic span in a small range.

Another important observation is that in the highly geo-
graphically influenced networks, our method can also im-
prove the network tightness in the communities. From Fig-
ure 2(b) and 2(d), we can see that the performances of these
algorithm are similar to the case on the Twitter network.
The different is that in the Twitter network, the connection
locality method performs worse than the other two meth-
ods. But on the Gowalla network, it performs much better.
This phenomenon illustrates that on the high geographical-
ly influenced networks, our method can improve the quality
of the detection results on both geographic span and the
tightness inside communities.

5. CONCLUSION
In this paper, we propose a new community detection method
that keep the communities in small range of areas while
maintaining the connection closeness of the nodes in the
communities. We analyzed two real datasets and found that
they have different level of locality. We performed extensive
experiments on both synthetic and real world datasets. Re-
sults show that the proposed method find communities with
nodes distributing in a smaller area compared with the tra-
ditional methods and having the similar or higher tightness
on network connections. In our future work, we would like
to explore low cost community detection algorithm utilizing
the property of locality of nodes in communities.
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