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ABSTRACT
The reach of an arc in a network can intuitively be described
as an indication of the maximum length of the shortest paths
of the digraph that pass through this arc. This concept
captures the natural hierarchy of any type of network, in
an accurate and comprehensive manner. Traditional reach
approximation algorithms compute upper bounds to these
reaches and require computation of a partial shortest path
tree rooted in all vertices of the network. Tailored for route
computation enhancement, these methods yield exact reaches
in the low reach spectrum, whereas higher reaches are kept
set to infinity.
The present paper introduces an iterative method for gener-
ating lower bounds to the reaches of the arcs in a network.
This method is suitable for situations where it is more impor-
tant to know the order of magnitude of the high than these
of the low reaches and where very low or variable calcula-
tion times are required. An experiment in an attractiveness-
weighted cycling network of considerable size shows that the
iterative method steadily approximates the arc reaches for a
low number of iterations. The approximation algorithm has
been formulated for arc reaches in a digraph but can easily
be adapted to a vertex reach version and works in undirected
graphs as well.
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1. INTRODUCTION
The present paper is dedicated to automated discovery of
the natural hierarchy in road networks. Basically, this pro-
cess involves assigning grades of importance to the vertices
and/or the arcs of a network. A well-known example of the
natural hierarchy in a time-weighted network is the classi-
fication of the network’s roads in correspondence with the
roads’ functional road class. This hierarchy comprises a lim-
ited number of levels, ranging from 0 to n, where level n
refers to motorways, level n−1 to arterial or national roads,
and so on, down to level 0 referring to unclassified or lo-
cal roads. In this type of hierarchy, each arc r of a digraph
G = (V,A) belongs to one of the n+1 levels: level(r) ∈ [0, n].

The reach of a vertex or arc, introduced by Gutmann [2],
is a concept capturing the natural hierarchy of any type of
graph, in an accurate and comprehensive manner. The reach
of a vertex/arc can intuitively be described as a label indi-
cating the length of the shortest paths that pass through
this vertex/arc. These labels enable a very drastical reduc-
tion of the search space of a corresponding shortest path
algorithm. As far as the authors are aware, an all-pair-
shortest-path (APSP) algorithm, which is computationally
expensive, is required in order to determine all reaches of
a graph. Both Gutmann [2] and Goldberg et al. [1] pro-
posed a faster method for the calculation of the reaches’ up-
per bounds. Tailored for route computation enhancement,
these methods yield exact reaches in the low reach spectrum,
whereas higher reaches are kept set to ∞.

Apart from routing computation enhancement, automated
hierarchy discovery in networks has several other application
areas such as

• tools and techniques for analysis of general networks,
• traffic analysis and urban planning, and,
• generation of reference networks for tourism and leisure.

Suppose, for instance, a connected 2-level hierarchy inherent
to a cycling network where the weights model the ratio of
the arc’s length to its cycling attractiveness. It is likely that
the subgraph of the highest level, denoted S1, will contain
roads many cyclists need to take although these roads are
less attractive for cycling. A verification of the road infras-
tructure of the level 1 roads can support urban planners in
the identification of required road infrastructure improve-
ments. Moreover, the hierarchy could provide vital informa-
tion for planning a national cycle highway. In the domains of
tourism and leisure, S1 could serve as a reference network of
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Figure 1: Two reach definitions in a shortest path P , con-
sisting of arcs r1 to rn, given a reach metric m : A→ R+.

a hardcopy themed recreation guide, or, as a visual overlay
aiding website visitors to plan highly attractive routes.

The present paper presents an iterative algorithm to approx-
imate the arc reaches of a network. It has two advantages
over the algorithms proposed by Gutmann [2] and Goldberg
et al. [1] in the above mentioned application domains.
(1) The algorithm generates a reach approximation for both
arcs of high and low reach. This is preferable in the dis-
cussed application domains where it is often more important
to know the orders of magnitude of the high than those of
the low reaches. (2) The algorithm is suitable when very low
or variable calculation times are required, since it improves
its approximations over each iteration, involving a shortest
path tree calculation, whereas the other algorithms require
a partial shortest path tree computation in every vertex of
the network. Such a situation occurs for instance in dy-
namically changing networks where travel time weigths are
determined by traffic-related conditions.
Adversely, the approximations generated by this algorithm
are lower bounds to the reaches. Therefore, resulting hierar-
chies cannot be used for enhancing the computation of exact
shortest paths.

2. APPROXIMATION ALGORITHM
Preliminaries. A reach hierarchy assigns a separate degree
of importance (R+) to every arc or vertex in the network.
Given a reach metric m : A → R+, Gutmann [2] defined
the reach of a vertex v in a shortest path P , as the mini-
mum of

∑
r∈P1

m(r) and
∑

r∈P2

m(r), where P1 and P2 denote

the subpaths of P prior and posterior to v. This is shown
in Figure 1a. The reach of vertex v in the digraph G is the
maximum of the reaches of a vertex v in any shortest path
P in G.
The analogous definition of the reach of an arc r in a short-
est path P , denoted rP (r, P ), is shown in Figure 1b. The
reach of arc r in a shortest path tree T or a digraph G,
denoted respectively as rT (r, T ) and rG(r,G) , is the max-
imum of the reaches of a vertex v in any shortest path P ,
respectively appearing in T or G. When no shortest paths
in G containing r exist, rG(r,G) = 0.

Algorithm. The iterative algorithm introduced in the present
section generates approximations rapp(r) of the arc reach
rG(r,G) of any arc r ∈ A in a digraph G = (V,A). The
main algorithm is based on generating a number of shortest
path trees rooted in random vertices. It can be outlined by
the following steps.

1. Initialize Vvisited := {}
2. Initialize for any r ∈ A: rapp(r) := 0
3. Do maxiter times

(a) Pick a random vertex vroot ∈ V \Vvisited

(b) Vvisited := Vvisited ∪ {vroot}
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Figure 2: Collection of reach numbers in a shortest path
tree. The subcaptions indicate the legend of the numbers
printed in black. The numbers printed in hollow in Figure 2b
indicate the order of the four main iterations of the collection
procedure.

(c) Calculate the shortest path tree T rooted in vroot
using Dijkstra’s algorithm, registering m′(v) :=
macc(P ) for every path P in T that starts in vroot

(d) Update rapp(r) := max(rapp(r), rT (r, T )) for ev-
ery arc r in the shortest path tree T (procedure
detailed below)

The values of m′(v) collected in step 3c support the efficient
update of reach approximation values in step 3d. When the
reach metric m equals the native arc weight metric, m′(v)
is already implicitly collected by Dijkstra’s algorithm.

The algorithm realizes a stepwise increase of the approxima-
tive values, preserving a lower bound of rG(r,G). It can be
shown [3] that rapp(r) = rG(r,G) for every arc r when the
algorithm iterates over all the shortest path trees in G. This
is, as indicated in Section 1, not the most efficient method
to calculate the exact reaches of the arcs in G.
Step 3d of the main algorithm consists of the following steps.

1. Initialize V ′
visited := {}

2. Collect the list L of leaf vertices vl in T , in descending
order of m′(vl)

3. For each vertex vl in L do
(a) vb := vl
(b) While vb /∈ V ′

visited ∧ vb 6= vroot
i. Given r = (va, vb), which is the arc in T of

which vb is the destination vertex, update

rapp(r) := max(rapp(r),min(m′(va),m′(vl)−m′(vb)))

ii. V ′
visited := V ′

visited ∪ {vb}
iii. vb := va

As illustrated in Figure 2, each arc in the tree is only visited
once, during an iteration started in leaf vertices vl for which
m′(vl) is maximal. During this visit, each rapp(r) is updated
to rT (r, T ), shown [3] to be equal to min(m′(va),m′(vl) −
m′(vb)).

Joint reach variant. Since in many common transporta-
tion network representations, reverse arcs correspond to the
same geometry and have the same weights, it could be in-
teresting from a practical point of view (cf. storage and
visualization), to store one single reach (approximation) for
every pair of reverse arcs. In this case, where Ge = (V,E)
is the equivalent undirected graph of G = (V,A), reG(e,Ge)
refers to the joint reach, which is the maximum value of the
original reaches, and is approximated by reapp(e).
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Figure 3: RMSE of the joint reach approximations as a func-
tion of the number of iterations performed for three random
seeds.
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Figure 4: ER of the joint reach approximations as a func-
tion of the number of iterations performed for three random
seeds.

3. EXPERIMENT
The goal of the present experiment is to study the conver-
gence of the reach approximation algorithm on a real road
network of considerable size. The network of interest is an
attractiveness-weighted cycling network in Luxembourg, en-
abling a recreational point-to-point navigation service of-
fered by the company RouteYou. In this network, the arc
weights w(r) equal l(r)/a(r) where l(r) refers to the physical
length of the corresponding road segment and 0 < a(r) ≤ 1
to its attractiveness. The company determines attractive-
ness by means of a linear combination of a set of parameters
referring to an arc’s scenic, physical and traffic-related con-
text. These parameters have been extracted from a third-
party geographical dataset. When a new outdoor activity
mode is launched, the scalars of the linear combination are
fine-tuned during a manual point-to-point navigation sensi-
tivity analysis in the company’s labs. The network of inter-
est consists of 44289 vertices.

Methods. The basic setting of this experiment involves a
comparison of the set of reach approximations with the set
of exact reaches in the network, after the execution of n it-
erations by the joint variant of the approximation algorithm
presented in Section 2. This comparison is based on two
measures:

• the root-mean-square error (RMSE) of the joint reach
approximations, defined as

RMSE =

√√√√ ∑
e∈E

(reG(e,Ge)− reapp(e))2

|E| /max
e∈E

(reG(e,Ge))

• and, the exactness ratio (ER), which is the ratio of the
edges e ∈ E for which reG(e,Ge) = reapp(e).

This approach has been repeated for three different seeds
initializing a pseudorandom number generator required by
the random vertex selection in step 3a of the approximation
algorithm.

Next, an analysis has been made of the 3-level hierarchy, ob-
tained from discretizing all reach hierarchies generated in the
previous phase of the experiment. Discretization is realized
by a straightforward algorithm transforming the reaches into
a set of 3 discrete levels. The T-version of this algorithm se-
lects the edges with a reach higher than a specified threshold
value. Next, both loose ends and small loops connected to
only one edge are repetitively removed in the resulting net-
work. The P-version of the algorithm utilizes a percentile
threshold instead of an absolute one.
Both versions were executed on every reach hierarchy ob-
tained from n approximation iterations. The following (per-
centile) threshold settings

T1 = 26444.65;T2 = 50624.96;P1 = 0.20;P2 = 0.10

were selected and refer to the same set of edges in the ex-
act reach hierarchy. The edges-in-common rate (EICR) is
defined as

EICR =
|El ∩ ER

l |
max(|El|, |ER

l |)

where El and ER
l refer to the edges in level l obtained from

discretization of respectively an approximate and the exact
reach hierarchy.

Results. Figure 3 shows a steady decline of the RMSE for
the first 1000 iterations. The next figure depicts a steady
incline of the ER for the same iteration scope. It should
be noted that reG(e,Ge) = 0 for 19.55% of the edges. In
Figure 5, the EICR for E1 and E2, resulting from both ver-
sions of the discretization algorithm, is shown as a function
of the original n approximation iterations. For 2 out of 3
seeds, the T-version shows a steeper incline for E1 than for
E2, underlied by a smaller population of edges of highest
reapp(e)-value. For the T-version, the EICR is monotonically
increasing since S1 and S2 are monotonically increasing sub-
sets of their exact equivalents. Since the P-version implies
variable thresholds Tl, S1 and S2 are not monotonically in-
creasing and are not necessarily subsets of their exact equiv-
alents. Table 1 provides an overview of the evolution of the
RMSE and the ER of the approximated reach hierarchy and
the EICR of the corresponding discrete hierarchies.

In general, the results give evidence of a steady approach of
the reach approximations towards the exact reG(e,Ge)-values
during the first 1000 iterations. About 1000 shortest path
tree calculations are sufficient to generate a reach hierarchy
with an RMSE-deviation of 1.6% and containing 63.7% ap-
proximations corresponding to reG(e,Ge). For higher num-
bers of iterations, the RMSE decline becomes less apparent
and the approximation algorithm is less effective.
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(a) T-version
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(b) P-version

Figure 5: EICR of the edge sets E1 (solid line) and E2 ⊆ E1 (dashed line) resulting from applying the discretization algorithm
to a reach hierarchy approximation, as a function of the number of original approximation iterations for three random seeds.

Table 1: Summary of the experiment results. The prefixes T- and P- refer to the T- and P-versions of the discretization
algorithm. The minimum and maximum value is provided for experiments based on any of the three random seeds.

Itera. RMSE ER T-EICR S1 T-EICR S2 P-EICR S1 P-EICR S2

100 0.03697 - 0.04037 0.54401 - 0.55209 0.82213 - 0.83070 0.71731 - 0.85546 0.90111 - 0.91699 0.90072 - 0.92186
1000 0.01548 - 0.01661 0.63675 - 0.63865 0.91339 - 0.94759 0.93641 - 0.97114 0.95627 - 0.98010 0.93131 - 0.96339
5000 0.00702 - 0.00797 0.71642 - 0.72048 0.97046 - 0.97861 0.98366 - 0.99285 0.97861 - 0.98498 0.94968 - 0.98683

10000 0.00486 - 0.00561 0.76417 - 0.78488 0.98168 - 0.98708 0.98723 - 0.99515 0.98878 - 0.99174 0.97517 - 0.98683
20000 0.00258 - 0.00300 0.84158 - 0.86597 0.99354 - 0.99608 0.99234 - 1.00000 0.99492 - 0.99534 0.97607 - 0.99542
30000 0.00160 - 0.00197 0.89980 - 0.92410 0.99608 - 0.99682 1.00000 0.99577 - 0.99577 0.99542 - 0.99974
40000 0.00060 - 0.00087 0.97121 - 0.98179 0.99682 - 0.99693 1.00000 0.99682 - 0.99693 0.99974 - 1.00000
44289 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Although not guaranteed, the discretization algorithm easily
yields hierarchies where both subgraphs are connected. A
steady incline during the first 1000 iterations, very similar to
the RMSE’s incline, is perceived for the EICR of subgraphs
arisen from T-discretization, although high thresholds (lead-
ing to small subgraphs) seem to generate more variation in
the results due to differences in the random root vertex se-
lection order. For a few hundreds of iterations, the EICR
values are considerably higher and more stable for P- than
for T-discretization. After 100 iterations, both S1 and S2

have more than 90% of edges in common with their exact
equivalents. This fact confirms the assumption of linear cor-
relation between the reapp(e)-values after a low number of it-
erations and their corresponding reach reG(e,Ge). For higher
numbers of iterations, the P-version does not produce sig-
nificantly better results than the T-version.

4. CONCLUSION
The contribution of the present paper is a method iteratively
increasing the lower bounds of the reaches of the arcs in a
digraph. It is based on shortest path tree calculation. Ex-
periments showed that these lower bounds steadily approach
the arcs’ (joint) reaches after a low number of iterations. In a
network of 44289 vertices, an ER of 63.7% was reported after
1000 iterations. For higher numbers of iterations, the algo-
rithm is less susceptible to quick improvement of the lower
bounds. Whereas the algorithm approximates arc reaches
in a digraph, a similar algorithm of similar performance can
be formulated for computing vertex reaches.
In addition, a straightforward algorithm transformed (the
lower bounds of) the arcs’ reaches into a set of n+1 discrete

levels. The experiment indicated that it is feasible in prac-
tice to obtain connectedness for the subgraphs Sl contain-
ing arcs of the levels l when the base network is connected.
When the joint reach variant of the algorithm is applied to
a set of lower bounds generated in 100 iterations for n = 2,
the subgraphs S1 and S2 have already more than 90% of
arcs in common with their exact equivalents.
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