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ABSTRACT

Latest generation mobile devices allow users to receivecssr tai-
lored to their current locations. Location-based serviae/ipders
perform spatial queries based on the user locations, butaisay
share them with various third parties. User whereabouts disy
close sensitive details about an individual’s health stgpolitical
views or lifestyle choices, and therefore must be thorougib-
tected. Private information retrieval (PIRnethods support blind
execution of range and NN queries with cryptographic-sftiese-
curity, but incur significant performance overhead. We amwpl
graphical processing units (GPUSs) to speed up the cryptoaepe
tions required by PIR. We identify the challenges that anben
using GPUs for this purpose, and we propose solutions to ad-
dress them. To the best of our knowledge, this is the first work
to use GPUs for efficient private spatial information retaile and

an important first step towards GPU-based acceleration faer
range of secure spatial data operations.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and GIS
General Terms

Security, Experimentation
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1. INTRODUCTION

Location-basedservice providers (SP3upport spatial queries,
e.g., range, nearest-neighbor (NN), based on users’ torati
However, SPs may not be trustworthy, and may share locatiiths
various third parties for commercial profit. The whereabamftan
individual may disclose sensitive details about a persprigate
life [3], e.g., health status, political and religious vievetc.

Several categories of techniques address the locatioaqyriv
problem. In dummy-generation techniques [4] each userssthal
SP a number of fake locations together with the real one. The S
processes the query for each location. However, a sopdtisti@ad-
versary can easily filter out fake locations based on knogéeaf
the road network and typical movement properties. Gerzetadin
techniques build aloaking region (CRjncluding the query source
and at leaskt — 1 real users, according to the spatiahnonymity
principle [3]. The SP should not be able to distinguish amibieg:
users in the CR. However, as discussed in [2] CR-based tpobsi
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fail to protect against adversaries with background kndgie and
are not suitable for continuous queries by moving usersrylpto-
graphic techniques [2, 1] users send to the SP only theiyptent
coordinates. Next, the SP executegrvate information retrieval
(PIR) protocol that blindly processes the query, and returns-as re
sult an encrypted token that only the client can decode taibt
the query answer. Techniques in this category are provauiyre,

but are computationally expensive, as they require largeuaits

of cryptographic primitive evaluations.

We investigate the use gfaphics processing units (GPUahd
Compute Unified Device Architecture (CUD&)speed up the ex-
ecution of private spatial information retrieval techregu GPU
devices consist of large numbers (i.e., thousands) of siropin-
puting cores that are able to perform basic operations iallphr
However, the execution and programming model of GPUs is sig-
nificantly different than general-purpose CPUs. GPUs havalls
amounts of memory resources, and rigid patterns of dataadtcat
must be followed for fast performance. Deploying applimasi for
GPUs is a challenging task that requires specific desigrceba@ind
optimizations for each individual problem.

To the best of our knowledge, this work is the first attempt to
use GPUs for private spatial information retrieval. We fo@n
the problem of privately answering NN queries [2], whereloy a
NN query is first transformed into a query-by-index, and then
instance of th&ushilevitz-Ostrovsky (KQgrotocol [5] is executed.
Nevertheless, our techniques can be applied to a broadetrsmpe
of problems that are amenable to the transformation of gady-
content to queries-by-index (e.g., range, fogueries).

Our specific contributions are:

e \We propose acceleration of private spatial information re-
trieval using GPUs. This work is an important first step to-
wards efficient secure processing of spatial data, and the de
sign principles outlined here can be extended to a broader
spectrum of secure location-based queries.

We focus on the specific technique of answering private NN
gueries using Voronoi diagrams and the KO protocol, and
provide details for deploying this technique on GPUs.

We provide experimental evaluation results which show that
using GPUs can lead to significant improvement in PIR per-
formance compared to CPU implementations.

The rest of the paper is organized as follows: Section 2 ptese
necessary background information on PIR and GPUs. Section 3
presents the challenges that arise when deploying PIRqmiston
GPUs, as well as our solution to address them. We present-expe
imental evaluation results in Section 4. Concluding rermakd
directions for future work are summarized in Section 5.

2. BACKGROUND

Private Nearest Neighbor Retrieval. Private Information Re-
trieval (PIR) protocols allow clients (we use the terraser and
client interchangeably) to retrieve an objekt from a setX =
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Figure1l: NN PIR with Voronoi Diagrams

{X1...X,} stored by a server, without the server learning the
value ofi. Kushilevitz-Ostrovsky (KOs a computational PIR
protocol [5] that relies on th@uadratic Residuosity Assumption
(QRA) which states that it is computationally hard to find the
quadratic residues in modulo arithmetic of a large compasiim-
ber N = ¢1 x g2 whereq1, g2 are large secret primes.

Specifically, given a numbey € Z1' (Z§' is the sub-set of
Zn for which the Jacobi symbol i$1) it is computationally hard
(without knowing the factorisation aV) to determine whethey
is a quadratic residue (QR) (i.€z € Zy|y = z® mod N) or
a non-residue (QNR). Assume that all objectsXinare bits. The
client sends the server an ordeiguekry arrayof n numbersY =
[y1 - - yn], such thaty; is QNR and all others are QR. The server
performs amaskedmultiplication of values ir’, i.e., it multiplies
together only they; values for whichX; = 1. The client, who
knows the factorisation W, can determine that if the result of the
multiplication is QNR, thenX; = 1, otherwiseX; = 0.

The ExactNN method from [2] builds on the KO protocol to an-
swer NN queries. KO supports only queries-by-index (itym
it" element), while in practice most queries are content-ha%ed
bridge this gap, ExactNN builds the Voronoi tessellationhef set
of data points, and then overlays a regular grid on top o$isteown
in Figure 1. A Voronoi tessellation is a set of polygonal setine
for each data point, with the property that all locationsha tell
of a point have that point as nearest neighbor. The contéeizoh
grid cell is set to contain all the points for which the copasding
Voronoi cells intersect that grid cell.

In Figure 1, there are four points of interest. . . p4, and hence
four Voronoi cells. The regular grid has cells. Grid cellA1 con-
tains only poinfpz, since that is the only Voronoi cell that intersects
Al. On the other hand, cell'l containspz, ps, pa. At query time,
the usen first retrieves the grid granularity, then computes the grid
cell that encloses her location. The contents of the gridacelre-
trieved using KO, and it is guaranteed that the user willixecker
exact NN (and possibly several other points whose Voronl ce
intersect the grid cell of the user).
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Figure2: Main CUDA memory hierarchy modules

CUDA Architecture. Compute Unified Device Architecture
(CUDAV is a parallel computing platform and programming model
designed by NVIDIA [7]. A CUDA program consists of a set of

http://www.nvidia.com/object/cuda_home_new.html
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Figure 3: Allocation of work to CUDA threads and blocks

kernels i.e., functions that run on the GPU and contain instrustion
from CUDA's own instruction set architecture (PTX ISA). Kets
are executing across a set of paratteeadswhich are organized
into blocks Each thread has its own ID (unique inside the block),
program counter, register file and private memory. Threaitisimw

a block can cooperate through barrier synchronization and hc-
cess to a per-blockhared (SMEM)memory area. Blocks are or-
ganized inside arid, i.e., an array of blocks that execute the same
kernel. All threads in the grid have access to the GRjlibal
(GMEM) and constant (CMEM)memory regions. The GPU has
a set ofstreaming multiprocessors (SMgnd each SM controls a
number of CUDAcores A SM executes one or more thread blocks,
and each core executes one instruction per clock for a thitael
SM scheduling unit is avarp, which is a group o082 threads be-
longing to the same block.

While programmers can generally ignore warp execution and
write applications according to the hierarchy of grids,dik and
threads, the warp concept is very important from a perfonman
standpoint. An important performance metrioupancywhich
is defined as the ratio between the maximum number of warps
which can be scheduled simultaneously during kernel ei@tudt-
vided by the maximum number of warps that the device supports
Occupancy is influenced by the number of registers a threes| us
the amount of shared memory used per block, andtbek size
i.e., the count of threads in a block.

Figure 2 shows the main components of the CUDA memory hi-
erarchy and their visibility across SMs. The register filala SM
stores the thread registers for the current warp. The reélseohem-
ory space on the SMis split between the SMEM and a L1 cache that
buffers accesses to GMEM. The programmer has some fleyibilit
in choosing the split allocation between SMEM and L1. Theee a
three key aspects that dictate the performance of memogsses.
First, to complete a round of instructions with a single mass$-
fer, accesses to GMEM must bealescedi.e., threads in the same
warp must access consecutive addresses, and the first thribed
warp must access an address aligned at a multiple of 16 (§ges.
ond, the SMEM is divided into 32 banks, and to ensure a single
bus transfer per instruction round, all threads in a warptacsess
distinct SMEM banks. And third, if threads use a larger numbe
of registers than physically available on the S&pjlling occurs,
which goes all the way to the GMEM. This is significant, as la-
tency of the GMEM is considerably higher than that of SMEM or
the registers, so the amount of spills should be minimized.

3. DEPLOYING KO PIR ON CUDA

In deploying PIR on CUDA, we need to consider two aspects:
how to map PIR execution to the grid-block-thread hierareimg
how to represent and operate on large integers (CUDA does not
directly support large-integer multiplications).

We use a grid representation of the problem, whereby each
thread receives a sequence of numbers and returns as result t
product. Figure 3 illustrates this approach, assumingetiaeed
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database, mapped to the second thread of the second bloek. Th i N

user setg, to be QNR, and all othey values to be QR. At the end ¥ ’H

of the protocol, the user determines the value of the reqddsit o
based on whethef,; has the QNR property or not.

To represent large integers, we split each number into afset o
limbs i.e., consecutive blocks of fixed bit length. For instarite,
each limb is al-bit string, it represents a digit in ba$é (8 = 16).

A number encoded ag927) in this representation (first digit is
most significant limtmsl last one is the least significant linh)
is equal td x (16)* +9x (16)2+2x (16)* +7x (16)° = 1463110.
In our implementation, since we have native 32-bits integeach
limb has32 bits integer, i.e.§ = 232,

The pseudocode in Figure 5 summarizes the approach. The
CUDA kernel executes a set of Montgomery multiplicatioris¢®
each thread. The query elemeptsare positioned consecutively in
the CPU memory (i.e., a matrix of limbs), as illustrated igu¥e 4,
and they are transferred in the same configuration to the &PU’
GMEM. Since the number arrays are large, they are transfbee
tween the GMEM and registers upon access by the threads.

I sl
Figure7: Limb Interleaving for Coalesced GMEM Reads

threads can read simultaneously in a single transfefthémb in
their respectivey; elements.

The pseudocode of this approach is illustrated in Figuretee T
query arrayY’, represented as a two-dimensional matrix in the CPU
memory space, is first transformed into a linear array (aw/shio
Figure 7), before transferring it to the GPU. For examplethia
case of4-bit limbs (83 = 16 and native integers of 4 bits) and
two integers represented @927) (i.e.,14631,0) and(4983) (i.e.,
1881910), the CPU first creates a new vector aligned at a memory
address multiple of6 which contains in sequence the values
3 and 7, followed by a padding of 30 4-bit integers to reach the
16 bytes alignment, then the valuesand 8 followed by another
padding, and so forth for the remaining limbs. The resultiagtor
is passed to the GPU and stored in GMEM.

Coalescing accesses to GMEM brings significant improvesyent
but a large number of registers are required to store alldifilnis
high register pressure results in a large number of spilGNIEM,
which has relatively high latency compared to registers,abtl
SMEM (the later three reside on the SM). We minimize the arhoun
of L1, and designate most of the split LL/SMEM 64KB space as
SMEM. Specifically, 48KB are designated as SMEM, with the re-
Prepare_For_Coalesced_Read maining 16KB for L1. Placing in the SMEM region the limbs oéth
Input: Query ArrayY’, work per thread: (number of database matrix columns]arge integers to be multiplied gives us the opportunity dotmol
Output: Padded ArrayY . explicitly the placement and eviction of limbs in memorydan
Local Variables:pk: minimum multiple of 16bytes larger than . :

optimize memory latency for the Montgomery algorithm. We-em

GPU _PIR
Input: Query ArrayY’, Modulus N
Output: Query Result Array

1. sendT oGpu(Y);

2. sendT oGpu(N);

3. Z = LaunchKernel();

Figure5: GPU PIR Approach Pseudocode

1. k = pad(k); . - .

2. Zy :p,?eéa),nmy()); phasize that there is no actual need for sharing data adnessds.
3. fori=0:k—1do The problem remains an embarrassingly parallel one, ard the
4. for j = OtoN — 1 . no additional overhead for thread synchronization. The oea-
5. pY[pk * j + i = Y[i[j]; son we resort to SMEM is to gain direct control to a faster mgmo

region where we can store our data, without being subjectéukt
1 eviction.

To further reduce the SMEM requirement per thread, we adopt
an optimization whereby the accumulator is split across SME
and registers. Thieast significant portion (Ispdf the accumula-
tor is stored in SMEM, whereas tlmost significant portion (msp)
is stored in thread memory (via registers and L1 cache), lansl t
subject to GMEM spills.

Figure6: Limb Interleaving Pseudocode

The next step is to ensure coalesced accesses to GMEM. Recalf‘
from Section 2 that non-coalesced accesses lead to redaced b
width transfers between the GMEM and the registers. To mteve
this problem, we introduce a pre-processing step wherebZ#U
interleaves the limbs from all” items from thelsi to the msi.
Furthermore, a small padding is introduced to ensure tleanhéxt
sequence of limbs starts at a memory address that is a neuttipl
16 bytes. This layout ensures that all reads are coalescede lz¢in
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4. EXPERIMENTAL EVALUATION

We evaluate experimentally the performance of the proposed
CUDA-based NN PIR approach. Our experimental testbed con-

sists of a Tesla K20Xm card with a GK110 GPU which supports
Compute Capability 3.5. Our board is configured with 14 SMs,
each having 192 (for a total of 2688 cores). The board has 6TB o
global memory available (in total for both kernel code anthké

data) and 64KB of constant memory space. The GPU clock rate is

at 0.73GHz while the memory clock ticks at a rate of 2600MHz.

We use the Sequoia dataset with, 000 points of interest in
California. We vary the database sizéy using the entire Sequoia
dataset and using several settings of grid granularity.rékelting
input size for the KO PIR protocol ranges fras thousand t32
million items. We use encryption strength Iif24-bits.

Figure 8(a) shows query execution time as a function of desab
sizen. We consider several settings/ofi.e., number of multipli-
cations per thread). Higher valueskioforrespond to longer execu-
tion times. However, for fixed, the number of threads launched
isb xt = . Since we maintain a number of= 128 blocks
per thread, after a certain number of blocks={ ) we will
reach the computational limits of the device, i.e., theeerar more
CUDA cores available (the test device 2a$88 cores). After this
limit is reached, the execution time increases linearlyhwatabase
size, similar to the serial implementation. From Figure) 8fge can
observe that doubling also doubles the database size threshold at
which the linear increase occurs. Furthermore, doublidgubles
execution times in the non-saturated region.

This trend can also be observed in Figure 8(b), which shows th
number of operations per second as a function of the datalisese

n. In the non-saturated area we have a steep increase in térms o

operations per second. However, as soon as all CUDA cords are
use, all values ok will yield the same number of operations.

Next, we vary the number of blocks Figure 9(a) illustrates ex-
ecution time for typicab settings and three distinct database sizes:
n = 1M, 2M and4M . Due to the limit of at most 1024 threads per
block we need to havk < 1024, which translates tb6 > 32 (limit
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reached fon = 4M). Asb increases the execution time decreases,
becausek is inversely proportional td, thus doublingh halvesk
which yields shorter execution times per thread. Figurg Bi(s-
trates the same effect on the operation throughput measatem

5. CONCLUSION

We proposed a GPU-based solution to accelerate the executio
of private spatial information retrieval. Our results shivat a care-
ful design customized for the PIR problem can yield perfaroea
improvements of more than one order of magnitude. Although w
focused on nearest-neighbor queries, our solution can teedsd
to other spatial problems that are amenable to a query-bienb
to query-by-index conversion. To the best of our knowledlgs, is
the first work to consider acceleration of private spatifdimation
retrieval using GPUs, and we believe these results are aortem
first step to adopt CUDA for related problems. In the future, w
plan to extend our results to other types of queries, e.iater
spatial skyline queries.
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