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ABSTRACT
Latest generation mobile devices allow users to receive services tai-
lored to their current locations. Location-based service providers
perform spatial queries based on the user locations, but mayalso
share them with various third parties. User whereabouts maydis-
close sensitive details about an individual’s health status, political
views or lifestyle choices, and therefore must be thoroughly pro-
tected.Private information retrieval (PIR)methods support blind
execution of range and NN queries with cryptographic-strength se-
curity, but incur significant performance overhead. We employ
graphical processing units (GPUs) to speed up the crypto opera-
tions required by PIR. We identify the challenges that arisewhen
using GPUs for this purpose, and we propose solutions to ad-
dress them. To the best of our knowledge, this is the first work
to use GPUs for efficient private spatial information retrieval, and
an important first step towards GPU-based acceleration of a broader
range of secure spatial data operations.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Security, Experimentation
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1. INTRODUCTION
Location-basedservice providers (SP)support spatial queries,

e.g., range, nearest-neighbor (NN), based on users’ locations.
However, SPs may not be trustworthy, and may share locationswith
various third parties for commercial profit. The whereabouts of an
individual may disclose sensitive details about a person’sprivate
life [3], e.g., health status, political and religious views, etc.

Several categories of techniques address the location privacy
problem. In dummy-generation techniques [4] each user sends the
SP a number of fake locations together with the real one. The SP
processes the query for each location. However, a sophisticated ad-
versary can easily filter out fake locations based on knowledge of
the road network and typical movement properties. Generalization
techniques build acloaking region (CR)including the query source
and at leastk − 1 real users, according to the spatialk-anonymity
principle [3]. The SP should not be able to distinguish amongthek
users in the CR. However, as discussed in [2] CR-based techniques
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fail to protect against adversaries with background knowledge, and
are not suitable for continuous queries by moving users. In crypto-
graphic techniques [2, 1] users send to the SP only their encrypted
coordinates. Next, the SP executes aprivate information retrieval
(PIR) protocol that blindly processes the query, and returns as re-
sult an encrypted token that only the client can decode to obtain
the query answer. Techniques in this category are provably secure,
but are computationally expensive, as they require large amounts
of cryptographic primitive evaluations.

We investigate the use ofgraphics processing units (GPUs)and
Compute Unified Device Architecture (CUDA)to speed up the ex-
ecution of private spatial information retrieval techniques. GPU
devices consist of large numbers (i.e., thousands) of simple com-
puting cores that are able to perform basic operations in parallel.
However, the execution and programming model of GPUs is sig-
nificantly different than general-purpose CPUs. GPUs have small
amounts of memory resources, and rigid patterns of data access that
must be followed for fast performance. Deploying applications for
GPUs is a challenging task that requires specific design choices and
optimizations for each individual problem.

To the best of our knowledge, this work is the first attempt to
use GPUs for private spatial information retrieval. We focus on
the problem of privately answering NN queries [2], whereby an
NN query is first transformed into a query-by-index, and thenan
instance of theKushilevitz-Ostrovsky (KO)protocol [5] is executed.
Nevertheless, our techniques can be applied to a broader spectrum
of problems that are amenable to the transformation of queries-by-
content to queries-by-index (e.g., range, top-k queries).

Our specific contributions are:

• We propose acceleration of private spatial information re-
trieval using GPUs. This work is an important first step to-
wards efficient secure processing of spatial data, and the de-
sign principles outlined here can be extended to a broader
spectrum of secure location-based queries.

• We focus on the specific technique of answering private NN
queries using Voronoi diagrams and the KO protocol, and
provide details for deploying this technique on GPUs.

• We provide experimental evaluation results which show that
using GPUs can lead to significant improvement in PIR per-
formance compared to CPU implementations.

The rest of the paper is organized as follows: Section 2 presents
necessary background information on PIR and GPUs. Section 3
presents the challenges that arise when deploying PIR protocols on
GPUs, as well as our solution to address them. We present exper-
imental evaluation results in Section 4. Concluding remarks and
directions for future work are summarized in Section 5.

2. BACKGROUND
Private Nearest Neighbor Retrieval. Private Information Re-

trieval (PIR) protocols allow clients (we use the termsuser and
client interchangeably) to retrieve an objectXi from a setX =



Figure 1: NN PIR with Voronoi Diagrams

{X1 . . . Xn} stored by a server, without the server learning the
value of i. Kushilevitz-Ostrovsky (KO)is a computational PIR
protocol [5] that relies on theQuadratic Residuosity Assumption
(QRA), which states that it is computationally hard to find the
quadratic residues in modulo arithmetic of a large composite num-
berN = q1 × q2 whereq1, q2 are large secret primes.

Specifically, given a numbery ∈ Z
+1

N (Z+1

N is the sub-set of
ZN for which the Jacobi symbol is+1) it is computationally hard
(without knowing the factorisation ofN ) to determine whethery
is a quadratic residue (QR) (i.e.,∃x ∈ ZN |y = x2 mod N ) or
a non-residue (QNR). Assume that all objects inX are bits. The
client sends the server an orderedquery arrayof n numbersY =
[y1 · · · yn], such thatyi is QNR and all others are QR. The server
performs amaskedmultiplication of values inY , i.e., it multiplies
together only theyj values for whichXj = 1. The client, who
knows the factorisation ofN , can determine that if the result of the
multiplication is QNR, thenXi = 1, otherwiseXi = 0.

The ExactNN method from [2] builds on the KO protocol to an-
swer NN queries. KO supports only queries-by-index (i.e., return
ith element), while in practice most queries are content-based. To
bridge this gap, ExactNN builds the Voronoi tessellation ofthe set
of data points, and then overlays a regular grid on top of it, as shown
in Figure 1. A Voronoi tessellation is a set of polygonal cells, one
for each data point, with the property that all locations in the cell
of a point have that point as nearest neighbor. The contents of each
grid cell is set to contain all the points for which the corresponding
Voronoi cells intersect that grid cell.

In Figure 1, there are four points of interestp1 . . . p4, and hence
four Voronoi cells. The regular grid has16 cells. Grid cellA1 con-
tains only pointp2, since that is the only Voronoi cell that intersects
A1. On the other hand, cellC1 containsp2, p3, p4. At query time,
the useru first retrieves the grid granularity, then computes the grid
cell that encloses her location. The contents of the grid cell are re-
trieved using KO, and it is guaranteed that the user will receive her
exact NN (and possibly several other points whose Voronoi cells
intersect the grid cell of the user).

Registers

SMEM L1

Registers

SMEM L1

SM-0 SM-13

GMEMCMEM

Figure 2: Main CUDA memory hierarchy modules

CUDA Architecture. Compute Unified Device Architecture
(CUDA)1 is a parallel computing platform and programming model
designed by NVIDIA [7]. A CUDA program consists of a set of

1http://www.nvidia.com/object/cuda_home_new.html
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Figure 3: Allocation of work to CUDA threads and blocks

kernels, i.e., functions that run on the GPU and contain instructions
from CUDA’s own instruction set architecture (PTX ISA). Kernels
are executing across a set of parallelthreadswhich are organized
into blocks. Each thread has its own ID (unique inside the block),
program counter, register file and private memory. Threads within
a block can cooperate through barrier synchronization and have ac-
cess to a per-blockshared (SMEM)memory area. Blocks are or-
ganized inside agrid, i.e., an array of blocks that execute the same
kernel. All threads in the grid have access to the GPU’sglobal
(GMEM) and constant (CMEM)memory regions. The GPU has
a set ofstreaming multiprocessors (SM), and each SM controls a
number of CUDAcores. A SM executes one or more thread blocks,
and each core executes one instruction per clock for a thread. The
SM scheduling unit is awarp, which is a group of32 threads be-
longing to the same block.

While programmers can generally ignore warp execution and
write applications according to the hierarchy of grids, blocks and
threads, the warp concept is very important from a performance
standpoint. An important performance metric isoccupancy, which
is defined as the ratio between the maximum number of warps
which can be scheduled simultaneously during kernel execution di-
vided by the maximum number of warps that the device supports.
Occupancy is influenced by the number of registers a thread uses,
the amount of shared memory used per block, and theblock size,
i.e., the count of threads in a block.

Figure 2 shows the main components of the CUDA memory hi-
erarchy and their visibility across SMs. The register file onthe SM
stores the thread registers for the current warp. The rest ofthe mem-
ory space on the SM is split between the SMEM and a L1 cache that
buffers accesses to GMEM. The programmer has some flexibility
in choosing the split allocation between SMEM and L1. There are
three key aspects that dictate the performance of memory accesses.
First, to complete a round of instructions with a single bus trans-
fer, accesses to GMEM must becoalesced, i.e., threads in the same
warp must access consecutive addresses, and the first threadin the
warp must access an address aligned at a multiple of 16 bytes.Sec-
ond, the SMEM is divided into 32 banks, and to ensure a single
bus transfer per instruction round, all threads in a warp must access
distinct SMEM banks. And third, if threads use a larger number
of registers than physically available on the SM,spilling occurs,
which goes all the way to the GMEM. This is significant, as la-
tency of the GMEM is considerably higher than that of SMEM or
the registers, so the amount of spills should be minimized.

3. DEPLOYING KO PIR ON CUDA
In deploying PIR on CUDA, we need to consider two aspects:

how to map PIR execution to the grid-block-thread hierarchy, and
how to represent and operate on large integers (CUDA does not
directly support large-integer multiplications).

We use a grid representation of the problem, whereby each
thread receives a sequence of numbers and returns as result their
product. Figure 3 illustrates this approach, assuming there areb
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Figure 4: Query Array Representation in GPU PIR Approach

blocks of t threads each. For a database ofn items, each thread
receivesk = n

b×t
large integers denoted byy1, . . . yk as input (this

is the query arrayY = [y1 . . . yS]), and computes as result their
masked productz, one element of the result arrayZ. In the di-
agram, the user asks for the value of the shaded element in the
database, mapped to the second thread of the second block. The
user setsy2 to be QNR, and all othery values to be QR. At the end
of the protocol, the user determines the value of the requested bit
based on whetherz22 has the QNR property or not.

To represent large integers, we split each number into a set of
limbs, i.e., consecutive blocks of fixed bit length. For instance,if
each limb is a4-bit string, it represents a digit in base16 (β = 16).
A number encoded as(3927) in this representation (first digit is
most significant limbmsl, last one is the least significant limblsl)
is equal to3×(16)3+9×(16)2+2×(16)1+7×(16)0 = 1463110 .
In our implementation, since we have native 32-bits integers, each
limb has32 bits integer, i.e.,β = 232.

The pseudocode in Figure 5 summarizes the approach. The
CUDA kernel executes a set of Montgomery multiplications [6] for
each thread. The query elementsyi are positioned consecutively in
the CPU memory (i.e., a matrix of limbs), as illustrated in Figure 4,
and they are transferred in the same configuration to the GPU’s
GMEM. Since the number arrays are large, they are transferred be-
tween the GMEM and registers upon access by the threads.

GPU_PIR
Input: Query ArrayY , ModulusN
Output: Query Result ArrayZ
1. sendToGpu(Y );
2. sendToGpu(N );
3. Z = LaunchKernel();

Figure 5: GPU PIR Approach Pseudocode

Prepare_For_Coalesced_Read
Input: Query ArrayY , work per threadk (number of database matrix columns)
Output: Padded ArraypY
Local Variables:pk: minimum multiple of 16bytes larger thank
1. pk = pad(k);
2. pY = newarray());
3. for i = 0 : k − 1 do
4. for j = 0 to N − 1;
5. pY [pk ∗ j + i] = Y [i][j];

Figure 6: Limb Interleaving Pseudocode
The next step is to ensure coalesced accesses to GMEM. Recall

from Section 2 that non-coalesced accesses lead to reduced band-
width transfers between the GMEM and the registers. To prevent
this problem, we introduce a pre-processing step whereby the CPU
interleaves the limbs from allY items from thelsl to themsl.
Furthermore, a small padding is introduced to ensure that the next
sequence of limbs starts at a memory address that is a multiple of
16 bytes. This layout ensures that all reads are coalesced, hence all
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Figure 7: Limb Interleaving for Coalesced GMEM Reads

threads can read simultaneously in a single transfer thejth limb in
their respectiveyi elements.

The pseudocode of this approach is illustrated in Figure 6. The
query arrayY , represented as a two-dimensional matrix in the CPU
memory space, is first transformed into a linear array (as shown in
Figure 7), before transferring it to the GPU. For example, inthe
case of4-bit limbs (β = 16 and native integers of 4 bits) and
two integers represented as(3927) (i.e.,1463110) and(4983) (i.e.,
1881910), the CPU first creates a new vector aligned at a memory
address multiple of16 which contains in sequence thelsl values
3 and7, followed by a padding of 30 4-bit integers to reach the
16 bytes alignment, then the values2 and8 followed by another
padding, and so forth for the remaining limbs. The resultingvector
is passed to the GPU and stored in GMEM.

Coalescing accesses to GMEM brings significant improvements,
but a large number of registers are required to store all limbs. This
high register pressure results in a large number of spills toGMEM,
which has relatively high latency compared to registers, L1and
SMEM (the later three reside on the SM). We minimize the amount
of L1, and designate most of the split L1/SMEM 64KB space as
SMEM. Specifically, 48KB are designated as SMEM, with the re-
maining 16KB for L1. Placing in the SMEM region the limbs of the
large integers to be multiplied gives us the opportunity to control
explicitly the placement and eviction of limbs in memory, and to
optimize memory latency for the Montgomery algorithm. We em-
phasize that there is no actual need for sharing data across threads.
The problem remains an embarrassingly parallel one, and there is
no additional overhead for thread synchronization. The only rea-
son we resort to SMEM is to gain direct control to a faster memory
region where we can store our data, without being subjected to the
L1 eviction.

To further reduce the SMEM requirement per thread, we adopt
an optimization whereby the accumulator is split across SMEM
and registers. Theleast significant portion (lsp)of the accumula-
tor is stored in SMEM, whereas themost significant portion (msp)
is stored in thread memory (via registers and L1 cache), and thus
subject to GMEM spills.
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Figure 8: Impact of database size

4. EXPERIMENTAL EVALUATION
We evaluate experimentally the performance of the proposed

CUDA-based NN PIR approach. Our experimental testbed con-
sists of a Tesla K20Xm card with a GK110 GPU which supports
Compute Capability 3.5. Our board is configured with 14 SMs,
each having 192 (for a total of 2688 cores). The board has 6TB of
global memory available (in total for both kernel code and kernel
data) and 64KB of constant memory space. The GPU clock rate is
at 0.73GHz while the memory clock ticks at a rate of 2600MHz.

We use the Sequoia dataset with65, 000 points of interest in
California. We vary the database sizen by using the entire Sequoia
dataset and using several settings of grid granularity. Theresulting
input size for the KO PIR protocol ranges from64 thousand to32
million items. We use encryption strength of1024-bits.

Figure 8(a) shows query execution time as a function of database
sizen. We consider several settings ofk (i.e., number of multipli-
cations per thread). Higher values ofk correspond to longer execu-
tion times. However, for fixedn, the number of threads launched
is b × t = n

k
. Since we maintain a number oft = 128 blocks

per thread, after a certain number of blocks (b = n
128k

) we will
reach the computational limits of the device, i.e., there are no more
CUDA cores available (the test device has2, 688 cores). After this
limit is reached, the execution time increases linearly with database
size, similar to the serial implementation. From Figure 8(a), we can
observe that doublingk also doubles the database size threshold at
which the linear increase occurs. Furthermore, doublingk doubles
execution times in the non-saturated region.

This trend can also be observed in Figure 8(b), which shows the
number of operations per second as a function of the databasesize
n. In the non-saturated area we have a steep increase in terms of
operations per second. However, as soon as all CUDA cores arein
use, all values ofk will yield the same number of operations.

Next, we vary the number of blocksb. Figure 9(a) illustrates ex-
ecution time for typicalb settings and three distinct database sizes:
n = 1M , 2M and4M . Due to the limit of at most 1024 threads per
block we need to havek ≤ 1024, which translates tob ≥ 32 (limit
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reached forn = 4M ). Asb increases the execution time decreases,
becausek is inversely proportional tob, thus doublingb halvesk
which yields shorter execution times per thread. Figure 9(b) illus-
trates the same effect on the operation throughput measurement.

5. CONCLUSION
We proposed a GPU-based solution to accelerate the execution

of private spatial information retrieval. Our results showthat a care-
ful design customized for the PIR problem can yield performance
improvements of more than one order of magnitude. Although we
focused on nearest-neighbor queries, our solution can be extended
to other spatial problems that are amenable to a query-by-content
to query-by-index conversion. To the best of our knowledge,this is
the first work to consider acceleration of private spatial information
retrieval using GPUs, and we believe these results are an important
first step to adopt CUDA for related problems. In the future, we
plan to extend our results to other types of queries, e.g., private
spatial skyline queries.

Acknowledgment: The work reported in this paper has been
partially supported by the NSF grant CNS-1111512.

6. REFERENCES
[1] G. Ghinita, P. Kalnis, M. Kantarcioglu, and E. Bertino. Approximate and exact

hybrid algorithms for private nearest-neighbor queries with database protection.
Geoinformatica, 15(4):699–726, 2011.

[2] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan. Private
queries in location based services: Anonymizers are not necessary. InSIGMOD
Conference Proceedings, pages 121–132. ACM, June 2008.

[3] M. Gruteser and D. Grunwald. Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking. InProc. of USENIX MobiSys, 2003.

[4] H. Kido, Y. Yanagisawa, and T. Satoh. An anonymous communication technique
using dummies for location-based services. InProc. of the 2005 IEEE Intl.
Conference on Pervasive Services, pages 88–97, Santorini, Greece, 2005.

[5] E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: Single database,
computationally-private information retrieval. InIEEE Symposium on
Foundations of Computer Science, pages 364–373, 1997.

[6] P. L. Montgomery. Modular multiplication without trialdivision.Mathematics of
Computation, 44(170):519–521, 1985.

[7] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel Programming
with CUDA. ACM Queue, 6(2):40–53, Mar. 2008.


	1 Introduction
	2 Background
	3 Deploying KO PIR on CUDA
	4 Experimental Evaluation
	5 Conclusion
	6 References

