Labeling Streets in Interactive Maps
Using Embedded Labels

Nadine Schwartges
Chair of Computer Science |
University of Wiirzburg, Germany
http://www1.informatik.uni-
wuerzburg.de/en/staff

ABSTRACT

We consider the problem of labeling linear objects (such as
streets) in interactive maps where the user can pan, zoom,
and rotate continuously. Our labels contain text (such as
street names). They are embedded into the objects they
label, i.e., they follow the curvature of the objects, they do
not move with respect to the map background, but they
scale in order to maintain constant size on the screen. To
the best of our knowledge, this is the first work that deals
with curved labels in interactive maps.

Our objective is to label as many streets as possible and
to select label positions of high quality while forbidding la-
bels to overlap at street crossings. We present a simple but
effective algorithm that takes curvature and crossings into
account and produces aesthetical labelings. On average over
all interaction types, our implementation reaches interactive
frame rates of more than 85 frames per second.

Categories and Subject Descriptors

H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—artificial, augmented, and vir-
tual realities

General Terms

Algorithms, Experimentation

Keywords

Automated label placement, interactive maps, visualization

1. INTRODUCTION

Whenever we visit a city where we have never been be-
fore, we appreciate tools that help us to find our ways. Some
years ago, paper maps were the only such tool. They mainly
guide us by means of textual annotations, i.e., by labels. In
this work, we consider the problem of labeling streets. We
require that a street label follows the curvature of its street.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

SIGSPATIAL’ 14, November 04-07 2014, Dallas/Fort Worth, TX, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM
978-1-4503-3131-9/14/11 ...$15.00

http://dx.doi.org/10.1145/2666310.2666494.

Alexander Wolff

Jan-Henrik Haunert

Institute for Geoinformatics and Remote Sensing

University of Osnabrick, Germany
http://www.igf.uni-
osnabrueck.de/en/institute/staff/

The challenge is to determine nice-looking label positions
and, at the same time, to avoid overlaps of labels at cross-
ings. We want to label many streets, but in this paper we do
not aim at placing more than one label per street. (We mo-
tivate this decision in the related work section below.) That
brings us to the static label-number optimization problem:

Given a set P of objects (here: polygonal lines or, for
short, polylines) in the plane and, for each p € P, a set
L(p) of potential label positions and, for each £ € L(p), its
cost ¢(¢), find a subset £ C |, p L(p) of label positions that
primarily maximizes the number |£| of placed labels and
secondarily minimizes the sum of the costs C =), c(£)
such that no two labels intersect and |L(p) N L] < 1 for
each p € P, i.e., there is at most one label per polyline.
The cost of a label position £ is meant to be small if £ is
aesthetically pleasing, e.g., if £ has few bends. Note that the
label-maximization problem for points |7] can be seen as a
special case of our problem.

Most people nowadays rather use digital maps. Hence, we
aim for placing street labels in a dynamic setting where the
user can interact with the map by panning, zooming, and
rotating continuously. Interactions change the visible part
of the map. The additional challenge of a dynamic settings
is to react to interactions properly; e.g., if a label leaves the
visible part of the map. We stress that we only know the
interaction that is currently executed.

Our Model. We define a time interval [0,7] in which the
user interacts. The content of the screen is redrawn re-
peatedly; the content between two updates is a frame. Ac-
cordingly, we discretize the time interval into a sequence
t1,...,tm (with t1 = 0 and ¢,, = T') of points in time that
correspond to frames. At time ¢;, the user can see a rectan-
gular region R; of the plane, the view. When the user pans,
R; is translated; when the user zooms, R; is scaled; when
the user rotates, R; is rotated. Due to the change of the
view, on a street, a potential label position that yields lower
costs than the selected one can appear. Still, we prohibit
that a label slides to a better position as we believe that
this would irritate the map user.

This brings us to the following extension of the static line-
labeling problem: For i = 1,...,m, let £; be the subset of
labels (at most one per street) that are placed at time ¢; and
intersect R; (with more than, say, half of their length); let C;
be the sum of the costs of the labels in £;. Our primary goal
is to maximize the number of placed labels > 7", |£;| over
all frames; our secondary goal is to minimize the sum of the
costs » ", C; over all frames.

Several online map services use tile-based maps. Usually,
such services precompute the labeling of several rows of tiles
and cache the results. If a label overlaps two tiles, the place-
ment of the two label pieces must be coordinated, otherwise
the two pieces may not fit. By contrast, we use vector-based
maps and do not cache labels.

Related Work. In general, there are three types of map ob-
jects that must be labeled: points (e.g., cities in a small-scale
map), polygonal lines (e.g., streets in a large-scale map), and
areas (e.g., countries). Wagner et al. [7] and others suggest
to solve the general label-placement problem by first gener-
ating a sufficient number of potential label positions for any
map object to be labeled and then having a high-level algo-
rithm making a choice between these positions such that as
many map objects as possible receive an overlap-free label.
In this paper, we focus on the first step and use an ad-hoc
method for the second step: we proceed incrementally, i.e.,
we go through the map objects (streets in our case) in an
arbitrary order and greedily place labels.

In his seminal work, Imhof [2] listed rules for good label-
ings of point, line, and area objects. For linear objects, he
states that labels should follow the curvature but avoid too
strong bends. He recommends to not put too much white
space between characters of the same label. (Our labeling
algorithm observes these rules. We ignore, however, the rule
that labels should be written as horizontal as possible—in
our dynamic setting, the orientation of objects can change.)
Finally, a label should be repeated, especially if two objects
are connected and cannot be distinguished.

We ignore this rule due to the fact that it is NP-hard to
maximize, in an overlap-free static labeling, the number of
street segments that are labeled [1], in the sense that the
label overlaps the street segment (so that the map reader
understands the label-segment association). Moreover, it is
known that maximizing the number of labeled streets with-
out label-label overlaps is NP-hard |4]—even if every street
is horizontal or vertical. Hence, our problem is NP-hard
even for one frame.

Strijk [5] gave one of the few algorithms for (static) street
labeling with embedded labels. His work has inspired our
algorithm. To obtain an overlap-free and aesthetical la-
beling, Strijk computes potential label positions for each
street. Next, he applies a heuristic for optimizing an evalua-
tion function for the entire labeling (we, by contrast, decide
street-wise). His function considers three criteria: street—
label association, label visibility, and aesthetics.

So far two approaches for labeling streets dynamically
have been suggested; one by Maass and Déllner 3] and one
by Vaaraniemi et al. [6]. Both place only straight-line labels.

Maass and Déllner [3] label interactive 3D environments,
i.e., maps with 3D objects (such as buildings). They pre-
vent label-label and object—label occlusions. The authors
support two modes of user interaction. In the first mode,
the labeling does not change while the user interacts. When
the user stops interacting, labels slide through the streets
until they are visible. In the second mode, labels fade out
when the user starts interacting with the map and fade in
when the user stops the interaction. We argue that both
modes cause high visual complexity.

Vaaraniemi et al. [6] gave a force-directed algorithm for
placing straight-line labels onto curved streets. Addition-
ally, they conducted an expert study. They presented three

labeling styles: (a) Labels are placed horizontally. To main-
tain the label-object association, they used straight lines
connecting label and object. (b) Straight labels have a sim-
ilar rotation as the streets they label. (c) Labels follow the
course of the street. Five out of six experts judged (c) as
the most aesthetic style but also expected bad readability for
irregular streets. This is exactly what we want to prevent
with our approach for curved labels.

Our Contribution. We present the first algorithm that
annotates streets with embedded curved labels in real time
and deals with panning, zooming, and rotations (see Sec-
tion . We guarantee that our labelings are overlap-free if
the font height is bounded by the street width. Our labelings
are aesthetical in that we punish label positions with strong
bends. We have implemented our algorithm and tested it on
real-world data (see Section . A video shows our labeling
algorithm in actio

2. ALGORITHMS

Our algorithm repeatedly tests each unlabeled street in
the view for potential label positions. Among these, we try
to select an aesthetical one.

2.1 Finding Nice-Looking Label Positions

Any long-enough street contains an unbounded number
of possible label positions. For finding a good position, we
initially place a label at the start point of its street. Then, we
push the label through the entire street. Simultaneously, we
evaluate each label position by some evaluation criteria to
obtain costs. Based on the costs, we select a good position.

We assume that a polyline (s1,...,s,) is given by an or-
dered sequence of segments, where the end point of seg-
ment s; (i =1,...,n—1) and the start point of segment s;1
are the same. We call this point b; a bend. Start and end
points of streets are not considered bends. In our case, costs
only change at bends.

Evaluation. We first define the cost for each bend. The
cost depends on several criteria, which are weighted by im-
portance. We sum up the weighted costs of the criteria to
obtain the cost of a bend; formally,

Cbi) = weee(b:)

eckE

where e is an evaluation criterion from the set of criteria F,
we is the weight of e, and ce(b;) is the cost of e for bend b;.

Next, we compute the cost of a label position. Consider
a polyline # = (s1,...,s,) and any label position ¢ at .

Let 7 = (sj,...,sk) (1 < j <k < n) be the sequence of
segments that £ occupies. Then we define the cost of £ to be
k—1
>)
i=j

Suppose that ¢ does not start at bend b;_1, the start of sy,
but anywhere else at s;. Then ¢ has at least the same cost
as a label of the same length that does start at b;_1. So,
it suffices to consider the bends as starting points for po-
tential label positions. Let |¢| be the length of ¢. For

1h‘ctp ://lamut.informatik.uni-wuerzburg.de/
dynalinelab.html

http://lamut.informatik.uni-wuerzburg.de/dynalinelab.html
http://lamut.informatik.uni-wuerzburg.de/dynalinelab.html

Si Qg
b; Si+1
(a) a; €[0°;180°) (b) a; € [0°;—180°)

Figure 1: How we measure angles.

each 1 = 1,2,..., we define k() (if such an index exists)
such that 357" [s;] < [¢] and Y5 |s;| > [¢]. For each
sequence (si,. .., Sk(;)), we compute its cost and determine

the cheapest sequence. We center the label within its se-
quence. We now describe our evaluation criteria.

Angles. Let o; € (—180°,180°) be the angle between seg-
ments s; and s;+1 measured as in Figure In the sequel,
we identify a; with its absolute value |a;|. Obviously, the
larger o, the worse a label looks if it contains bend b;.

We want to punish large angles but also take into account
that many small angles between very short segments basi-
cally also yield a large angle. Formally, let € be a threshold,
e.g., the average width of a character of the given font. For
determining the angles that contribute to our evaluation,
we take into account the length |s;| of s;. Let ap = 0. If
|si] > 6, let k = 0. Otherwise, we search for a & > 0 so
that S5 |s;] < 6 and E;i’f |sj| > 6. The final cost for

j=i :
the subsequence (s;, ..., Sitk) is (Z;:f:ll a;)?. The cost of
a label position is the sum of the costs of its subsequences.

Finally, we define a maximum angle o*. If a; > a*, we
stop evaluating the current sequence and start a new se-

quence at s;41.

Crossings. As we want to place as many labels as possible,
we try to avoid labels that pass a crossing. Otherwise, we
might block a crossing for another label that must pass the
crossing. For that reason, we charge a cost of X for every
crossing that a label contains. If we find a crossing while
evaluating a sequence, we test whether it is already occupied.
If so, we cancel the evaluation of the current sequence and
start a new sequence after the crossing.

Observe that we visualize our streets with spatial extent.
By contrast, our graph data structure for the street network
consists of points (crossings) and polylines (street sections).
For that reason, our evaluation takes into account the visual
start and end points of the streets; see Figure[2]

Figure 2: Data structure (lines) and
visualization (bars) of our street net-
work. The dotted line indicates the
visual end point of the vertical street.

The View. In every frame, we collect for each polyline all
its segments that intersect the view. If a polyline leaves and
enters the view multiple times, we choose the longest visible
part. As we permit labels to overlap the view boundary, we
expand each polyline that leaves the view by some thresh-
old v. We evaluate the (extended) visible parts of a poly-
line, but we punish sequences overlapping the view boundary
with some additional cost V. If the selected sequence over-
laps the view boundary, we do not center the label within

6)nb!un oN Qrientation
7 %
() 6,
7) K7
1‘/6 o
3 2

Figure 3: Correcting the orientation of one part of
a label might lead to a distortion of another part.

its sequence but we try to maximize its visibility.

2.2 Dealing with Interactions

In each frame, we do three things: we try to label unla-
beled streets, we adjust the label positions while zooming,
and we correct the labels’ orientations while rotating. Since
panning is simple, we sketch only zooming and rotations.

First, assume that the map user zooms out. (We treat
zooming in inversely.) Since we require that the label size
remains constant on the screen, labels grow with respect to
their streets. In principle, our labels grow equally at both
ends. If, however, a label is not centered, it first grows such
that it becomes centered again. If the label overlaps the view
boundary, the label grows into the direction of the view.
We try to keep crossings free by growing labels away from
crossings if possible. As before, we reject label positions that
contain bends that exceed a*.

Second, if the user rotates the map, the orientation of a
label can become upside down. There are cases in which the
orientation of the label is not unique; see Figure 5] As a
rough guide, we determine the orientation by the gradient
between the start point and the end point of the label.

3. EXPERIMENTS

We have implemented the algorithm of Section [2] using
C++ with OpenSceneGraph 3.0°|on Windows 7 with a 3.3-
GHz AMD triple-core processor and 8 GB of RAM. We used
the Microsoft Visual Studio 2010 Ultimate compiler in 32-bit
release mode. For our experiments, we used OpenStreetMap
data provided by Geofabrikﬂ from which we extracted 620
streets of the downtown of Wiirzburg.

Our algorithm for placing letters of curved text is rather
slow. Since there are open-source tools for OpenStreetMap
data that render curved text (such as libosmscoutEb, we did
not optimize this part of our implementation.

Table [1| gives an overview over the results of our exper-
iments; we discuss them in the remainder of this section.
Figure [4] depicts some screen shots of a map labeled by our
algorithm. To save running time, we computed the lengths
of street segments and the angles between them in a prepro-
cessing. This preprocessing took less than one second.

As the computation time depends on the number of streets
within the view, we executed our test for two different res-
olutions; one simulates the screen of a navigation system
(GPS), the other one a computer monitor. On an average,
computing the initial labeling took us 0.08 sec. for GPS and
0.27 sec. for the larger monitor screen size.

We tested several camera paths. There are four path
classes in which we only execute one interaction type. Each
of these path classes contains five different paths at various

Zhttp://www.openscenegraph.org/, accessed 11-24-2013
3http://download.geofabrik.de/} accessed 5-20-2014
“http://libosmscout.sourceforge.net/, acc. 6-30-2014

http://www.openscenegraph.org/
http://download.geofabrik.de/
http://libosmscout.sourceforge.net/

=] lUOrrerW

G:

O %

<

Figure 4: From left to right: We pan to the right.

Initially, the label “Simon-Breu-Strafle” is completely

visible; then it partly leaves the view. After moving it to a new position, it is completely visible again.

scales. Each path lasts 14 sec. At the largest scale, there
are, on average, 5 labels on the GPS display and 15 labels
on the monitor; at the smallest scale, there are 15 and 30
labels, respectively. The fifth path class contains five multi-
interaction paths. Each path mixes panning, zooming, and
rotation operations for a total of 72 sec. We distributed the
time for each of these three interaction types equally at three
different scales (the largest and the smallest scale being the
same as for the single interaction paths).

After some testing, we set the parameters of our algorithm
as follows: 0 = 0.57f, where f is the current font size, X =
100,000, v = |£]/2, where £ is the label of the polyline, V =
100,000, and o* = 90°. We weigh all criteria equally.

Our implementation yields very good frame rates of 90—
190 frames per sec. (FPS) for panning, rotating, and the
multi-interaction paths. At first sight, the frame rates of 4—
12 FPS for zooming are unacceptable. On closer inspection,
we spent most of the time for placing the letters; a rou-
tine that we considered less important to improve as stated
above. For panning and rotation operations, we only draw
changes of the labeling. While zooming, we have to draw
all the labels in each frame as, on the screen, the underly-
ing streets change continuously. Switching off the drawing
routine results in average frame rates of more than 155 FPS
(independently of the interaction type).

Table 1: Results. Our camera paths either executed
only one interaction type or a combination (multi).
We processed every path with a small and a large
number of visible streets as in navigation systems
(GPS) and on computer monitors (mon.), respec-
tively. We recorded frame rates, (long enough) vis-
ible streets, and the percentage of placed labels.

of-rate all streets long enough

type size [FPS] #vis. %lab. #vis. %lab.
pan GPS 182 26 34 11 78
mon. 135 78 33 31 83

zoom GPS 13 25 30 10 78
out mon. 4 55 37 24 84
zoom GPS 12 25 33 10 82
in mon. 4 67 34 26 87
rota- GPS 189 22 40 11 81
tion mon. 139 64 35 27 85
multi GPS 126 24 33 10 82
mon. 90 68 35 27 86

Our algorithm labeled only about 34% of all visible streets,
but 80% of all streets that are actually long enough to host
their labels. Note that even in optimal solutions there can
be unlabeled streets.

Finally, we compare our algorithm with the two other
existing algorithms for labeling lines in interactive maps.
Clearly, the frame rate depends on the number of visible
streets, whether labels are curved (both existing approaches
use straight-line labels), and on the hardware. In general, a
frame rate of 24 FPS is qualified as fluent. Maass and Doll-
ner 3] achieved frame rates of 17-22 FPS using an 2.93-GHz
Intel Core 2 Duo processor with 2 GB of RAM. Vaaraniemi
et al. [6] used GPU computation (on an NVIDIA GeForce
8600M GT with 256 MB of RAM). They labeled 512 ob-
jects of various types within 5.5 ms (which corresponds to
180 FPS).

We conclude that our algorithm is highly real-time capable
in most situations. When zooming, the letter-placement is
too slow. This should be improved.

4. REFERENCES

[1] A. Gemsa, B. Niedermann, and M. Néllenburg. Label
placement in road maps. In Proc. 30th FEurop.
Workshop Comput. Geom. (EuroCG’14), 2014.

E. Imhof. Positioning names on maps. Amer. Cartogr.,

2(2):128-144, 1975.

[3] S. Maass and J. Dollner. Embedded labels for line
features in interactive 3D virtual environments. In
Proc. 5th Int. ACM Conf. Computer Graphics, Virtual
Reality, Visualization and Interaction in Africa
(AFRIGRAPH’07), pages 53-59, 2007.

[4] S. Seibert and W. Unger. The hardness of placing street
names in a Manhattan type map. In G. Bongiovanni,
G. Gambos, and R. Petreschi, editors, Proc. 4th Italian
Conf. Algorithms Complexity (CIAC’00), volume 1767
of LNCS, pages 102—-112. Springer, 2000.

[5] T. Strijk. Geometric Algorithms for Cartographic Label
Placement. PhD thesis, Utrecht University, Department
of Computer Science, Jan. 2001.

[6] M. Vaaraniemi, M. Treib, and R. Westermann.
Temporally coherent real-time labeling of dynamic
scenes. In Proc. 3rd Int. Conf. Comput. Geospatial
Research Appl. (COM.Geo’12), pages 17:1-17:10. ACM,
2012.

[7] F. Wagner, A. Wolff, V. Kapoor, and T. Strijk. Three
rules suffice for good label placement. Algorithmica,
30(2):334-349, 2001.

[2

	Introduction
	Algorithms
	Finding Nice-Looking Label Positions
	Dealing with Interactions

	Experiments
	References

