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ABSTRACT
Directions and paths, as commonly provided by navigation sys-
tems, are usually derived considering absolute metrics, e.g., find-
ing the shortest path within an underlying road network. With the
aid of crowdsourced geospatial data we aim at obtaining paths that
do not only minimize distance but also lead through more popular
areas using knowledge generated by users. We extract spatial rela-
tions such as “nearby” or “next to” from geo-textual travel blogs,
that define closeness between pairs of points of interest (POIs) and
quantify each of these relations using a probabilistic model. Us-
ing Bayesian inference, we obtain a probabilistic measure of spa-
tial closeness according to the crowd. Applying this measure to
the corresponding road network, we derive an altered cost function
taking crowdsourced spatial relations into account. We propose
two routing algorithms on the enriched road networks. To evaluate
our approach, we use Flickr photo data as a ground truth for pop-
ularity. Our experimental results – based on real world datasets –
show that the computed paths yield competitive solutions in terms
of path length while also providing more “popular” paths, making
routing easier and more informative for the user.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
User-contributed content has benefited many scientific disciplines

by providing a wealth of new data. Technological progress, espe-
cially smartphones and GPS receivers, have facilitated contribut-
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ing to the plethora of available information. OpenStreetMap1 con-
stitutes the standard example and reference in the area of volun-
teered geographic information. Authoring geospatial information
typically implies coordinate-based quantitative data. The broad
mass of users contributing content, however, are much more com-
fortable using qualitative information. People typically do not use
geographic coordinates to describe their spatial motion, for instance
when travelling or roaming. Instead, they use qualitative informa-
tion in the form of toponyms (landmarks) and spatial relationships
(“near”, “next to”, “close by”, etc.). Hence, there is an abundance
of qualitative geospatial information (freely) available on the in-
ternet, e.g., in travel blogs, largely unused. In contrast to quanti-
tative information, which is mathematically measurable (although
sometimes flawed by measurement errors), qualitative information
is based on personal cognition. This is of particular interest when
considering the “routing problem” (equivalent to “path finding”).
Traditional routing queries use directions from systems that only
take the structure of the underlying road network into account. In
human interaction such information is usually enhanced with quali-
tative information (e.g. “the bridge next to the Eiffel tower”). Com-
bining traditional routing algorithms with crowdsourced geospatial
references we aim to more properly represent human perception
while making it mathematically measurable. For that purpose, we
enrich a road network with information about spatial relations be-
tween pairs of points of interest (POIs) extracted from textual travel
blog data. Using these relations, we obtain routes that are easier to
interpret and to follow, much rather resembling a route that a person
would provide.

As an example, consider the routing scenario in Figure 1 which
is set in the city of Paris, France. The continuous line represents
the conventional shortest path from starting point “Gare du Nord”
to the target at “Quai de la Rapée” –while the dot and dashed lines
represent alternative paths computed by the algorithms introduced
in this paper. The triangles in this example denote touristic land-
marks. For instance, the dashed path on the bottom right passing
recognizable locations such as “Place de la République”, “Cirque
d’hiver” and “la Bastille”, as proposed by our algorithms, is con-
siderably easier to describe and follow, and might yield more inter-
esting sights for tourists than the shortest path.

The challenge of this work is to extract crowdsourced informa-
tion from textual data and incorporate it, in an existing road net-
work. This enriched road network is subsequently used to provide
paths, between given arbitrary pairs of start and target nodes, that

1https://www.openstreetmap.org/

https://www.openstreetmap.org/


Figure 1: Short and popular paths in Paris.
satisfy the claim of higher popularity2 while only incurring a minor
additional spatial distance.

2. RELATED WORK
Research areas relevant to this work include: (i) qualitative rout-

ing and (ii) mining of semantic information from moving object
trajectories. The authors in [1] try to tackle the problem of efficient
routing by using cost functions that trade off between minimizing
the length of a provided path while also minimizing the complexity
of the provided path in terms of instructions given. The discovery
of semantic places through the analysis of raw trajectory data has
been investigated thoroughly over the course of the last years. The
authors in [4] provide solutions for the semantic place recognition
problem and categorize the extracted PoIs into pre-defined types.
Finally, the authors in [6] propose an approach for route recommen-
dation based on a user opinion mining platform about trajectories,
providing longer but more pleasant routes. The major drawback
of these approaches is that they focus almost exclusively on road
network data without taking into account any kind of qualitative
information, i.e., information coming from the user. Additionally,
they do not integrate the extracted semantic information into the
road network. Instead, they use the extracted information to only
enrich specific trajectories.

3. SPATIAL RELATION EXTRACTION
In this work, we choose travel blogs as a rich potential source for

(crowdsourced) geospatial data. This selection is based on the fact
that people tend to describe their experiences in relation to their
trips and places they have visited, which results in “spatial” nar-
ratives. To gather such data, we use classical Web crawling tech-
niques and compile a database consisting of 120,000 texts, obtained
from travel blogs3. Obtaining qualitative spatial relations from text
involves the detection of (i) POIs (or toponyms) and (ii) spatial
2Formally introduced in Section 6
3http://www.travelblog.com/
http://www.traveljournal.com/
http://www.travelpod.com/

relationships linking the POIs. The employed approach involves
geoparsing, i.e., the detection of candidate phrases, and geocoding,
i.e., linking these phrases to actual coordinate information. Using
the Natural Language Processing Toolkit (NLTK) (cf. [3]), a lead-
ing platform for analyzing raw natural language data, we managed
to extract 500,000 POIs from the text corpus. For the geocoding
of the POIs, we rely on the GeoNames4 geographic gazetteer data,
which contains over ten million POI names worldwide and their
coordinates. This procedure associates (whenever possible) POIs
found in the travel blogs with geographic coordinates. Using the
GeoNames gazetteer we were able to geocode about 480,000 out
of the 500,000 extracted POIs.

Having identified and geocoded the spatial objects, the next step
is the extraction of qualitative spatial relationships. The extrac-
tion of spatial relations between entities in text is a hard Natural
Language Processing (NLP) problem, especially when applied to a
noisy crowdsourced dataset. We address this NLP challenge by im-
plementing a spatial relation extraction algorithm based on NLTK
[3] components in combination with predefined strings and syn-
tactical patterns. More specifically, we define a set of language
expressions that are typically used to express a spatial relation in
combination with a set of syntactical rules. The use of both syn-
tactical and string matching reduces the number of false positives
considerably. A formal algorithm describing the architecture of our
proposed information extraction system can be found in [8] and [9].

The spatial relation extraction procedure results in a relationship
graph, where edges represent one or more spatial relations and ver-
tices represent POIs. For the scope of this work, we have collected
data for the region of Paris which will be our main dataset during
the experimental evaluation of the proposed approach. Here, we
should point out that in the context of this work, i.e., computation
of a combination of short and enriched routes, we only consider
distance and topological relations that denote closeness (“near”,
“close”, “next to”, “at”, “in” etc). The use of relations that de-
note direction, e.g., “north”, “south”, “east” etc. or remoteness,
e.g., “away from”, “far” etc., is an open direction for future work.

4. MODELING SPATIAL RELATIONS
In this section we briefly describe the probabilistic modeling we

follow in order to quantify qualitative spatial relations between
POIs. We model a spatial relation between two POIs Pi and Pj

based on distance and orientation features as presented in [7]. For
each spatial relation occurrence, we create a two-dimensional spa-
tial feature vector D = (Dd, Do)ᵀ where Dd denotes the distance
and Do denotes the orientation between Pi and Pj . This way,
we end up with a set of two-dimensional spatial feature vectors
Drel = {D1, D2, . . . , Dn} for each spatial relation. We employ
Gaussian Mixture Models (GMMs) and we train a probabilistic
model for each spatial relation based on the spatial feature vec-
tors. In general, a GMM is a weighted sum of M -component
Gaussian densities as p(d|λ) =

∑M
i=1 wig(d;µi,Σi) where d is

a l-dimensional data vector (in our case l = 2), wi are the mix-
ture weights, and g(d;µi,Σi) is a Gaussian density function with
mean vector µi ∈ Rl and covariance matrix Σi ∈ Rl×l. To fully
characterize the probability density function p(d|λ), one requires
the mean vectors, the covariance matrices and the mixture weights.
These parameters are collectively represented in λ = {wi, µi,Σi}
for i = 1, . . . ,M . For the parameter estimation of spatial relation
GMM, we use Expectation Maximization (EM). This approach is
extensively analyzed in [7] and [8].

4http://www.geonames.org/
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5. ROAD NETWORK ENRICHMENT
In this section we describe how we transform a relationship graph,

as presented in Section 3, into a weighted graph, and how we use
the edge weights of the weighted graph in order to modify the edge
costs of a real world road network. As presented in Section 3, the
spatial relation extraction procedure results in a relationship graph
between POIs. LetP = {P1, . . . , Pm} denote the set of nodes rep-
resenting the POIs and let R = {R1, . . . , Rn} denote the prede-
fined set of spatial closeness relations, represented by spatial NLP
expressions like “next to” or “close by”. Furthermore, letRi,j ⊆ R
denote the set of relations observed (i.e., extracted from the text)
between two distinct nodes Pi and Pj . Note thatRk denotes an ab-
stract relation, while Ri,j denotes a set of occurrences of relations
between a pair of nodes. Let Di,j denote the spatial feature vec-
tor (distance and orientation), between two distinct POIs Pi and Pj .
Finally, letD :=

⋃
i6=j∧Ri,j 6=∅Di,j denote the set of all spatial fea-

ture vectors between all pairs of POIs which have non-empty sets
of relations. We want to estimate the posterior probability of a class
Rk ∈ Ri,j based on the spatial feature dataDi,j between two POIs

Pi and Pj . This is given by P (Rk|Di,j) =
P (Di,j |Rk)P (Rk)
n∑

l=1
P (Di,j |Rl)P (Rl)

.

P (Di,j |Rk) denotes the likelihood ofDi,j given relationRk based
on the trained GMM, while P (Rk) denotes the prior probability of
relation Rk given only the observed relations Ri,j .

In a traditional classification problem, the spatial relation Rk

between a pair of POIs would be classified to the spatial relation
model with the highest posterior. In contrast to this approach, we
consider each posterior probability P (Rk|Di,j) as a measure of
confidence of the existence of relation Rk between Pi and Pj . Re-
member that all the relations we consider reflect terms of spatial
closeness. We combine all these posteriors into one measure which
we refer to as closeness scoreWi,j of the pair of POIs Pi and Pj ,

defined as Wi,j = 1
|R| ·

|Ri,j |∑
k=1

P (Rk|Di,j)

maxk{P (Rk|D)} . We refer to these

pairs as close since at least one of our relations reflecting close-
ness exists. Assigning the respective weightsWi,j ∈ [0, 1] to the
edges of the relationship graph, we obtain a weighted graph. In this
weighted relationship graph, denoted by H∗, there exists a vertex
for each POI and an edge (Pi, Pj).

Now that we have extracted and statistically condensed the crowd-
sourced data into a closeness score, we need to apply the obtained
closeness scores to the underlying network. We have investigated
several strategies and have decided upon a compromise between
simplicity and effectiveness.

Let G = (V,E, d) denote the graph representing the underlying
road network, i.e., the vertices v ∈ V correspond to crossroads,
dead ends, etc., the edges e ∈ E ⊆ V × V represent roads con-
necting vertices. Furthermore, let d : E → R+

0 denote the function
which maps every edge onto its distance. We assume that P ⊆ V ,
i.e., each POI is also a vertex in the graph. This is only a minor
constraint since we can easily map each POI to the nearest node of
the graph or introduce pseudo-nodes.

Now, for each pair of spatially connected POIs, Pi, Pj , we com-
pute the shortest path connecting Pi and Pj in G, which we de-
note by p(i, j). We then define a new cost function c : E → R+

0

which modifies the previous cost d(e) of an edge as c(e) := d(e) ·∏
e∈p(i,j)(1−αWi,j). Here, e ∈ p(i, j) iff e is an edge within the

shortest path from Pi to Pj and where α ∈ [0, 1] is a weight scaling
factor to control the balance between the spatial distance d(e) and
the modification caused by the closeness scoreWi,j . In the case of
α = 0, we obtain the unadapted edge weight c(e) = d(e). Sum-
marizing, the more shortest paths between POI pairs run through

e, the lower its adjusted cost c(e) is. We now define the enriched
graphG∗ = (V,E, c). It consists of the original vertices and edges
and is equipped with the new cost function which implies the re-
weighting of edges. When computing the cost of a whole path
within G∗, as before, we sum the respective edge weights which
differ from the original edge weights (because of the altered cost
function). In order to measure the influence of the adjusted cost
values along a path p = (e1, . . . , er), we introduce the enrichment
ratio (ER) function er defined as er(p) = 1

d(p)

∑r
i=1 c(ei). By

normalizing with the total length of the path, we are able to com-
pare the spatial connectivity of paths independent of length as well
as start and target nodes. Here, a lower ratio implies higher close-
ness score values along the edges of the path. If none of the edges
of a path is part of any shortest path between POIs, its enrichment
ratio is 1, while the (highly unlikely) optimal enrichment ratio is
0. On the enriched graph G∗ we may now define our path finding
algorithms.

In this work, all path computations are based on Dijkstra’s al-
gorithm, because our main focus is not the routing itself but the
incorporation of textual information into existing road networks. If
desired, speed-up techniques, such as preprocessing steps and/or
other search algorithms, could easily be employed. The first ap-
proach is denoted as Dij-G∗. Given start and target nodes, it exe-
cutes a Dijkstra search in the enriched road network graph G∗ us-
ing the adjusted cost function. Our second approach, referred to as
Dij-H∗, uses the enriched road network graph G∗ as well as the re-
lationship graph H∗. Given start and target nodes within G∗, entry
and exit nodes within H∗ are determined. Subsequently, we route
within H∗, i.e., from POI to POI. In Section 6, both algorithms
are compared against shortest paths as obtained with Dijkstra’s al-
gorithm, which we denote by Dij-G. An extended analysis of both
algorithms can be found in [9].

6. EXPERIMENTAL EVALUATION
We compare the results of the conventional Dijkstra search, i.e.,

Dij-G, to the results of Dij-G∗, which uses the enriched graph G∗,
and the results of Dij-H∗, which mainly relies on the relationship
graphH∗. All the text processing parts were implemented in Python
while modeling parts were implemented in Matlab. Network en-
richment and path computation tasks were conducted using the
Java-based MARiO Framework [2] on an Intel(R) Core(TM) i7-
3770 CPU at 3.40GHz and 32 GB RAM running Linux (64 bit).

Besides comparing the computed path w.r.t. their enrichment ra-
tio (ER) and length (as presented in Section 5), we introduce a mea-
sure of popularity based on Flickr data. Our experimental setup is
based on the region of Paris, France. This region has comparatively
high density of spatial relations, Flickr photo data, and OSM data,
which accounts for an exact representation of the road network.
Since ER is a measure introduced in this paper, we use Flickr data
as an independent ground truth. We are aware that to cognitive as-
pects (like the importance of sights or the value of landmarks) there
is no absolute truth. However, in order to be able to draw compar-
isons, we presume that if the dataset is large enough, the bias can
be neglected. We use a geotagged Flickr photo dataset, provided by
the authors in [5], to assign a number of photos to each vertex of the
underlying road network. The number of Flickr photos assigned to
each vertex is referred to popularity. In our settings, every photo
which is within the 20-meter radius of a vertex, contributes to the
popularity of that vertex. The popularity of a path is computed by
summation of all popularity values along this path.

In our first experiment we examine the influence of different
scalings of the closeness score Wi,j in terms of enrichment ra-
tio, path length increase (distance) and popularity. Figure 2 (a)
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Figure 2: ER increase for algorithms Dij-G∗ and Dij-H∗.
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Figure 3: Popularity and distance trade-off.

shows the influence of the different scalings of Wi,j on ER. As
we increaseWi,j influence, we observe an increase of ER for both
Dij-G∗ and Dij-H∗ in comparison to Dij-G, with Dij-H∗ having a
much more significant impact. Figure 2 (b) shows the increase of
ER, depending on the distance between start and destination nodes.
Moreover, Figures 3 ((a), (c)) show the influence of the different
scalings of Wi,j on distance and popularity. As we increase the
influence of Wi,j from 0.2 to 1.0, we observe an increase of dis-
tance and popularity for both Dij-G∗ and Dij-H∗ in comparison to
Dij-G. It is clear that Dij-G∗ always performs better than Dij-H∗ in
terms of path length increase, but Dij-H∗ performs always better in
terms of ER and popularity. This is because Dij-H∗ routes directly
through the POIs, causing greater detours, but passing along highly
weighted parts of the enriched graph G∗, which mostly coincide
with dense Flickr regions. Finally, Figures 3((b), (d)) show that,
as we increase the distance between start and destination, we ob-
serve an increase of the distance and popularity for Dij-G∗ as well
as Dij-H∗ in comparison to Dij-G. As in our previous experimental
setting, it is clear that Dij-G∗ always outperforms Dij-H∗ in terms

of path length increase, while Dij-H∗ always outperforms Dij-G∗

in terms of enrichment ratio and popularity. The explanation for
these results is that, similarly to the first setting, Dij-H∗ routes di-
rectly through the POIs and therefore accumulates greater ER and
higher popularity values.

We conclude that both Dij-G∗ and Dij-H∗ show convincing re-
sults. Both algorithms yield significant increase in terms of ER as
well as in terms of the independent Flickr-based popularity, while
increasing path length only slightly. Consequently, we can claim
that spatial relations, extracted from crowdsourced information, can
indeed be used to enrich actual road networks and define an alterna-
tive kind of routing which reflects what people perceive as “close”.

7. CONCLUSIONS AND OUTLOOK
In this work, we presented an approach to computing knowledge-

enriched paths within road networks. We employed novel methods
to extract spatial relations between pairs of points of interest such
as “near” or “close by” from crowdsourced textual data, namely
travel blogs. We quantified the extracted relations using probabilis-
tic models to handle the inherent uncertainty of user-generated con-
tent. Based on these models, we proposed a new cost function to
enrich real world road networks, reflecting the closeness aspect ac-
cording to the crowd. In contrast to existing approaches, we did not
enrich previously computed paths with semantical information, but
the entire network. Continuingly, two routing algorithms were pre-
sented taking this closeness aspect into account. The evaluation on
real world datasets showed that both algorithms perform very well
providing popular paths, while they increase the path length only
slightly. For future work, we are researching alternative methods
for aggregating all categories of spatial relations.
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