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ABSTRACT
In this paper, we introduce obstructed group nearest neighbor
(OGNN) queries, that enable a group to meet at a point of interest
(e.g., a restaurant) with the minimum aggregate travel distance in an
obstructed space. In recent years, researchers have focused on de-
veloping algorithms for processing GNN queries in the Euclidean
space and road networks, which ignore the impact of obstacles such
as buildings and lakes in computing distances. We propose the first
comprehensive approach to process an OGNN query. We present
an efficient algorithm to compute aggregate obstructed distances,
which is an essential component for processing OGNN queries. We
exploit geometric properties to develop pruning techniques that re-
duce the search space and incur less processing overhead. We val-
idate the efficacy and efficiency of our solution through extensive
experiments using both real and synthetic datasets.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS; H.2.4
[Systems]: Query processing

General Terms
Algorithms, Design, Experimentation

Keywords
Group nearest neighbor queries, Obstacle, Visibility graph

1. INTRODUCTION
An important class of information and enquiry service is a group

nearest neighbor (GNN) query [8, 9] that enables a group to meet
with the minimum aggregate travel distance. Through a GNN query
a group of friends, located at different places in a city center, can
determine the location of a common point of interest (POI) such
as a restaurant, a shopping mall or a movie theater that minimizes
their total travel distance or the maximum travel distance for all
group members. Minimizing the maximum travel distance enables
the group to meet at a POI within the shortest possible time.
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GNN queries have been addressed in the Euclidean space [4, 8]
and road networks [9, 11], which did not consider the impact of ob-
stacles on the travel distance. For example, a park has a number of
obstacles such as trees, lakes or fences that obstruct a pedestrian’s
direct path and require a detour. Similarly, in a city center some
buildings might restrict a pedestrian’s direct path or some roads
might only permit vehicles. Current GNN queries are tailored to
Euclidean space or road networks but ignore the impact of obsta-
cles. In this paper, we introduce a novel form of GNN queries in
the presence of obstacles, which we call Obstructed Group Nearest
Neighbor (OGNN) queries. To the best of our knowledge, we pro-
pose the first comprehensive approach to find group nearest neigh-
bors in the presence of obstacles.

Although there exists obstructed nearest neighbor (ONN) algo-
rithms [12] in the obstructed space, a straightforward application
of an ONN algorithm to evaluate a OGNN query equals to an ex-
haustive search and makes computations prohibitively expensive.
Such a straightforward technique requires to incrementally evalu-
ate obstructed nearest neighbors (i.e., POIs) for every query point
(i.e., a group member’s location) independently and compute the
obstructed aggregate distance for each retrieved POI until the ac-
tual OGNN has been identified.

The smaller the number of POIs that an OGNN algorithm has
to consider for computing the actual OGNN, the more efficient the
algorithm is because for every retrieved POI, an OGNN algorithm
has to compute the aggregate obstructed distance with respect to the
query points. To develop an efficient approach for OGNN queries,
we focus on developing (i) pruning techniques to refine the search
space and (ii) efficient algorithms to compute aggregate distances
under the presence of obstacles.

We summarize our key contributions as follows:
• We introduce GNN queries in the obstructed space.
• We develop different pruning techniques for OGNN queries

and based on these pruning techniques, we propose two al-
gorithms, a GBQM (Group Based Query Method) and a
CBQM (Centroid Based Query Method), to efficiently eval-
uate OGNN queries.

• We develop an efficient technique to compute aggregate ob-
structed distances for POIs with respect to the locations of
the group members.

• We conduct an extensive experimental analysis using both
real and synthetic datasets and show a comparative analysis
between our algorithms based on different parameters.

2. PROBLEM SETUP
The obstacle path problem [1] finds the shortest path between

two points p and q in presence of obstacles, where obstacles are



(a) f = SUM (b) f = MAX

Figure 1: An OGNN query example

represented with non-overlapping 2D polygons and the path does
not cross the interior of any obstacle. The length of the obstructed
path connecting two points p and q is called the obstructed distance
and denoted as distO(p,q).

The aggregate obstructed distance, distAO(p,Q), between a data
point1 p and a set of query points (i.e., user locations) Q =
{q1,q2, . . . ,qn} is computed with respect to an aggregate function
f . The function f can be SUM that minimizes the total obstructed
travel distance or MAX that minimizes the maximum obstructed
travel distance. Figure 1(a) and 1(b) show examples of OGNN
queries (k = 1) that return p1 and p2 as answers for aggregate
functions SUM and MAX, respectively. A k obstructed group nearest
neighbor query (kOGNN) is formally defined as follows:

DEFINITION 1. (kOGNN Queries). Given a set of n query
points Q = {q1,q2, . . . ,qn}, a set of m data points P =
{p1, p2, . . . , pm}, and a set of h obstacles O = {o1,o2, . . . ,oh}, a
kOGNN query returns k points from P, which have the k smallest
values for an aggregate function f : Q 7→ R.

3. RELATED WORK
Efficient algorithms [4, 8, 9, 11] have been developed for GNN

queries in Euclidean space and road networks. In Euclidean space,
the trip distance is measured ignoring the presence of obstacles. In
road networks, the movement is permitted in a predefined structure
and the distance is measured as the length of the shortest path be-
tween two points. In an obstructed space obstacles determine areas
that cannot be crossed and the distance is measured as the length of
the shortest path between two points in presence of obstacles.

Recently researchers have focused on developing algorithms for
processing range, nearest neighbor, and continuous nearest neigh-
bor queries in the obstructed space [12, 2]. However, none of these
spatial query processing techniques in the obstructed space con-
sider query from a group of users and instead focus on individu-
als. Group visible nearest neighbor queries [10] retrieve data points
whose travel paths from a query point are not blocked by any ob-
stacle, which is different from OGNN queries.

4. AN AGGREGATE OBSTRUCTED DIS-
TANCE COMPUTATION TECHNIQUE

There exists algorithm [12] for computing the obstructed dis-
tance between two points p and q. To compute an aggregate ob-
structed distance we can use this algorithm to first compute the ob-
structed distance between a data point p and a query point q ∈ Q
and then compute the aggregate obstructed distance by applying the
aggregate function to these individual obstructed distances. How-
ever, this straightforward technique would require to retrieve the
1We use the term POI and data point interchangeably.

same obstacles multiple times from the database and incur high
computational overhead. To overcome this limitation, we develop
Multi Point Aggregate Obstructed Distance (MPAOD) computation
technique to compute aggregate obstructed distances.

We use the visibility graph [6] to compute aggregate obstructed
distances. A visibility graph consists of nodes representing point
location of data points, obstacle vertices, and query points. There
is an edge between two nodes if and only if the two nodes are mu-
tually visible, i.e., there is no obstacle edge obstructing the visi-
bility between them. If the line segment connecting two locations
does not pass through any obstacle, then we say that the two points
are visible to each other and we connect them with an edge in the
visibility graph. An important property of the visibility graph is
the length of the shortest path between two nodes in the visibil-
ity graph represents the obstructed distance between two locations
represented by those nodes [6].

In our current problem, due to the large size of spatial datasets, it
is not feasible to keep the whole visibility graph in main memory.
We use the algorithm proposed in [12] to incrementally construct
the visibility graph. We add only those obstacles and data points
in the graph that are relevant to the query. We update the graph
when new data points or obstacles arrive. We remove data points or
obstacles that are not relevant to our query to keep the graph small.

4.1 MPAOD
Algorithm 1 shows the pseudocode for MPAOD. The input to the

algorithm are a set of query points Q, a data point p, an obstacle
RTree RTO and a local visibility graph LV G. The output of the al-
gorithm is distAO(p,Q), the aggregate obstructed distance between
the data point and the group of users.

Algorithm 1: CompAggObsDist(Q, p,RTO,LV G)

Input: A set of query points Q = (q1,q2, . . .qn), a data point
p, an obstacle RTree RTO, a local visibility graph LV G

Output: The aggregate obstructed distance distAO(p,Q)
1 foreach q ∈ Q do
2 distO(p,qi) = distE(p,qi)

3 repeat
4 dmax←max1≤i≤n distO(p,qi)
5 O← IOR (p,RTO,dmax)
6 foreach o ∈ O do
7 foreach q ∈ Q do
8 if o intersects SPp,q then
9 Add q in LQ

10 Add o in LV G

11 foreach q ∈ LQ do
12 distO(p,q)=compObsDist(q, p,LV G)

13 until LQ = /0
14 distAO← f n

i=1distO(p,qi)
15 return distAO

The algorithm at first computes individual Euclidean distances
between the data point p and each of the query points q ∈ Q and
assigns them as the initial obstructed distances between p and q ∈
Q, respectively (Lines 1-2). Next the algorithm finds the maximum
obstructed distance computed from individual obstructed distances
as dmax (Line 4). Then it incrementally retrieves all obstacles that
are within the distance dmax, centering the data point p by using a
function IOR(p,RTO,dmax) (Line 5).

However, after retrieving the obstacles, the algorithm filters out



those obstacles which do not intersects any of the already com-
puted shortest path SPp,q between the data point p and a query point
q ∈Q. It also stores query points in a set LQ, whose obstructed dis-
tances need to be recomputed (Lines 6-10). The re-computation of
the obstructed distance between a data point p and a query point q
is required only when the shortest path between p and q intersects
any obstacles retrieved by the incremental obstacle retrieval.

After filtering out unnecessary obstacles the algorithm updates
the visibility graph with the new obstacles and re computes the ob-
structed distances between p and all the query points q∈ LQ (Lines
7-12). The procedure repeats until the shortest path intersects no
new obstacles or LQ is empty (Lines 11-13).

Finally, the algorithm applies the aggregate function f
(SUM/MAX) to compute distAO(p,Q) (Lines 14-15).

5. OGNN ALGORITHMS
We develop two efficient algorithms: CBQM (Centroid Based

Query Method) and GBQM (Group Based Query Method) for pro-
cessing kOGNN queries. The key difference between them is the
way they incrementally retrieve data points from the database.

5.1 CBQM
CBQM incrementally retrieves Euclidean nearest neighbors

(NNs) from the geometric centroid cQ of Q until k OGNNs have
been identified. With the incremental retrieval of data points (i.e.,
NNs), CBQM gradually refines the search region and the search
terminates when all data points inside the required search region
have been explored. The refinement of the search region and the
terminating condition differ depending on the aggregate function.

5.1.1 CBQM_SUM

Algorithm CBQM_SUM first retrieves k NNs with respect to cQ,
computes the aggregate obstructed distance using MPAOD dis-
cussed in Section 4 for the retrieved k data points, initializes the
answer set A with the retrieved k data points. In the next step, the
algorithm computes dkmax and dEmax, which are defined as follows:

dkmax: the aggregate obstructed distance of the current kth best
OGNN from the retrieved data points.

dEmax: the maximum Euclidean distance between the centroid cQ
and the data points retrieved so far.

In [7], the authors have shown that a data point outside the circle
centered at cQ with radius r, have an aggregate Euclidean distance
greater or equal to n× r with respect to Q, where n = |Q|. Thus,
any data point p′ outside the circle centered at cQ with radius dkmax

n
has an aggregate Euclidean distance greater than dkmax. Further, the
Euclidean lower bound property states that the obstructed distance
is always greater or equal than the Euclidean distance. Thus, p′ has
an aggregate obstructed distance greater than dkmax.

Therefore, the circle centered at cQ with radius dkmax
n repre-

sents the required search area. To ensure that CBQM_SUM finds k
OGNNs with k smallest aggregate distances, CBQM_SUM requires
to consider all data points located in the circle centered at cQ with
radius dkmax

n . On the other hand, the data points located within the
circle centered at cQ with radius dEmax have been already retrieved
from the database and considered in computing dkmax.

After computing dkmax and dEmax from initially retrieved k data
points, the algorithm checks whether the terminating condition
dEmax ≥ dkmax

n is satisfied, i.e., if all data points with an aggregate
obstructed distance smaller or equal to dkmax have been retrieved.

If the condition is satisfied, then the current data points in A repre-
sent the actual k OGNNs. Otherwise, the algorithm incrementally
retrieves the next NN p with respect to cQ, computes distAO(p,Q),
and updates dEmax, dkmax, and A. With the incremental retrieval of
the next NNs, dEmax increases and the radius, dkmax

n of the required
circular area decreases, if dkmax is updated. The process repeats un-
til the terminating condition is satisfied.

5.1.2 CBQM for MAX

Algorithm CBQM_MAX incrementally retrieves NNs from cq in
a similar way as Algorithm CBQM_SUM. After having an initial ag-
gregate distance dkmax, the algorithm refines the search area as the
intersection of circles {C1,C2, . . . ,Cn}, where C j is centered at q j
and has radius equal to dkmax. In [7], the authors have shown that,
for an aggregate function MAX, a data point p′ outside the intersec-
tion of circles {C1,C2, . . . ,Cn} has aggregate Euclidean distance
greater than dkmax. Since the obstructed distance of a data point is
always greater or equal than the Euclidean distance, the aggregate
obstructed distance of p′ is also greater than dkmax.

Let dmax represent the distance between cq and the farthest query
point in Q from cq. CBQM_MAX terminates if dEmax ≥ (dmax +
dkmax), i.e., the circle centered at cq with radius dEmax covers circles
{C1,C2, . . . ,Cn}. Thus, the retrieved data point p in an iteration may
or may not be in the intersection of circles {C1,C2, . . . ,Cn}. If p ∈⋂n

j=1 C j, the algorithm updates dkmax and A.

5.2 GBQM
GBQM incrementally retrieves Euclidean group nearest neigh-

bors (GNNs) from Q until k OGNNs have been identified. The key
idea of GBQM is based on the Euclidean lower bound property,
i.e., the aggregate obstructed distance of a data point is greater or
equal to the aggregate Euclidean distance. GBQM can work for
both aggregate functions SUM and MAX in the similar way.

The algorithm starts with retrieving the first k GNNs with re-
spect to Q. Then the algorithm initializes A with the retrieved data
points and computes their aggregate obstructed distances and the
kth maximum aggregate obstructed distance, dkmax. If kth aggregate
Euclidean distance is equal to dkmax, then there is no obstacle that
obstructs the path from query points to the GNNs and the algorithm
has identified the OGNNs. Otherwise, the algorithm retrieves more
GNNs incrementally until the Euclidean aggregate distance of the
last retrieved GNN becomes greater than or equal to dkmax.

Parameter Range Default
Group size 2, 4, 8, 16, 32 8

k 2, 4, 8, 16, 32 4

Query rectangle area .002% to .01% .005%

Cardinalities 0.01|O| to 10|O| 2.5|O|

Table 1: Experiment Setup

6. EXPERIMENTS
We evaluate and compare the performance of our proposed al-

gorithms through extensive experiments. We vary the group size,
number of required obstructed group nearest neighbor k and the
query rectangle area. The query rectangle area represents the area
of the query point distribution in the total space. We also vary the
cardinalities of the synthetic dataset i.e. we control the density of
the data point RTree ranging from 0.01|RTO| to 10|RTO| with re-
spect to the obstacle RTree RTO. Table 1 summarizes the range and
default values for each parameter used in our experiments.



We use both real and synthetic datasets in our experiments. We
use the real dataset of Germany, which consists of 30674 minimum
bounded rectangles (MBRs) of railway lines (rrlines) and 76999
MBRs of hypsography data (hypsogr). Data points are end points
of hypsogr and obstacles are rrlines in Germany. In this way, data
points and obstacles are adjacently deployed into the same geo-
graphical space and thus, simulate our scenario. Though we have
used MBRs to represent obstacles, our algorithms support any arbi-
trary shaped polygons. We generate synthetic data sets U and Z us-
ing a uniform and Zipfian distribution, respectively. The data points
and obstacles are indexed using separate R-trees in the database.

We consider 100 sample kOGNN queries and obtain the average
experimental results. The query points are allowed to lie on the
boundary of the obstacles but not inside the obstacles. We measure
the CPU time and IO cost of the proposed algorithms using an Intel
Core i7-2920XM quad-core CPU (2.50GHz) PC with 16GB RAM.
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Figure 2: Effect of group size (data set Germany)

6.1 Effect of group size
Figure 2 shows that the performance of GBQM and CBQM de-

grade as the group size increases. The reason behind such an in-
crease is expected: the increase in the group size increases the num-
ber of obstructed distance computations and hence increases more
obstacle retrieval from the obstacle RTree. For both SUM and MAX,
we observe that GBQM performs better than CBQM, e.g., GBQM
requires on average 1.33 times lower IO access than CBQM for re-
trieving data points. We also observe in Figure 2 that MAX gives
lower CPU time and IO access than those for SUM because the re-
fined search area is smaller for MAX than SUM.

6.2 Effect of k and query rectangle area
Experimental results for both varying k and query rectangle area

show similar behavior as the group size. The time, IO access of
the data point R-tree and obstacle R-tree required by GBQM and
CBQM for the aggregate function SUM and MAX increase with the
increase of both k and the query rectangle area (not shown). We
also observe that GBQM outperforms CBQM in terms of both time
and IO access for different values of k and query rectangle area.

6.3 Effect of Cardinality Ratio
Experiments show that the CPU time and IOs for the obstacle

RTree decreases with the increase of the ratio |P|/|O| on dataset U
(not shown). The reason behind this is, with the increase of car-
dinality, obstacle retrieval decreases as a consequences CPU time
also decreases. On the other hand, we find in experiments that the
IO accesses of the data point RTree remains almost constant with
the increase of |P|/|O| because, as the density increases, the range
around the set of query points where the Euclidean neighbors or
Euclidean GNN are found decreases.

7. CONCLUSION
We have developed the first comprehensive solution to find the

k group nearest neighbors in presence of obstacles. We have pro-
posed an efficient aggregate distance computation technique, and
two OGNN algorithms, CBQM and GBQM. In our experiments,
we have shown that our algorithms can compute OGNNs in real
time. Our comparative analysis reveals that the CPU time and IO
access of GBQM are always lower than those of CBQM for both
SUM and MAX. In the future, we aim to protect user privacy [3, 5]
while accessing OGNN queries.
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