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ABSTRACT
With advances in vehicle-to-vehicle communication, future
vehicles will have access to a communication channel through
which messages can be sent and received when two get close
to each other. This enabling technology makes it possible for
authenticated users to send queries to those vehicles of in-
terest, such as those that are located within a geographic re-
gion, over multiple hops for various application goals. How-
ever, a naive method that requires flooding the queries to
each active vehicle in a region will incur a total communica-
tion overhead that is proportional to the size of the area and
the density of vehicles. In this paper, we study the problem
of spatial queries for vehicle networks by investigating prob-
abilistic methods, where we only try to obtain approximate
estimates within desired confidence intervals using only sub-
linear overheads. We consider this to be particularly useful
when spatial query results can be made approximate or not
precise, as is the case with many potential applications. The
proposed method has been tested on snapshots from real
world vehicle network traces.
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1. INTRODUCTION
In recent years, large-scale V2V (vehicle-to-vehicle) com-

munication has been envisioned for various application needs
such as ride sharing, traffic scheduling, and accident avoid-
ance. In February 2014, the U.S. Department of Trans-
portation’s (DOT) National Highway Traffic Safety Admin-
istration (NHTSA) announced that it will begin to require
vehicle-to-vehicle (V2V) communication technology to be in-
stalled for light vehicles in the coming years [1]. In such
applications, frequently a user must query the status of the
vehicles located within a geographic region to decide the
next step of operation.

However, current approaches for this seemingly simple
task are still highly inefficient, and may be slowed down
when many concurrent queries are being executed. First,
existing methods typically involve flooding, which is not de-
sirable or practical when the number of vehicles becomes rel-
atively large. Second, to obtain information on the desired
phenomenon, existing methods must perform the query op-
erations in a timely manner, or even periodically, leading
to excessive communication overhead for the limited V2V
communication channel.

To address these challenges, in this paper, we propose a
novel mechanism that performs query operations of large-
scale vehicle networks in an approximate manner. We use
the measurement of cardinality as a running example, but
our methods can be easily extended to queries of more gen-
eral nature, such as counting only those vehicles of interest.
This mechanism stems from the observation that counting
the exact number of vehicles for a query, while desirable, is
usually not absolutely necessary for the following two rea-
sons. First, vehicles are inherently mobile, meaning that
even an accurate answer will expire in a short period of time.
Second, for many applications, obtaining an approximate es-
timate with a confidence level on its accuracy is sufficient.
By relaxing the requirement on accuracy, we find that the
approximate algorithm only requires O(

√
n) messages to be

transmitted, as opposed to O(n) or even O(n3/2) messages
for accurate counting algorithms.

Our main idea originates from a well-known problem called
the birthday problem. This problem considers, for a group
of n randomly chosen people, the probability that at least



two have the same birthday. By the pigeonhole principle,
the probability reaches 100% when the number of people
reaches 367. However, with far fewer people, we can still
obtain a high probability of birthday collisions.

Related work. In the domain of vehicle networks, previ-
ous research has studied multiple challenges such as trajec-
tory mining [6,8], neighbor query and routing [3,4], and ride
sharing [5]. Query vehicles in a region, however, has been
relying mostly on video processing techniques [2, 7]. Such
methods usually take advantage of recent progress in com-
puter vision, and are able to detect specific image features
such as plate numbers from captured images. Therefore,
compared to our approach, such methods are completely dif-
ferent in that they are passive and require the deployment
of large-scale infrastructures.

2. PROBLEM FORMULATION AND PRO-
TOCOL DESIGN

In this section, we describe the problem formulation and
provide an overview of the protocol. We assume that at the
moment of query, vehicle nodes of interest are distributed in
a flat, geographic region with a known boundary. We do not
make assumptions on the geographic distribution of vehicles,
i.e., they have irregular densities due to the road and traffic
conditions. We assume that each vehicle is equipped with
a transmitter that allows it to communicate with vehicles
within its proximity.

We consider in a region, there are an unknown number of
vehicles that have a certain feature of interest. Our goal is to
query this region to find this unknown number. We denote
the total number of nodes as f . Our goal is to obtain its
approximation f̃ within a confidence interval ε and an error
probability of δ, so that Pr{|f̃ − f | ≤ εf} ≥ 1− δ.

The core of our protocol is an algorithm that consists of
two stages: in the first stage, the query node sends probes to
the network via random-cast, which ensures that the probes
are distributed in an uniform manner. Every probe contains
a round number, a sequence number, and a reporting pe-
riod. When a destination node receives two or more probes
with the same round number, it will send back a response to
the query node containing the number of collisions it has de-
tected at the end of the reporting period through geographic
forwarding. The query node keeps track of the reported col-
lisions, as well as the number of probes it has sent so far.
At the end of each reporting period, the query node updates
the estimate and the confidence interval. If the confidence
interval satisfies the requirement, the query node stops send-
ing probes. Otherwise, the query node will send additional
probes with extended reporting periods to trigger more col-
lisions, so that the estimation accuracy can be improved.

A random-cast is a communication process where the sender
sends a packet to a receiver that is randomly and uniformly
distributed in a set of potential candidates, C, such that
each candidate has the same probability of receiving this
packet. Our design of the random-cast protocol combines
geographic forwarding with random walking, which lever-
ages the spatial and topological distribution of the nodes
to achieve the overall uniformity. The algorithm steps are
shown in Algorithm 1.

One critical component of this algorithm is to perform
random-walking after geographic forwarding. Specifically,
random-walking serves the goal that the walk must termi-

Algorithm 1 The Random-cast algorithm

1: assumption: node deployment boundary S is known
2: query node randomly selects a target location L in S
3: query node sends the probe to the node N nearest to L
4: current node← N
5: walking hops← 0
6: while walking hops < Max do
7: current node picks the next hop next node with the

RWD method
8: current node sends the packet to next node
9: walking hops← walking hops+ 1

10: current node← next node
11: end while

nate at a node i belonging to the network with an equal
probability.

Note that the key advantage of this random-walking based
design is that it is not affected by the real topology of nodes
in an area. Even in the case that nodes are densely packed
on a road, the random nature of the delivery process ensures
that packet reception is decoupled with the actual density
of nodes. Hence, it is sufficiently robust to irregularities in
road and traffic conditions.

3. CARDINALITY ESTIMATION IN ASQ
In this section, we describe the estimation step of the ASQ

protocol.

3.1 Expected Collisions and Its Variance
We first derive the expected value of collisions and its

variance, so that we can develop an unbiased estimator for
the total number of nodes. Assume that we have t probes as
sequentially distributed into the network. Each probe may
arrive at any of the f nodes. The number of collisions that
are introduced when a probe lands at a node, which is a
random variable, as Ci, for the ith probe. The probability
that Ci = 1 is:

P (Ci = 1) = 1− (1− 1

f
)i−1 (1)

Therefore, the expected total number of collisions for these
t probes is:

µ =

t∑
i=1

Ci = t− f +

(
1− 1

f

)t
f (2)

Note that we are treating the collision between a new
probe and each of the previous probes individually. That
is, suppose that two previous probes both landed on the
same node. If a third probe lands on the same node, the
number of collisions for this new probe should be counted
as 2 instead of 1.

To simplify our notations, we define τ = t/f . Considering
that f is relatively large, we can write the result above as:

µ ' f(e−τ − 1) + t (3)

or:

µ/f = e−τ + τ − 1 (4)

Similarly we can decide the variance of Ci as:

V ar(Ci) = (1− 1

f
)i−1 × (1− (1− 1

f
)i−1) (5)



The total variance is determined to be:

σ2 =

t∑
i=1

V ar(Ci)

=

(
−1 +

(
−1+f
f

)t)
f

(
1 +

(
−1 +

(
−1+f
f

)t)
f

)
−1 + 2f

(6)

Following a similar procedure above, by replacing
(
−1+f
f

)t
by e−τ , we can have:

σ2 =
f
(
e−τ − 1

) (
1− f + fe−τ

)
2f − 1

(7)

Observe that based on Eq. (3), we can obtain an estimate
of f given a known t. However, this equation does not give
us a closed-form estimator for f due to its non-linear nature.
Therefore, simple numerical methods such as Newton’s can
be used.

3.2 Estimator Accuracy Analysis
According to the central limit theorem, the sum of in-

dependent variables can be approximated by normal distri-
butions. Thus we know that approximately, if we denote
the number of collisions as random variable X, we have
X ∼ ℵ(µ, σ2), leading to the following theorem:

Theorem 3.1. (Collision Estimation) In a network of f
nodes, let the query node send t packets following the random-
cast protocol, and let N represent the total number of colli-
sions (note that if multiple packets are received at the same
node, this is counted multiple times), if t/f = τ , we have
N ∼ ℵ(µ, σ2) where

µ = f(e−τ + τ − 1) (8)

and

σ2 =
f
(
e−τ − 1

) (
1− f + fe−τ

)
2f − 1

(9)

Recall our goal is to estimate f from the observed number
of collisions. Note that the expectation of number of colli-
sions, µ, is monotonically decreasing with f . If we define
the inverse function of Eq. (3) as g(), we have g(µ(f)) = f .
Similarly, when f increases and t fixed, σ decreases. Finally,
as the number of nodes increases, if the number of probes
remains the same, the inaccuracy will monotonically grow,
i.e., the ratio between σ and µ increases.

Based on these results, we can predict the operation of
the ASQ protocol as follows: as the query node continues
to send more probes, more collisions will occur, leading to
lower ratios between σ and µ, which indicates more accurate
estimations. Beyond a certain point, the query node will
always stop sending new probes after it obtains an estimate
that is accurate enough.

3.3 Extreme Cases and Closed-form Results
Although in the general case, we cannot derive a closed-

form estimator for the total number of nodes f , we can ob-
tain an approximate estimation of it by observing that f is
assumed to be quite large in the network. Therefore, we can
approximately replace it with ∞, and derive the limit for µ.
However, the limit of Eq. (3) does not give us a closed-form

result either. To get a closed-form result, we have to define
yet another auxiliary parameter, ρ, as follows:

ρ =
t√
f

The meaning of ρ is that we can consider the value of t in
the order of O(

√
f), and ρ represents the constant factor of

this order. Hence, we can obtain the following limits for µ
and σ:

lim
f→∞

µ = ρ2/2 (10)

lim
f→∞

σ2 = ρ2/2 (11)

According to Theorem 3.1, we know that the number
of collisions follows the normal distribution X ∼ ℵ(µ, σ2).
Through approximation, this shows that when the number of
nodes is sufficiently large, the normal distribution becomes
X ∼ ℵ(ρ2/2, ρ2/2).

3.4 Estimation of Confidence Intervals
We next describe how we obtain the confidence interval

estimation with only one single measurement of the colli-
sion count. This problem is challenging due to that we can
only observe the collision count once for overhead reasons.
We use Zα/2 to denote the α percentile for the unit normal
distribution. For example, if α = 95%, we have Zα/2 = 1.96.

Intuitively, the estimation for confidence intervals works
as follows: given an observed Nc as the collision number
and the number of sent probes as t, we know that it follows
the distribution of ℵ(µ(f), σ2(f)). Therefore, with a confi-
dence of α, the observed value is located within the range
of [µ(f) − Zα/2σ(f), µ(f) + Zα/2σ(f)]. Because µ and σ
are both monotonically decreasing with f , we only need to
obtain fmax and fmin, where:

µ(fmin)− Zα/2σ(fmin) = Nc (12)

µ(fmax) + Zα/2σ(fmax) = Nc (13)

This gives the upper and lower bounds for estimating f ,
which can be calculated according to Eqs. (8) and (9). More-
over, the best estimate of f itself can be calculated by

µ(f̃) = Nc (14)

In our algorithm, confidence intervals were used to deter-
mine when to stop sending probe packets. However, since
the true number of nodes, f , is always unknown to us, it
is impossible to calculate the accurate confidence interval.
To solve this problem, we use (fmax − fmin)/f̃ , referred to
as “confidence interval ratio”, to help decide whether more
probe packets should be sent or not.

4. PERFORMANCE EVALUATION

4.1 Parameter settings
In this section, we conduct extensive simulations to eval-

uate the cardinality estimation. We use a graph derived
from snapshots of real, open source taxi traces in Beijing,
China [9]. There are 8563 vehicle nodes, and the communi-
cation range is set to 1000m. The topology of this snapshot
is shown in Fig. 1. We use the following metrics to evaluate
the performance of the proposed algorithm.
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(b) Estimated Cardinality
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(c) Estimation Error
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Figure 2: Performance of ASQ.
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Figure 1: Topology of a snapshot of a real vehicle
network (location: Beijing)

• Estimated cardinality f̃ : the estimated number of nodes
in the network;

• Estimation error: |f̃ − f |/f ∗ 100%;

• Number of collisions: the total number of collisions
obtained at the query node for all the probe packets;

• Communication overhead for reporting: the total num-
ber of packets needed to report collisions to the query
node.

Note that each data point in the following figures is an av-
erage of 10 experiments.

4.2 Evaluation results
Fig. 2 shows the experimental results of using the ASQ

to estimate the cardinality for the snapshot graph.
As shown in the first part of Fig. 2, the number of col-

lisions increases when more probe packets are sent, which
improves the estimation accuracy of the cardinality.

The second and third part of Fig. 2 show the estimated
cardinality and its corresponding estimation error for ASQ,
respectively. We can observe that ASQ achieves much bet-
ter estimation results when the number of probe packets
is large. Due to the lack of collisions, when the number
of probe packets is very low, the performance of ASQ is
compromised. It is worth noting that the ASQ can achieve
a very low estimation error with only ρ

√
f probe packets,

where ρ represents a constant factor that can be empirically
set, which is consistent with our analysis on extreme cases
in Section 3.3.

The ASQ has very low communication overhead compared
to naive approach, where each node reports a message to
the query node (which has a communication overhead about
the same as the total number of nodes). As shown in the
last part of Fig. 2, due to the increase of collisions, ASQ

consumes larger communication overhead. However, note
that even with large number of collisions, ASQ still con-
sume much smaller communication overhead than the naive
approach, Therefore, the ASQ is energy efficient and can
achieve very high estimation accuracy.

5. CONCLUSIONS
In this paper, we presented the design, analysis, and eval-

uation of ASQ, an approximate spatial query protocol for
large scale vehicle networks based on only V2V communi-
cation. Our results show that this method achieves over-
head that is an order of magnitude lower than the naive
method that requires all nodes to report their presence, yet
still provides sufficiently accurate estimates for most appli-
cation uses.
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