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ABSTRACT

This work addresses the problem of fusing spatio-temporal
uncertainties obtained from heterogeneous location sources:
on-board GPS devices and roadside sensors. We develop a
model for combining the uncertain location-values from the
different sources, which further narrows the possible loca-
tions of a given object. Our experiments demonstrate that
the proposed model may eliminate significant amount of the
false positives, compared to the traditional space-time prism
(bead) uncertainty models.
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1. INTRODUCTION

The volume of location-in-time data exceeds the order of
Peta-Bytes per year just from smartphones [5]. Many appli-
cations relying on Location Based Services (LBS) rely on ef-
ficient techniques for storage, retrieval and query processing
for such data — topics studied in the field of Moving Objects
Databases (MOD) [4]. Due to the inherent imprecision of
the sensing devices, typically there is a degree of uncertainty
associated with the measurements/values. The problem of
capturing the uncertainty into the data-models [7] as well as
queries’ syntax and processing algorithms [12, 11] has been
recognized and tackled by several earlier works.
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Complementary to obtaining location by on-board Global
Positioning System (GPS) device — typical for MOD set-
tings — in many traffic management applications [1] the loca-
tion data is obtained from some types of road-side sensors.
For example, lane level positioning is an important com-
ponent in navigation systems widely applied in smart traf-
fic control, automated vehicle location or intelligent trans-
portation systems [10]. Such sensors-data may be combined
with data from different on-board sensing devices — e.g.,
U.S. Xpress gathers 900 to 970 data elements of various en-
gine/component readings [8].

The motivation for this work is the observation that, to
date, there has been no model that combines the uncertain
data from two different sources. Given a query:

Q1%: Retrieve all the vehicles which have had > © (0 <
O < 1) probability of crossing the lane in road segment RS1
when driving less than 50km/h and carrying less than 80%
of the mazimum load.

we argue that properly considering the joint impact — equiv-
alently fusion — of the uncertainties from the GPS sources
and road-side sensors can eliminate some of the moving ob-
jects (trajectories) from its answer-set.

Our main contribution is a novel model of spatio-temporal
uncertainty for moving objects, which combines the location
data obtained by GPS devices on-board moving objects and
the location data obtained from road-side sensors. We also
report our preliminary experimental observations, demon-
strating the reduction of false positives from the answers to
certain spatio-temporal queries.

2. PRELIMINARIES

We now overview some techniques for location data — both
GPS-based and based on road-side sensors. Subsequently,
we proceed with introducing the basic notation used in the
rest of the paper.

Starting in the 1920s, when the traffic signals were still
manually controlled, several generations of sensor types have
been developed and deployed for traffic management — from
pressure-sensitive sensor in 1931 to modern laser sensors [2].

Contrary to the GPS-based data acquisition techniques
where each data source is isolated, the roadside sensors are
usually connected hierarchically to a server and send their
sampled data to traffic control center [6]. Compared with
GPS system, the roadside sensors have better measurement
accuracy, higher sampling frequency and shorter response
time, which enables their use in real time traffic information
analysis and control.

When it comes to location obtained via on-board GPS
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Figure 1: Bead and Ellipse Model

devised, a basic approach for modeling spatio-temporal un-
certainty of moving objects is the, so called, sheared cylinder
model. The main assumption is that at any time instant ¢;,
the object’s location is inside a given disk with a fixed radius,
centered at the expected location at ¢;. For time values dif-
ferent from sampling ones, the expected location is obtained
via linear interpolation [12]. However, this model is geared
towards past/historic trajectories.

The implications of the fact that the object’s motion was
bound by some vpqz in-between two updates was analyzed
in [9]. Based on the definition as a geometric set of 2D
points, it was demonstrated that the possible whereabouts
are bound by an ellipse, with foci at the respective point-
locations of the consecutive samples. However, the first
works to present a formal analysis of the properties of the so
called beads are [7]. An illustration is provided in Figure 1.

The corresponding bead (or, space-time prism) is specified
with the following constraints:

(m_xi)2 + (y_yi)z < [(t_ti)vffnazF (1)

where vmaqe is the maximal speed that the object can take
between ¢; and t;+1. As shown in Figure 1, at any time
instant ¢t between two consecutive samples, the possible lo-
cations of the objects are bound by the lens — i.e., intersec-
tion of two circles centered at the respective foci and with
respective radii Vmaz (t — ¢1) and Vmae(t2 —t).

If the objects are constrained to move along a road net-
work, then the space-time prisms are restricted in their size.
Specifically, if the segments of the road network are assumed
to be edges in a graph, then the prisms become restricted to
planar figures [3].

Throughout this paper, we consider the following defini-
tion of a trajectory:

Definition 1. A trajectory Tr; of a moving ob-
ject with a unique identifier (oID) “”, is a se-
quence of triplets Tr = [(Li,t1),(L2,t2), Vmaz1]-- -

[(L’ﬂfljt’f’bfl)) (Lnytn)7vmax,(nfl)] where each L; = (wuyz)
is a point in 2D space in a corresponding reference coordi-
nate system, and t¢; denotes the time instant at which the
object was at location L;. When it comes to the time-values,
i < j implies ¢t; < t;, and Vpmaz_i denotes the maximum speed
of the object between samples at t; and t;+1
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o

Figure 2: Road Segments and Sensors

We define a road network as an augmented graph G =
(P, Ers) where P = {p1,p2,...,pn} denotes a set of points
(commonly corresponding to intersections) and Ers =
{rs1,...,rsk} is a collection of triplets of the form rg; =
(ei, Wei, Vei) Where:

—e; = (pi1,pi2) (€ P X P) is a "regular edge” (i.e., a link
between two connected vertices)

— we; denotes the width of the road segment associated with
the edge e;.

— ve; denotes the maximum speed associated with rg;.

We assume that the maximum speed in-between two con-
secutive location samples along a particular road segment
corresponds to the speed-limit of that segment. Geometri-
cally speaking, the collection of all the rg;’s is the boundary
of the Minkowski sum of each "regular edge” e; and a disk
with diameter we;.

We also assume the existence of a collection of sensors S =
{51,52, ...,sm}7 where each sensor s; is located at a point
along the outer boundary of some road segment rs;. FEach
s; detects when (i.e., the time instant at which) a moving
object crosses the line segment going through its location
and perpendicular to e;. The concepts are illustrated in
Figure 2.

3. FUSING UNCERTAINTIES

We now introduce the new uncertainty model resulting
from combining the GPS-based location data and the loca-
tion data generated by road-side sensors.

The main observation is that the road-side sensors pro-
vide additional constraints on the possible whereabouts
in-between two consecutive GPS-based samples (and vice-
versa). In addition to the system of inequalities (1) specify-
ing the bead, we now have the constraint that at a particular
time instant ts;, the locations of the objects are known to
also be along a given line-segment determined by: (1) the
location of the corresponding road-side sensor; and (2) the
direction which is perpendicular to the (boundaries of the)
road segment, formalized as:
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Figure 3: Fusing GPS and Roadside Sensors Data

ti << tiga,

(x —2:)® + (y — i) < (t — t:)*Vnaas

(x—2ix1)? + (¥ — yir1)? < (tig1 — )02 005 (2)
y = m;x + b;, when t = tg;

ti <tsi < tigr.

The system of constraints (2) is illustrated in Figure 3: the
original GPS-based locations L; and Ly would yield a 2D
projection which is an ellipse having them as foci (light-grey
shade in Figure 3a) — denote it El;. Due to the road-side
sensor, the possible locations of the moving object at ts1
can only be along the portion of line segment originating in
(zs1,ys1), perpendicular to the boundaries of the road seg-
ment, and intersecting FEl; —1i.e., along the portion of the line
segment L} LY. Clearly, that intersection has an uncount-
ably many points, and we show 3 such points in Figre 3a —
L11, L12 and Li13. Each such point, in turn, can be used as a
?generator” for two more space-time prisms: one originating
in Li, and the other terminating at L2. The correspond-
ing 2D projections (ellipses) are shown in Figure 3a for L11,
Li2 and Li3. The most important implication is that when
combining the original ellipse El; with the uncountably in-
finite collection of the ellipses with one of the foci along
the line segment due to the road-side sensors, the additional
constraint induces a significant amount of a “dead-space” in
Eli. A more detailed illustration of the valid range for se-
lecting the points that will generate the infinite collection
of (pairs of) new beads is given in Figure 3b. Recall that
at any ts1 between the sampling times ¢; and t2, the object
can be located inside of the lens obtained as the intersection
of the circles with radii vmae(ts1 — t1) and vmaa(t2 — ts1).
Hence, although the ray emanating from the roadside sen-
sor s1 would intersect the ”global boundary” (i.e., the ellipse
which is the projection of the bead) at L} and L, the only
valid points to be considered as possible whereabouts are
the ones along (and inside) the lens. As shown in Figure 3b,
those are the points along the line segment bounded by L1
and L13.

We note that there is the "flip-side” context of having a
single uncertainty source: if we only had the roadside sen-
sors available, then, in between two detections by consecu-
tive sensors (say, s1 and sz from Figure 2), the whereabouts
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Figure 4: Whereabouts at Time Instant

of a given object is bounded by the union U(Els; ;) of un-
countably many ellipses for which:

1. The first focus is some point Ls; located on the line-
segment originating at the location of s;.

2. The second focus is some point Ls2 located on the line-
segment originating at the location of s2;

3. The distance between Lg1 and Lgo is smaller than
Umaz(ts2 — ts1) (i.e., the object could travel the distance
within the time-interval [ts1, ts2] for the given speed limit).

The possible whereabouts of the object at a given time
instant — i.e., where_at(oID, t) query — for bead obtained
by GPS-based samples, is determined via intersecting that
bead with a horizontal plane at ¢ (cf. Figure 1) — i.e., inter-
section of two circles centered at L1 and L. with the radii
corresponding t0 Vmaq (t — t1) and vmez (t2 — t).

To determine the whereabouts at a given time instant ¢
for a fused bead, we need to obtain the intersection of F'B
with the horizontal plane Time = t. The corresponding
illustration of the volume in 2D space 4+ Time, along with
the 2D projection, is shown in Figure 4. We note that the
boundary of the 2D projection is obtained as the “envelope”
of the union of two collections of uncountably many infinite
pairs of arcs. Each pair of arcs represents the boundaries of



the intersections of the corresponding pairs of disks — one
centered at the focus of the GPS-based bead (e.g., L1) and
the other centered at a point along the intersection chord
(cf. Li1L13 in Figure 3) resulting from secant due to the
roadside sensor and the arc from the lens of the GPS-based
bead. Thus, one of the boundaries is always a circular arc
originating at the focal point of the "original” GPS-based
bead, centered at focus of the GPS-based bead (say, L1)
and with radius vmaz(t — t1). The the boundary is actually
the boundary of the union of uncountably many disks with
radii Umaz(ts1 —t), with centers along the intersection-chord.

The complementary query, when_at(oID, L) returns the
times during which it is possible for the object oID to be
at the location L(xz,yr), i.e., a time-interval [t],t7]. The
time-interval can be defined as the two intersections between
the boundary of the fused bead F B and the vertical line (i.e.,
ray) emanating from L. To calculate the values, we have the
following observations:

1. t2 is the latest time that a circle located at the GPS-
based focus from the sample at ¢; will “reach” L — hence, it
can be obtained as a solution to the equation:

LlL = ’l)maz(t% — tl)

2. tL. on the other hand, is the earliest time that any
circle with the center on the intersection chord and radius
Umaz (ts — tlL) would pass through L.

To get some quantitative evaluation of the proposed
model, we examined how many answers obtained using the
GPS-based bead model actually become false positive when
the F'B model is employed. Towards that, we used a MAT-
LAB implementation of the numerical integration® for eval-
uating the probabilities of an object satisfying the lane-
crossing query. We investigated the impact of F'B model
on lane-crossing query on road networks:

Qi.: Retrieve all the vehicles which have > © (0 < © < 1)
probability of crossing the lane in road segment RS1.

We simulated a vehicle moving along a road (cf. Figure 2)
and having multiple crossings of the lane, with two direction-
components: one parallel to the boundary of the road (i.e.,
lane), denoted as M, and the other one perpendicular to it,
M,. The width of each lane of the road segment was set to
4m; the central lane was set as x-axis with full range for M,
is [-4m, 4m], and densely deployed sensors — located at every
10m along the road. Vehicle’s GPS positions were sampled
every 1s and the movement along M, was set to a constant
speed < 50km/h. Vehicle’s perpendicular movement M, is
generated by a random generator with uniform distribution
given a movement interval. Figure 5 shows the benefit of
FB. The number of lane-crossing incidents is reduced by
around 30% by using F'B model. The reductions are the
result of correctly classification for those boundary scenarios
that would misclassified as false positive by GPS-based bead
model.

4. CONCLUDING REMARKS

We proposed a formal model — fused bead — for the possi-
ble locations at given time-instant(s) when the location data
from two sources — on-board GPS devices and roadside sen-
sors — is combined, and demonstrated that “two uncertain-
ties are better than one”, in the sense that fusing the data
from both sources would narrow the possible whereabouts.

!The source code(s) and the data are publicly available at
http://www.eecs.northwestern.edu/~bzv686/Fused Beads
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Figure 5: Lane-Crossing Query

We analyzed the impact of the model on the lane-crossing
query and we presented experimental observations illustrat-
ing the benefits of the fused bead approach.

In the future, we will work on generating efficient algo-
rithms for continuous spatio-temporal queries. and we will
investigate the scalability and efficiency aspects of the query
processing algorithms.
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